

Proton Energy Dependence of Radiation Induced Gain Layer Degradation in LGADs

Veronika Kraus*, Marcos Fernández García, Leonardo Lanteri, Luca Menzio, Michael Moll

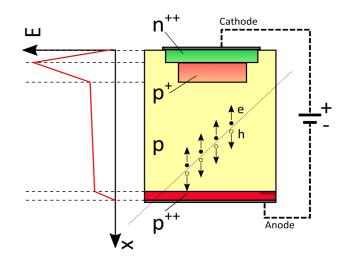
*CERN Solid State Detector (SSD) Group and Technical University of Vienna

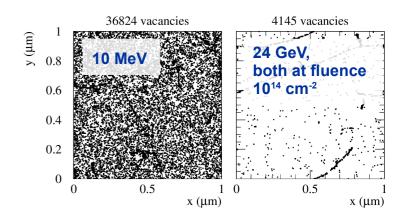
14th International Hiroshima Symposium 2025, Taipei

19.11.2025

Outline

- Motivation
- Project Overview
- Electrical Characterization
 - Current and capacitance measurements
 - Acceptor removal coefficients in comparison
- Laser Characterization
 - Gain studies
 - Gain suppression
 - Timing with comparison to radioactive source measurements
- Summary & Outlook




Motivation

- Low Gain Avalanche Detectors (LGADs): Gain layer produces an electric field peak → avalanche multiplication of primary e⁻ → good signal-to-noise ratio and timing capabilities (e.g.: for pile-up at HL-LHC)
- Radiation damage in LGADs leads to a degradation of the gain layer due to acceptor removal → loss of signal amplification
- Limited literature on the comparison of irradiation induced LGAD degradation with different proton energies
- Of special interest: low energy protons → limits of the Nonlonizing Energy Loss (NIEL) scaling (doesn't distinguish between cluster and point displacement)

$$NIEL(T_0) = \frac{N_A}{A} \sum_{i} \int_{T_{min}}^{T_{max}} Q(T) T \left(\frac{d\sigma}{dT}\right)_{i} dT$$

Simulations of radiation damage by M. Huhtinen:

Project Overview

- Proton irradiation of over 100 samples at four irradiation facilities
- Fluences 1·10¹³ to 2.5·10¹⁵ p/cm², depending on energy: up to 7.5·10¹⁵ 1 MeV neutron equivalent fluence (n_{eq})

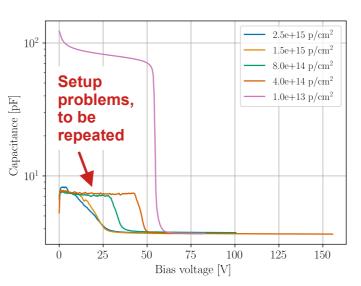
HPK Prototype 2

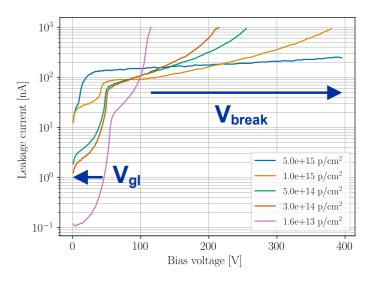
- Single LGADs from Wafer 25 and 36
- Active area 1.3 x 1.3 mm², 50 μm epitaxial layer, V_{gl}: 50 - 60 V

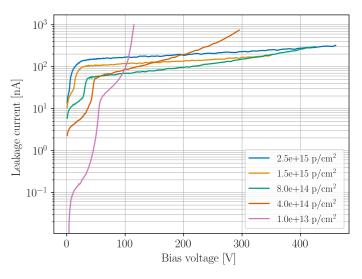
CNM Run 15973

- Wafers with different carbon enrichment:
 - W1: no carbon
 - W2: 1·10¹⁴ cm⁻²
 - W4: 3·10¹⁴ cm⁻²
- Active area 1.3 x 1.3 mm², active thickness 50 μm, V_{gl}: 30-35 V
- No opening in the topside metallization

Proton Energy	Samples	Hardness Factor (M. Huhtinen, G.P. Summers)
18 MeV (Bern University Hospital)	HKP2 W25	3
24 MeV (University of Birmingham)	HPK2 W25, W36	2.56
400 MeV (Fermilab)	HPK2 W25, W36 CNM W1, W2, W4	0.83
23 GeV (CERN PS-IRRAD)	HPK2 W25, W36 CNM W1, W2, W4	0.62

