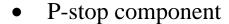


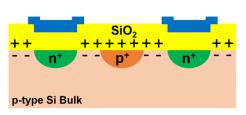
Evaluation of post-irradiation performance of ATLAS18 strip sensors affected by low p-stop issue

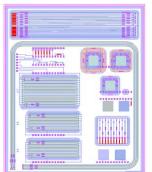
J. Fernández-Tejero, E. Bach, V. Cindro, V. Fadeyev, P. Federicova, C. Fleta, J. Kozakova, J. Kroll, J. Kvasnicka, I. Mandic, M. Mikestikova, M. Ullán*, Y. Unno, D. Valero

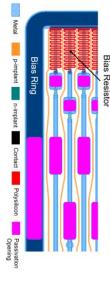
*miguel.ullan@imb-cnm.csic.es

Scope

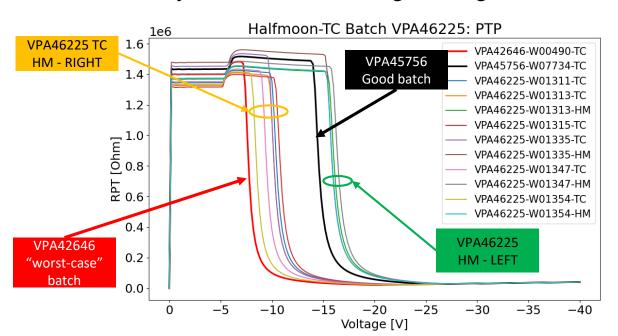

- Introduction and Framework
 - ➤ ATLAS-ITk strip sensors production
 - > P-stop element
 - ➤ Low P-stop issue
- Experiment
 - > Proposal
 - > Samples and tests
 - > Irradiations
- Results
 - ➤ Main sensors
 - > CCE (minis)
 - ➤ Rint (minis)
- Conclusion and Future Work

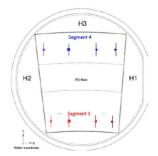

Introduction and Framework



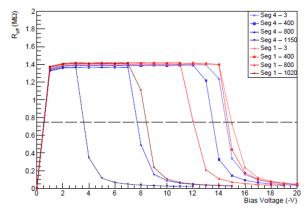

- Production of ATLAS-ITk ATLAS18 strip sensors
 - See Thomas Koffas' "Phase-2 Upgrade of the ATLAS Inner Tracker" Oral #19 in this conference
 - ➤ Need to produce ~24000 sensors (Hamamatsu HPK Japan)
 - ➤ The ITk collaboration does the testing
 - QC: To test the actual sensors to be installed in the experiment
 See: Pavla Federicova's "Evaluation of quality control (QC) of ATLAS18
 production ITk strip sensors", Oral #39 in this conference
 - QA: to monitor the technology parameters and post-irrad performance throughout prod.
 See: Robert Orr's "Quality Assurance during production of the ATLAS18 Itk strip sensors", Oral #49 in this conference

- ➤ P-stop is a p-doped layer in between the n+ strips to provide interstrip isolation pre- and post-irrad due to interface and oxide charge
- P-stop monitoring with test structures
 - ➤ MOS with P-stop
 - An MOS capacitor between the P-doped substrate and metal, with field-oxide in between
 - > PTP
 - A special structure for sensor protection with important role, and effect, of the p-stop layer


M. Ullán, et al. "Quality Assurance Methodology for the ATLAS Inner Tracker Strip Sensor Production", NIMA, vol. 981, 164521, 2020



Low P-stop Issue I

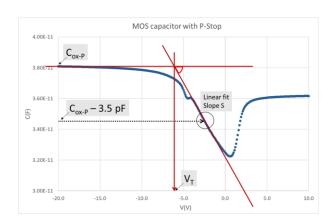


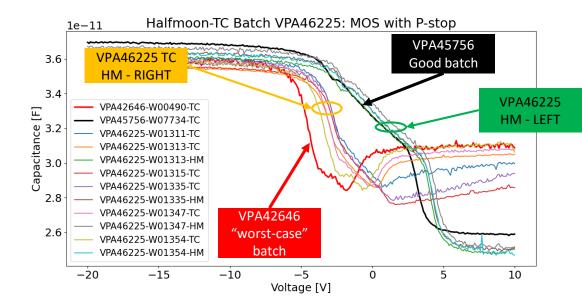
- In some batches we have seen indications of low P-stop doping
 - > Seen in the MOS capacitor with P-stop as a fast depletion rate (next slide)
 - ➤ Also confirmed with PTP measurements (see below)
 - ➤ Confirmed by simulations (See: Yoshinobu Unno's poster #63 in this conference)
 - ➤ There is a clear inhomogeneity in the doping concentration within the batch and within the wafer
 - Only a small number of wafers of the batch are affected
 - In most cases, the left side of the wafer is not affected
 - ➤ 4 full production batches rejected for this reason
- Effect clearly seen in Punch Through Voltage:

