Evaluation of Performance of the p-stop Process Splits in ATLAS18 strip sensors, Pre- and Post-Irradiation

<u>J. Kozáková</u>, A. Affolder^b, K. Affolder^b, A. Awais^c, E. Bach^d, G.A. Beck^c, P. Bernabeu^e, A. J. Bevan^c, Z. Chen^c, V. Cindro^f, B. Crick^g, J. Dandoy^h, I. Dawson^c, V. Fadeyev^b, P. Federičová^a, C. Fleta^d, P. Gallusⁱ, C. Jessiman^h, S. Katznelson^b, J. Keller^h, C. T. Klein^h, T. Koffas^h, J. Kroll ^a, M. Kůtová^a, J. Kvasnička^a, C. Lacasta^e, I. Mandić^f, R. R. Marcelo Gregorio^j, F. Martinez-Mckinney^b, M. Mikeštíková ^a, P. S. Miyagawa^c, L. Morelos-Zaragoza^b, R. S. Orr^g, Q. Paddock^b, C. Solaz^e, U. Soldevila^e, E. Staats^h, P. Tůma^a, M. Ullán^d, Y. Unno^k, M. Vansteenkiste^g, P. Wishart^g, S. C. Zenz^c, Y. Zhao^h

segment 1

segment 0

^a Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18200 Prague 8, Czech Republic

^b Santa Cruz Institute for Particle Physics (SCIPP), University of California, Santa Cruz, CA 95064, USA

^c Particle Physics Research Centre, Queen Mary University of London, G.O. Jones Building, Mile End Road, London E1 4NS, United Kingdom

^e Instituto de Física Corpuscular, IFIC/CSIC-UV, C/Catedrático José Beltrán 2, E-46980 Paterna, Valencia, Spain

d Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB-Bellaterra, 08193 Barcelona, Spain

f Experimental Particle Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

g Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S1A7, Canada

^h Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

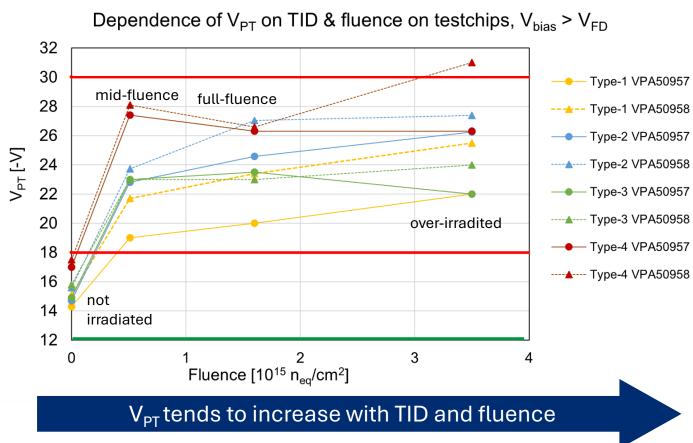
ⁱ UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague – Zbraslav, Czech Republic

^j Department of Nuclear Physics & Accelerator Applications, The Australian National University, Canberra ACT 2600, Australia

^k Institute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Motivation

- HL-LHC upgrade ATLAS Inner Detector using ATLAS18 sensors
- ATLAS18 QA tests found low interstrip isolation in some batches
- this test production evaluates process variations (types 2–4) and their irradiation performance


type	p-stop process variation
1	Conventional process condition (reference)
2	Lower temperature than type 1
3	Little lower temperature than type 2
4	Little lower temperature than type 2 Another method condition Sample Sample
	Sample were were photonics

IV tests

- **before irradiation** all samples passed QC specs $(V_{BD} > 500 \text{ V, I} < 0.1 \,\mu\text{A/cm}^2)$ [1]
- **after irradiation** no influence of p-stop type on early breakdown observed

Punch-through voltage tests

- punch-through voltage V_{PT} voltage at half value of effective resistance [2]
- **before irradiation** all samples passed QC specs (12–18 V)
- after irradiation
 - testchips passed specs limit (18–30 V)
 - main sensors no segment dependence observed
 - type 1 not measured
- V_{PT} behavior varied only slightly among the four tested sensor types, with all sensors meeting QC specs before and after irradiation [1]

at mid-fluence, V_{PT} unexpectedly higher than that of full fluence, this is under investigation

Samples

- radiation-hard n^+ -in-p ATLAS18 micro-strip sensors
 - six barrel long strip main sensors (9.795 cm \times 9.762 cm) 2 segments, 1282 strips per segment, strip length 4.835 cm [1]
 - testchips, miniature sensors