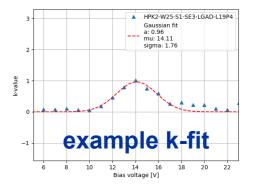



Electrical Characterization

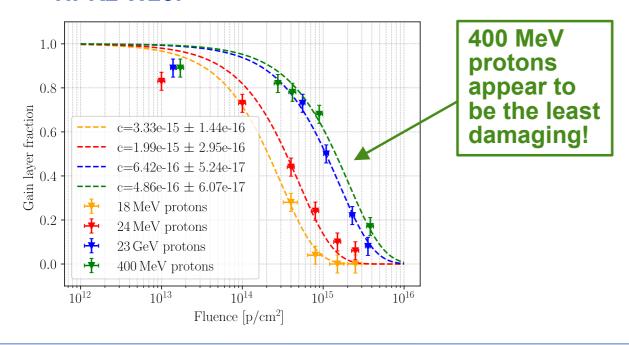

- Exemplary Current Voltage (I-V) and Capacitance Voltage (C-V)
 characteristics
 - HPK2 W25, Proton energies of 400 MeV and 23 GeV
 - Measurements at -20°C, 1 kHz, ann. 60 min at 80°C
- Expected trends with increasing fluences: V_{break} and V_{gl} shift due to degradation of the gain layer, leakage current increases
- Indication: 400 MeV protons less damaging than higher energy (contrary to expectation)

23 GeV:

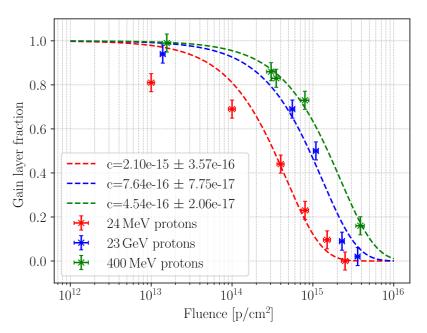
400 MeV:



Acc. Removal Coeff.: HPK2 LGADs

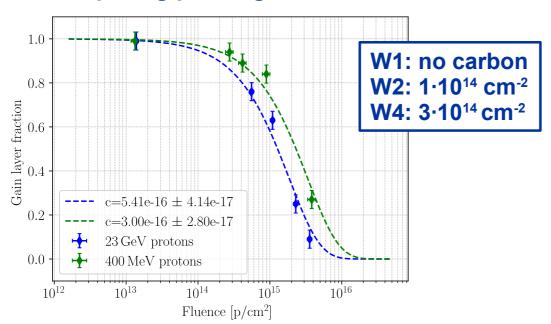

- **V**_{gl} **obtained from IV curves** with the k-fit method, then normalized to the non-irradiated sample and plotted over fluence: acceptor removal coefficient *c* can be fitted
- Expected trend: lower-energy protons more damaging

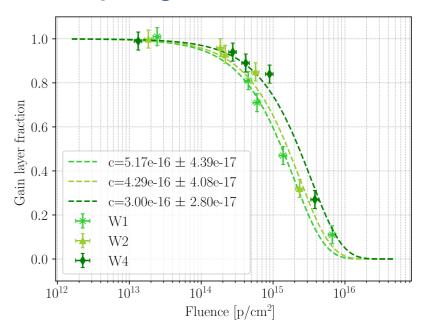
$$k(I,V) = \frac{\Delta I}{\Delta V} \frac{V}{I}$$


$$\frac{V_{gl}(\Phi_{eq})}{V_{gl}(0)} \approx e^{-c\Phi_{eq}}$$

HPK2 W25:

HPK2 W36:

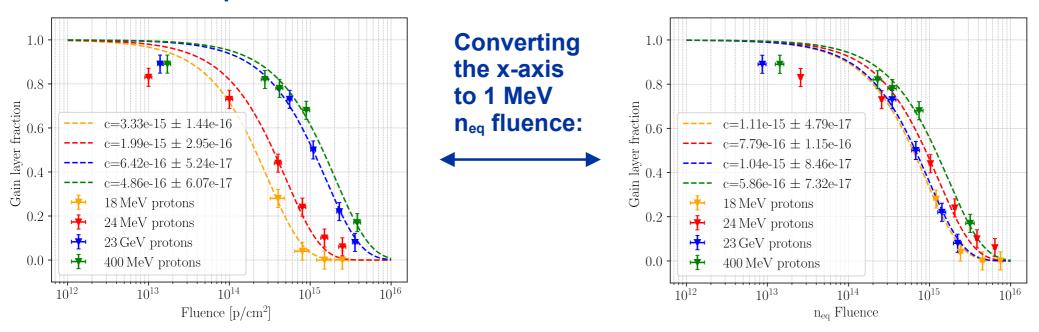



Acc. Removal Coeff.: CNM LGADs

- Different p-Energies & Same Wafer: 400 MeV irradiation again results in less acceptor removal than
 23 GeV; Bigger difference between the two energies for carbonated LGADs
- Different Wafers & Same p-Energy: Carbon implantation mitigates gain layer degradation