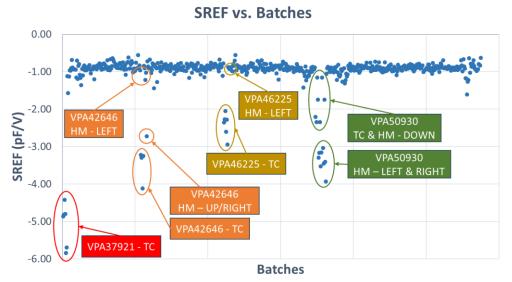
PTP -- VPA42646 W531

Estimated p-stop density:

- 16 V: ~4x10¹² cm⁻² (1)
- 12 V: ~2x10¹² cm⁻² (1/2)
- 7.5 V: ~1x10¹² cm⁻² (1/4)
- 4 V: ~5x10¹¹ cm⁻² (1/8)




Low P-stop Issue II



MOS with P-stop

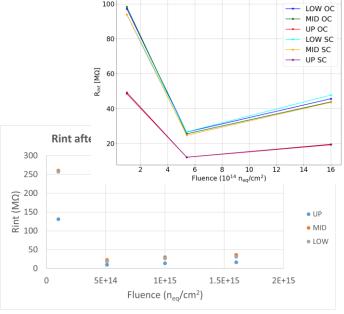
- Sref
 - Slope of the curve from accumulation to depletion
 - Clear indicator of the issue
 - Used as figure-of-merit in QA tests

Effects in MAIN sensors

- The simulations indicate that the results are compatible with an order of magnitude reduction, in the worst case, in the P-stop doping concentration
 - > See:

Yoshinobu Unno, et al, "Analysis of MOS capacitor with p-layer with TCAD simulation" NIMA 1064, 170045 (2024) Yoshinobu Unno, et al., "Measurement of Threshold Voltage in PTP Structures and Estimation of P-stop Density Variation Within an ATLAS18 Silicon Strip Sensor Wafer Using TCAD Simulations", poster #63, this conference.

- We have not seen clear effects in other QA/QC tests pre-irrad apart from PT voltage reduction
 - Some cases of areas of low pre-irrad interstrip isolation in main sensors (not necessarily related to low P-stop doping reduction, e.g., static charge build-up)
- We do not know if this can have direct consequences post-irrad
 - ➤ Some sensors with slightly lower P-stop doping might have passed undetected due to QA batch sampling
- This work tries to find out the consequences of the low P-stop doping on the sensors performance in the real experiment (post-irrad)
- The foundry has identified the origin of the problem and mitigated it
- Also HPK has proposed process variations to make a more robust fabrication See: Jana Kozakova's "Evaluation of Performance of the p-stop Process Splits in ATLAS18 strip sensors, Pre- and Post-Irradiation", poster #68, this conference



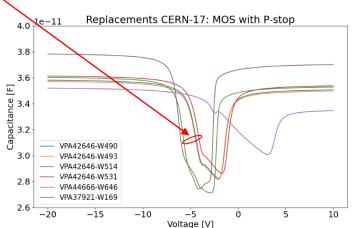
Experiments

Three experiments:

- 1. Take one MAIN sensor and irradiate it with γ +n up to target fluences
 - > Fast "final" result of the full degradation
 - ➤ Use the sensor with the worst (lowest) p-stop doping (W514)
- 2. Try some intermediate fluences with MAIN sensors
 - ➤ We have seen a "minimum" in Rint at "mid" fluence
 - **□** 5.1e14 neq/cm2 || 21 Mrad
 - J. Fernandez-Tejero, et al. "Evolution of the electrical characteristics of the ATLAS18 ITk strip sensors with HL-LHC radiation exposure range," 2025 JINST 20 C01010
 - > This would be a "worst-case" scenario
 - ➤ We could also try other fluences close to that in order to approximate to the "minimum"

Rint vs Fluence (Grounded Scheme,

- 3. Irradiate several mini sensors only with gammas to see the degradation of Rint
 - ➤ Identify the TID of "fail" (Rint < 15 MOhm) for "good" and "bad" P-stop cases
 - Find the "saturation of degradation" (if any)
 - Later add neutron fluence to learn when and how the Rint "recovers" to acceptable values



Samples and tests I

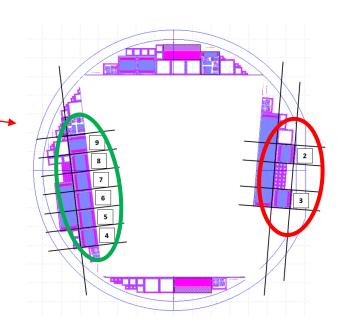
Experiment 1 and 2 (MAIN sensors)