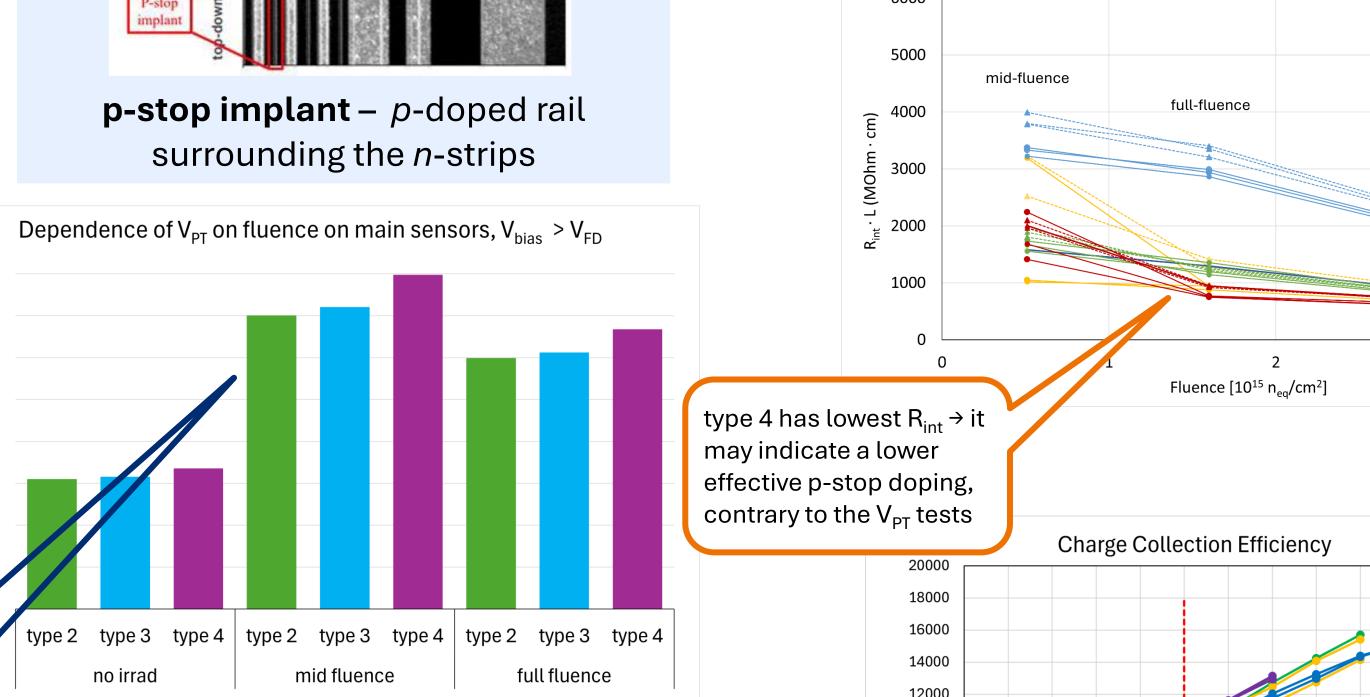
testchip

structure

Irradiation, Doses and Fluences

- gamma irradiation at UJP Praha, Terabalt ⁶⁰Co source
- neutron irradiation at JSI Ljubljana, TRIGA reactor
- mid-fluence 21–25 Mrad + 5.1×10^{14} n_{eq}/cm²
- full-fluence 66 Mrad + 1.6×10¹⁵ n_{ea}/cm²
- over-irradiated 66 Mrad + 3.5×10¹⁵ n_{eq}/cm²

Interstrip resistance tests


- R_{int} is temperature dependent → all values are normalized to -20 °C
- R_{int} decreases with increasing dose and fluence, but all sample types still meet specs(R_{int} >15 k Ω)

 $R_{int} \cdot L$ dependence on TID & fluences on testchips, $V_{bias} > V_{FD}$

Type-1 VPA50957

--- Type-2 VPA50958

<u>→</u> Type-4 VPA50958

[1]

Charge collection efficiency tests

- all miniature sensors irradiated to fullfluence met specs (> 6350 eV at -500 V)
- over-irradiated samples do not meet specs

VPA50957 t1 full-fluence VPA50958 t1 full-fluence VPA50957 t2 full-fluence VPA50958 t2 full-fluence VPA50957 t3 full-fluence VPA50958 t3 full-fluence 8000 → VPA50958 t4 full-fluence → VPA50957 t4 full-fluence 4000 VPA50958 t2 over-irrad VPA50957 t2 over-irrad

Type 4 sample irradiated to full-fluence

Conclusions

- various p-stop types were studied; results are valuable feedback for HPK, even though they will not be used in the ITk detector
- all parameters passed QC specifications
- differences in V_{PT} and R_{int} among p-stop implant types were minimal and negligible for the specification of Itk strip sensors and the expected operational conditions
- a trend of anti-correlation between V_{PT} and R_{int} is observed when going from type 2 to type 4, contrary to the expectation that V_{PT} and R_{int} are positively correlated with p-stop density → under investigation

References

[1] Y. Unno, et al. Specifications and Pre-production of n⁺-in-p Large-format Strip Sensors fabricated in 6-inch Silicon Wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider, (2023) JINST 18 T03008

Institute of Physics

[2] Y. Unno, et al. Evaluation of test structures for the novel n⁺-in-p pixel and strip sensors for very high radiation environments, (2013) NIMA 731

Striptests

 no problematic strips observed in any p-stop implant type before and after irradiation

22.80 2.15 1.95 strip index (starts from 1)

Acknowledgements

- This work was supported by: • the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic via projects LM2023040 CERN-CZ, and FORTE
 - CZ.02.01.01/00/22_008/0004632,
- the US Department of Energy, grant DE-SC0010107, the Canada Foundation for Innovation under project number 36248; additional resources were provided by the Natural Sciences and Engineering Research Council of
- STFC grants ST/W000474/1, ST/S00095X/1, ST/X001431/1, ST/R00241X/1.
- This work is part of the Spanish R&D grant PID2021-126327OB-C21, funded by MCIN/ AEI/10.13039/501100011033 / FEDER, UE
- Research and Innovation Agency (research core funding No. P1-0135 and project No.