Comparing p-Energies: W4

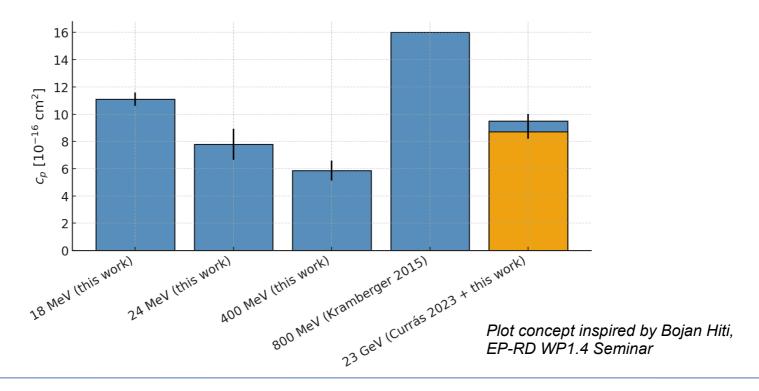
Comparing Wafers: 400 MeV



Acc. Removal Coeff. Comparison

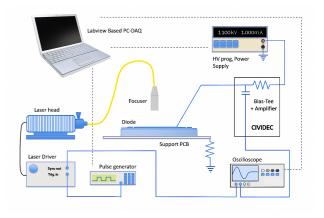
- Converting to 1 MeV n_{eq} fluence: curves appear closer and their relative order changes
- **Difference in c values remains,** indicating that NIEL scaling only partially compensates for different proton energies!

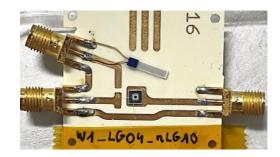
HPK2 W25 with p fluences:

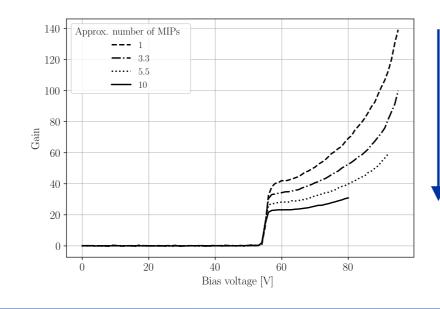


Acc. Removal Coeff. Literature Comparison

- LGADs used in HL-LHC timing layer upgrades, some studies available for comparison
 - Acceptor-removal coefficients for HPK2 LGADs (no carbon) irradiated with protons of different energies
 - c values plotted here from V_{gl} fits versus n_{eq} fluence



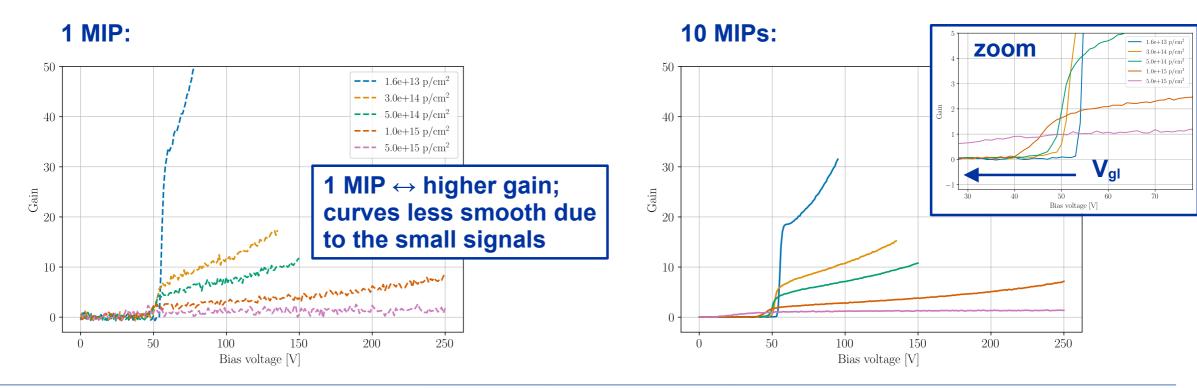



Laser Characterization

- Performed with an IR laser with λ = 1064 nm ≈ 1.17 eV, spot size 10 μm, SSD laboratory (CERN)
- Tested intensities ~ 10 Minimum Ionizing Particles (MIPs) down to 1 MIP
- Waveforms for HPK2 (W25) LGADs and diodes measured → Calculation of Collected Charge (CC) → Comparing the CC of LGADs to respective diodes allows to determine the sensor gain

