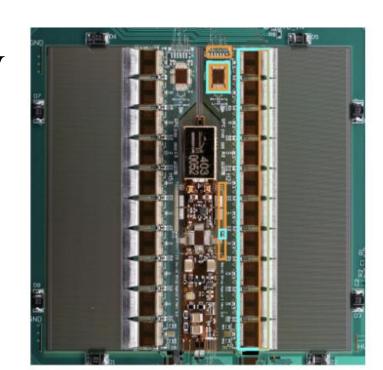
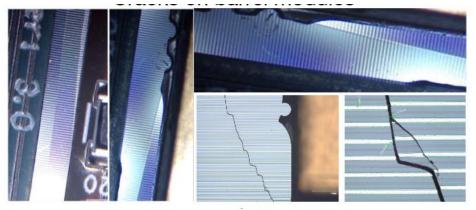


University of Glasgow


Introduction

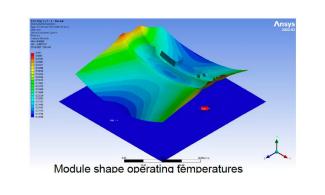
- The Inner Tracker (ITk) is the new all-silicon tracking detector that will be installed in the ATLAS detector [1] in preparation for the High-Luminosity LHC (expected 2030)
- The ITk Strip detector is the outer layers, which are tiled with silicon microstrip sensors


Modules

- **Hybrid** PCB with Binary readout chips (ABCstar) and hybrid controller chips (HCCstar)
- Powerboard PCB
- Both glued to a Silicon Microstrip Sensor

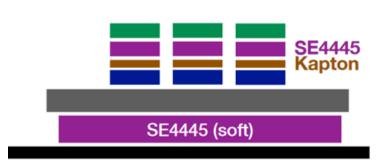
Cracking

- Pre-production modules were assembled and underwent full Quality Control (QC) tests
- As part of the QC programme, all assembled modules had I-V characteristics recorded (to 500V) and were thermally cycled (-35°C -> +20°C) with no issues seen
- However, a fraction of modules after mounting on support structures (staves) had "early breakdown" below the 500V specification
- Investigations found that some of these modules had <100V breakdowns arising from sensors fracturing when staves cycled to cold temperatures



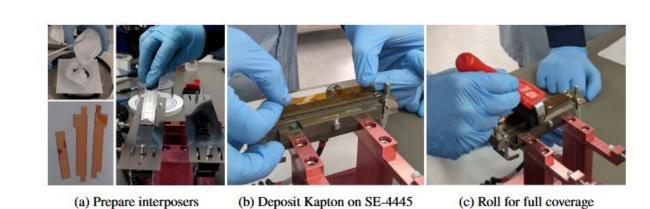
HV Taskforce

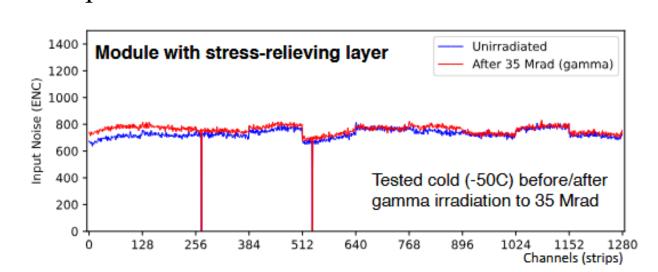
Taskforce was formed to study causes and possible mitigation strategies


- Intense program of simulations, material studies and irradiations took place.
- Identified that the issue was related to a mismatch in the coefficients of thermal expansion (CTE) of materials

Interposers

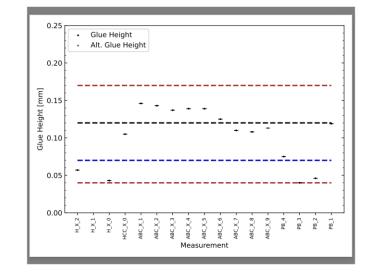
Solution found to add a stress-relieving **'interposer**' layer under every PCB [2].


- Use of **Kapton** (50μm) & **SE445** (100μm)
- The soft glue (SE445) mechanically decouples the hybrid/powerboard PCBs and the sensor, to reduce the thermal stress on the sensor.
- The Kapton layer separates SE445 from the stiff glue (**Ecobond F112**) on the sensor, decreasing the CTE mismatch.

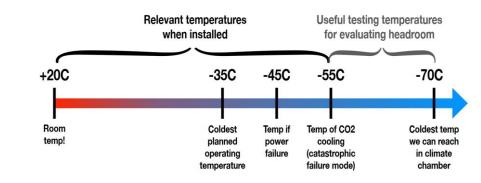

• Stress simulations predicted up to a **factor of 10** reduction in stress

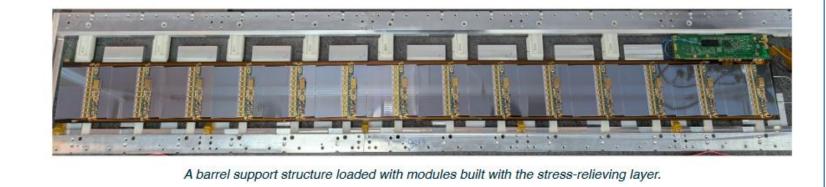
Interposed Modules

• First trials of interposed Hybrids and Powerboards made in institutes [3]



Design verification program took place for potential changes in mechanical properties with temperature & irradiation


 Additional Quality Control procedures established (interposer thickness, shear tests), as well as modified metrology & visual inspection



Interposed Modules on Local Supports

 Evaluated cracking problem by building loaded objects (interposed modules mounted onto staves) and testing at progressively lower temperatures

Six barrel staves were built in the UK/China and US with interposer modules

- **Zero interposer modules** showed signs of cracking at operational temperature of -35C
- All staves taken to -70C with no signs of any cracking apart from one module that cracked on the 4th cycle at -70C (1 out of 154 modules)

Stave	5 cycles -35C	5 cycles -45C	5 cycles -55C	5 cycles -65C	5 cycles -70C
UK LS Stave 43 (single side)					
UK LS Stave 47					
UK LS Stave 50					
US LS Stave 14					Crack for one module on 4th cycle at -70C
US LS Stave 16		Received 100 cycles (Rogue HV power supply killed 4 modules)			
US Stave 17	One module damaged during EoS replacement	Received 100 cycles (Accidentally exposed to +60C)			
UK/US SS Stave 28					

Going Forward

- Interposers now fully adopted for production of modules
- The last technical review (Production Readiness Review) passed in Sep 2025
- The taskforce studies showed no detrimental effect of interposers on mechanical or thermal properties of the modules, pre and post irradiation.
- Strip Barrel modules and loading now in production!
 - Endcap review to follow in Late November 2025
- Interposing processes now fully developed by industrial partners
- All barrel module sites (US, UK, China) now assembling and testing Production barrel modules
- As of Nov, **460** modules have been assembled, with an additional **308** mounted on to staves with **no cracking**

- [1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003
- [2] A.W. Fortman et al, A New Stress-Relieving Layer in ATLAS ITk Strip Modules, ATL-ITK-PROC-2025-009 (2025)
 [3] Nikolai Fomin et al, Extended thermal cycling of ATLAS ITk strip modules with and without stress mitigating interposers JINST 20 (2025) P09036