- Use main sensors from rejected batch **VPA42646** (R0, CERN-17)
 - This is a rejected batch with quite bad P-stop results.
- Irradiate with gammas + neutrons
- MAIN sensors doses and fluences:
 - > W531: 2.0 Mrad, 5e13 neq/cm2
 - ➤ W532: 4.1 Mrad, 1e14 neq/cm2
 - ➤ W493: 16.5 Mrad, 4.0e14 neq/cm2
 - ➤ W490: 21 Mrad, 5.1e14 neq/cm2
 - ➤ W514: 66 Mrad, 1.6e15 neq/cm2

- Additionally, **mini sensors** affected by low P-stop (TC tests) have been irradiated together with the MAIN sensors for CCE tests
 - 1) W492: 66 Mrad, 1.6e15 neq/cm2
 - → This case is obtained from proton (MC40) irradiations with good CCE
 - 2) W531: 21 Mrad, 5.1e14 neg/cm2
 - 3) W493: 16.5 Mrad, 4e15 neq/cm2

Measurements:

• Rint, CCE of minis



Samples and tests II

Experiment 3 (mini sensors)

- Dice minis from the Halfmoons (HM) of affected wafers
 - ➤ W490, W493, W514 and W531
 - ➤ We know that the low P-stop effect is affecting the right side of the wafers → dice minis from the left and the right HM of those wafers, we can have minis with proper P-stop and with low P-stop, in order to do the whole experiment with good sensors and "bad" sensors
- Batch **VPA42646** (**R0**)
 - > Wafers: W490, W493, W514
- Dice 6 minis of each type (good/left, bad/right),
 - Dicing scheme -
- Irradiate up to 6 doses:
 1, 3, 5, 10, 21, 66 Mrad
- Later, also complete with neutron irradiations

Irradiations (γ & n)

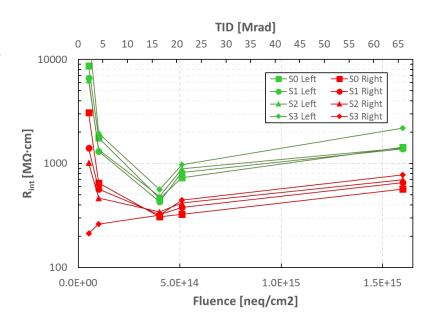


- MAIN sensors
 - > 5 cases
- Mini sensors for CCE tests
 - > 3 cases
- Mini sensors for damage study (TID)

Wafer	type	Position on the wafer	Gamma irradiation
W490	MINI 4	left	1 Mrad
W490	MINI 5	left	3 Mrad
W490	MINI 6	left	5 Mrad
W490	MINI 7	left	10 Mrad
W490	MINI 8	left	21 Mrad
W490	MINI 9	left	66 Mrad
W490	MINI 3	right	1 Mrad
W490	MINI 2	right	3 Mrad
W493	MINI 3	right	5 Mrad
W493	MINI 2	right	10 Mrad
W514	MINI 3	right	21 Mrad
W514	MINI 2	right	66 Mrad

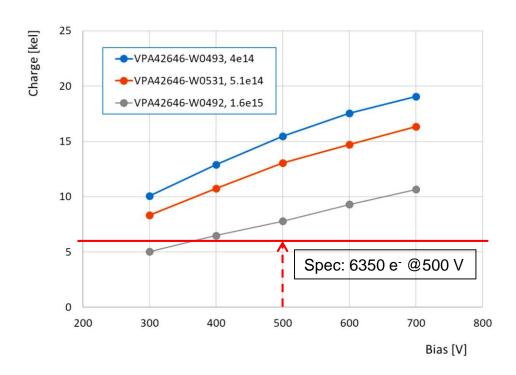
Setup for gamma irradiations of MAIN sensors and minis




Results: MAIN sensors (Rint)

MAIN sensors $(\gamma + n)$

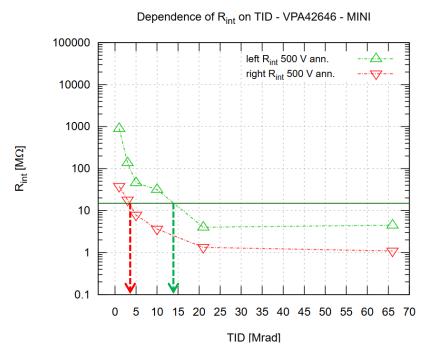
- Experiment 1 (target $\gamma+n$) and 2 (intermediate $\gamma+n$)
- Interstrip resistance (Rint) measurements at left/good and right/bad strips of the sensor
- Decrease of Rint up to 4e14 neq/cm2 and then increase for higher fluences
 - ➤ Initial influence of TID effects (Rint ↓)
 - ➤ Later, displacement damage dominates (Rint ↑)
- Significantly lower Rint values at right side of the sensor for all cases → low P-stop
 - ➤ Density estimated to be ~ 0.5 to 1×10^{12} cm⁻² ($\sim 1/8$ to 1/4) using TCAD simulations
- Still well within specifications
- One "special case" we will discuss later