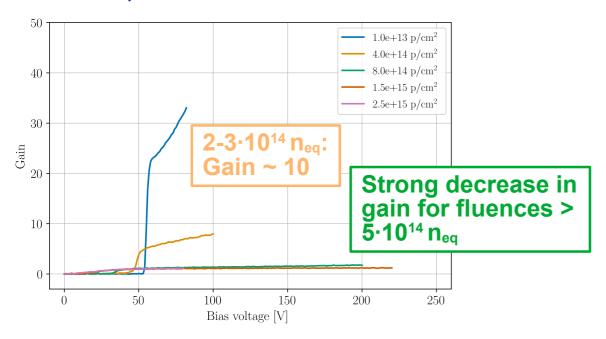
$$Gain[V] = \frac{CC_{LAGD}[V]}{CC_{PIN}[V \ge V_{FD}]}$$

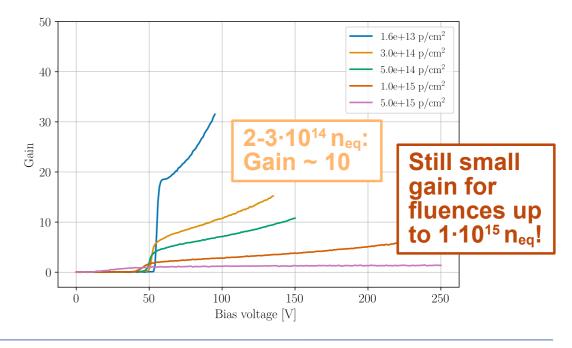
HPK2 W25:


Gain measurements of nonirrad. LGAD for different laser intensities (MIPs); Gain suppressed for higher number of MIPs

Laser Characterization: Gain

- Comparing the LGAD gain for different laser intensities (→ Number of MIPs):
- Exemplary plots for 400 MeV
 - All gain measurements for irradiated samples taken at -20°C

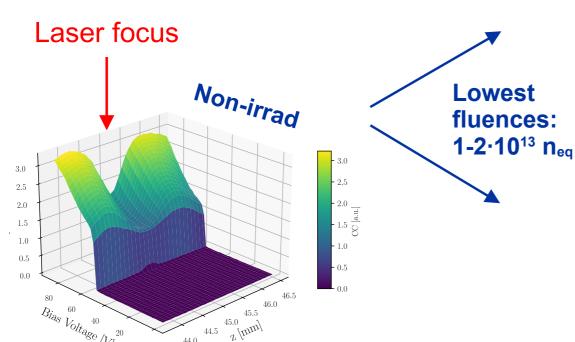


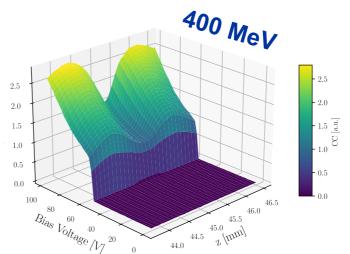

Laser Characterization: Gain

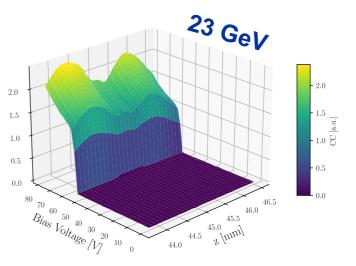
- Comparing the LGAD gain for different proton energies (at same laser intensity): 23 GeV vs. 400 MeV
 - For lower fluences: similar behavior, 23 GeV shows even slightly higher gain
 - 400 MeV proton LGADs still exhibit measurable gain after fluences ~ 1⋅10¹⁵ n_{eq}

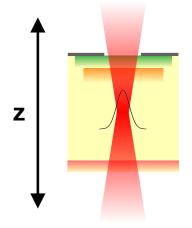
23 GeV, 10 MIPs:

