## High precision spectroscopic observation of gamma rays from thundercloud

T. Kanda, S. Ogasawara, K. Yamamoto, J. Kataoka (Waseda University), M. Tsurumi, T. Enoto (Kyoto University)

Thunderclouds are known to emit minute-long gamma-ray bursts, commonly refe rred to as gamma-ray glows. These emissions are believed to originate from bremsstrahlung produced by high-energy electrons accelerated within the clo uds. We conducted winter lightning observations in a mountainous area of Ni igata, Japan, where thunderclouds are easily observable. Our detection syst em comprises various scintillation detectors, including BGO, CsI(T1), SrI<sub>2</sub> (Eu), and a high-purity germanium (HPGe) detector, to search for line gamma -ray emissions such as nuclear gamma rays and pair annihilation lines (511 On December 24, 2024, we observed a gamma-ray glow event lasting ap proximately three minutes. Radar data indicated the presence of rain clouds over the observation site during this period. Each detector recorded an inc rease in gamma-ray count rates. In addition to the enhancement of continuum emissions, we detected tentative line emissions between 200 and 600 keV. Al though the event was relatively weak as a gamma-ray glow, the presence of 1 ine-like features suggests that future, more intense events may reveal clea rer spectral structures.

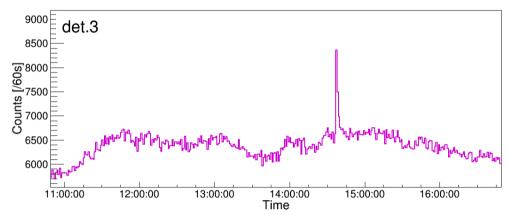



fig 1. Count rate recorded by the HPGe detector. The vertical axis shows the number of counts per 60 seconds, and the horizontal axis indicates time in JST.

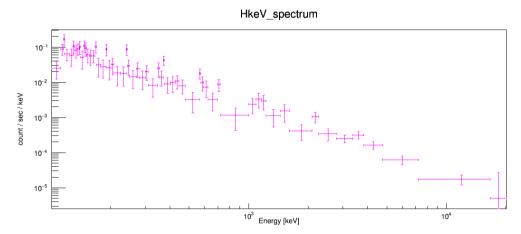



fig 2. Energy spectrum detected by the HPGe detector during the peak interval (14: 36:00-14:39:00). The background has been subtracted, and binning was applied to en sure sufficient counts per bin.

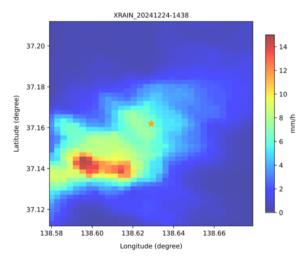



fig 3. Radar image of the rain cloud at 14:38 JST. The star at the center marks the observation site.