Results: CCE

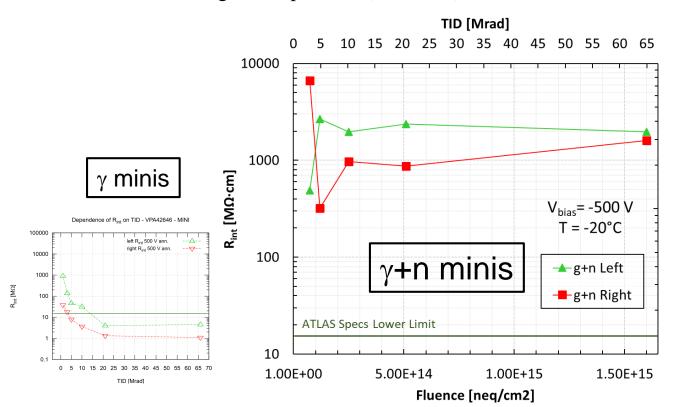
CCE results

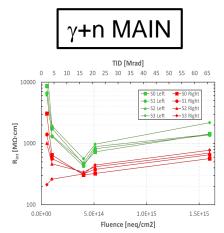
- Mini sensors from VPA42646 irradiated together with full size sensors $(\gamma + n)$
- All samples passed threshold of specifications (6350 e⁻ @500V)



Results: minis (Rint $\leftarrow \gamma/\text{TID}$)

• Experiment 3: Rint of minis from affected/not affected by low P-stop


- ➤ Dose at which Rint < specs is significantly lower for low P-stop cases
 - ~14 Mrad for "good" minis // ~4 Mrad for low P-stop minis
 - [™] Only gammas !! → therefore worse than expected in the real experiment
- Saturation of TID damage
- Next: complete with neutron irradiations to see the Rint evolution in the real scenario



Results: minis (Rint $\leftarrow \gamma + n$)

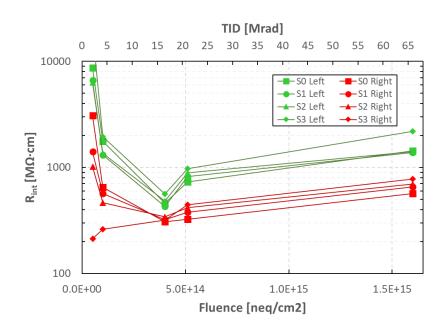
- Rint @500 V for γ +n irradiated minis
- Rint significantly lower for low P-stop minis
 - > Still well above specifications
- Minimum of Rint possibly influenced by P-stop doping level
 - ➤ Will investigate the position (and value) of the minimum

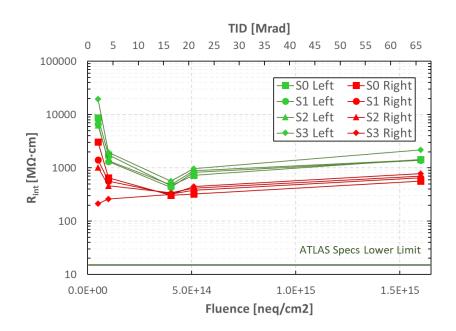
Conclusion

- During the ~4.5 years production of the ATLAS-ITk strip sensors, we have found some cases (batches) in which the doping of the P-stop layer was significantly lower than expected
 - ➤ We have identified this through specific test structures, during Quality Assurance (QA) tests, and also with tests in the actual sensors (QC)
 - > Nevertheless, the sensors remain within specifications pre-irrad
 - ➤ In this work we try to identify the effect of this low P-stop doping in the real experiment (post-irradiation)
- MAIN sensors: Significantly lower interstrip resistance (Rint) values for low P-stop strips → Still well within specifications
- CCE results (mini sensors): All samples well above specifications
- Gamma irradiations (minis): Dose at which Rint < specs is significantly lower for low P-stop cases
- Minis $(\gamma+n)$: Rint significantly lower for low P-stop minis
 - > Still well above specifications
 - ** Next: Detailed quantitative search of minimum of Rint vs. TID+NIEL

Thank you

Backup




Results: MAIN sensors (Rint)

MAIN sensors $(\gamma + n)$