400 MeV, 10 MIPs:

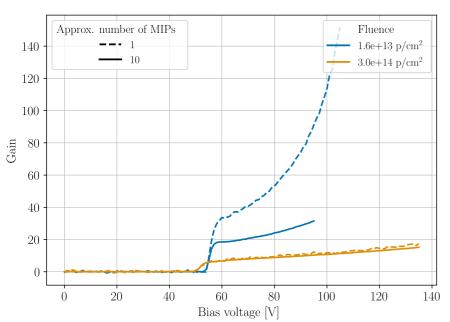







Gain Suppression

- Two ways:
 - Changing the position of the focus (z-V_{bias} scan)
 - Changing the laser intensity

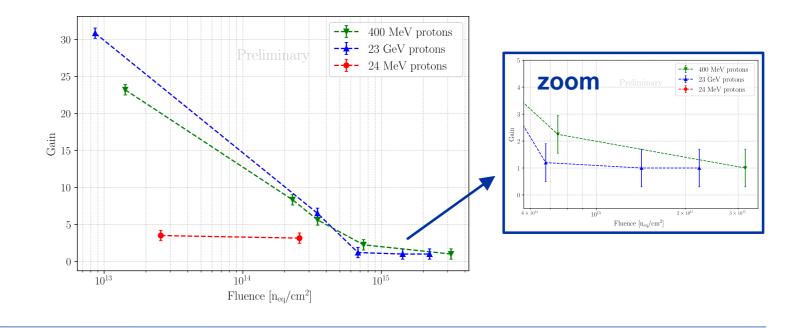


Gain Suppression

Two ways:

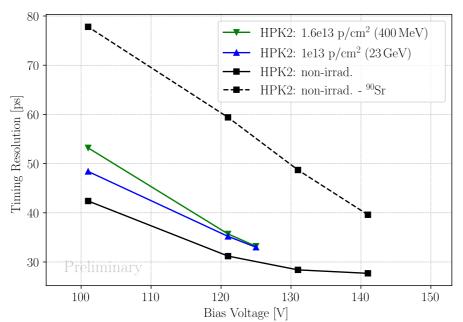
- Changing the position of the focus (z-V_{bias} scan)
- Changing the laser intensity

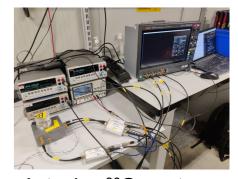
400 MeV, two lowest fluences $(1.5\cdot10^{13} - 3\cdot10^{14} n_{eq})$, 1 vs 10 MIPs:


- Gain suppression at 80 V between 1 and 10 MIPs:
 - 400 MeV lowest fluence: ~ 45% suppression
 - Non-irrad LGAD (see plot slide 10) and 23 GeV lowest fluence sample show comparable values
- For **next highest tested fluences** around 3·10¹⁴ n_{eq} (Gain < 15): **Gain suppression is almost negligible**

Gain Comparison

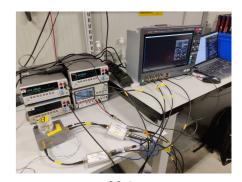
- Comparison of gain at same relative V_{bias} (V_{gl} + 20 V to account for irradiation induced shifts) and intensity (10 MIPs) for increasing fluences and different proton energies
 - I-V and C-V analysis (acceptor removal): sensitive to gain-layer deactivation
 - Laser characterization: also more sensitive to charge collection and trapping
- Comparing energy dependence qualitatively: Similar trends in electrical and laser characterization
- 400 MeV and 23 GeV gain seems to have the same trend
- Lower fluences: 23 GeV samples exhibit a slightly higher gain; Higher fluences: 400 MeV samples maintain gain longer
- Lower energy protons (here 24 MeV)
 more damaging → way faster gain
 degradation



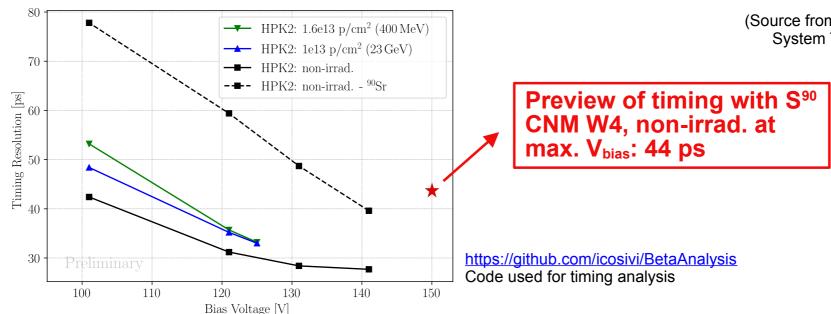


Timing and Comparison to 90Sr Source

- **HPK2 W25 samples** tested with laser timing configuration (two pulses) and ⁹⁰Sr
 - Laser: comparison of non-irrad. LGAD with lowest 400 MeV and 23 GeV fluence
 - 90Sr: first test for non-irrad. LGAD shows worse timing (expected due to Landau fluctuation)


Interim ⁹⁰Sr setup (Source from the CMS ETL System Test group)

https://github.com/icosivi/BetaAnalysis Code used for timing analysis



Timing and Comparison to 90Sr Source

- **HPK2 W25 samples** tested with laser timing configuration (two pulses) and ⁹⁰Sr
 - Laser: comparison of non-irrad. LGAD with lowest 400 MeV and 23 GeV fluence
 - 90Sr: first test for non-irrad. LGAD shows worse timing (expected due to Landau fluctuation) → systematics measurements of CNM LGADs planned!

Interim ⁹⁰Sr setup (Source from the CMS ETL System Test group)

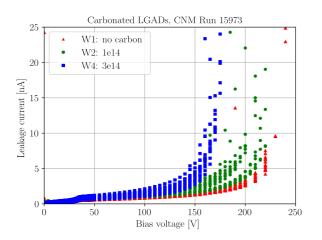
Summary & Outlook

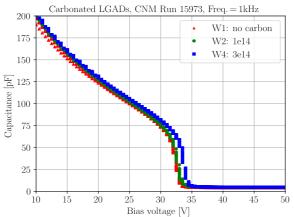
- HPK2 and CNM LGADs irradiated with protons from 18 MeV to 23 GeV and studied by electrical, laser and radioactive source measurements
- Lower-energy protons induce faster degradation, whereas the 400 MeV proton damage deviates from an otherwise systematic energy-dependent trend
- Electrical and laser/source measurements show a comparable energy dependence
- **CNM samples** without opening in the topside metallization to be tested with ⁹⁰Sr
- While NIEL scaling offers a valuable baseline, it requires revision to account for different particle types and energies!

Thank you for your attention!

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511 (EURO-LABS).

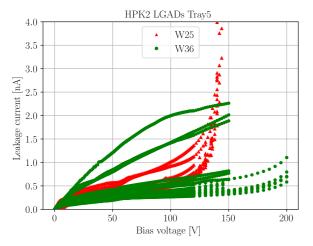
Backup Slides

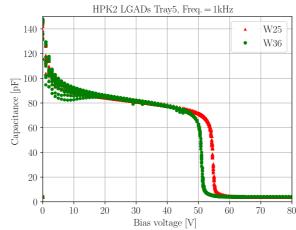




I-V and C-V Characteristics (Before Irradiation)

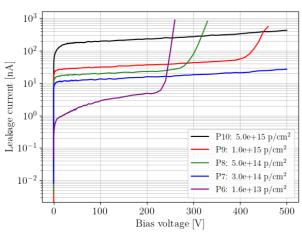
CNM:

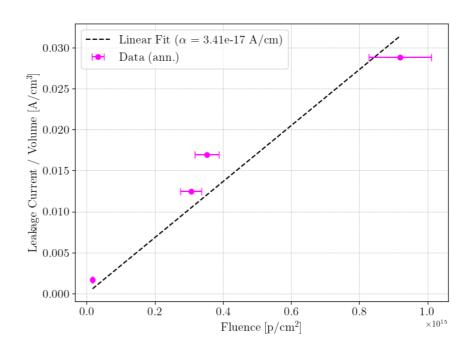

@ +20°C, 1 kHz



- Boron content the same in all Wafers;
 Carbon content influences V_{break}
 (carbon acting as diffusion suppressor for boron during fabrication)
- Influences the breakdown
- V_{gl} between 30 and 35 V

HPK:@ +20°C,
1 kHz


- W25: lower breakdown voltage (indication for higher gain)
- V_{gl} between 50 and 60 V


Fluence Confirmation

- 400 MeV protons (Fermilab) look less damaging than all other tested proton energies
 - Cross check fluences with annealed reference diodes (80 min at 60°C)
 - $-\alpha_{nq} = 3.99 \cdot 10^{-17}$

HPK2 ref. diodes:

$$\frac{\Delta I}{V} = \alpha \cdot \phi_p \rightarrow \kappa = \frac{\alpha}{\alpha_{nq}}$$

Hardness factor κ approx. 0.85

