Whole-body imaging of mice administered At-211using a high-resolution X-ray and gamma-ray camera for small animals

Y. Kikuchi¹ , R. Tanaka¹ , N. Koshikawa¹ , K. S. Tanaka¹ , J. Kataoka¹ , H. Kato² , Y. Kadonaga² , K. Takahashi² , A. Toyoshima² , M. Murakami² , K. Ooe² , Y. Kon²

¹Waseda University, ²Osaka University

Abstract

Recently, α -ray emitting radionuclides, In recent years, targeted radioisotope therapy (TRT) using alpha-particle–emitting radiopharmaceuticals, such as At-211, has attracted attention. To confirm the therapeutic efficacy of these agents, it is important to visualize the distribution of At-211 in the body with high accuracy. In animal experiments, At-211 imaging is typically performed using human SPECT, which have a typical spatial resolution of approximately 5-10 mm. However, the resolution is insufficient for animal imaging experiments because of small sample sizes. Therefore, we developed a high-resolution X-ray and gamma-ray camera with a $10 \times 10 \text{ cm}^2$ imaging area specifically designed for mouse imaging and conducted animal experiments. At-211 AuNPs were locally administered to tumor-bearing mice, and images were acquired targeting the 79 keV X-rays emitted from At-211. Furthermore, by applying a sub-pixel shift method in some of the imaging, the accumulation of At-211 was confirmed with high resolution. The imaging results obtained the day after administration showed that accumulation in the salivary glands and thyroid gland, which could not be visualized with a human SPECT, was successfully visualized.

EC 58%

²¹¹Po

50pixel/25mm

Shifted

²⁰⁷Pb

Introduction

Targeted Radioisotope Therapy (TRT)

- Expectations for α-ray emitting radionuclides
- α-ray emitting radionuclides : Short range and high energy deposit
- ⇒ Effective and localized treatment

α-ray emitting radionuclides At-211

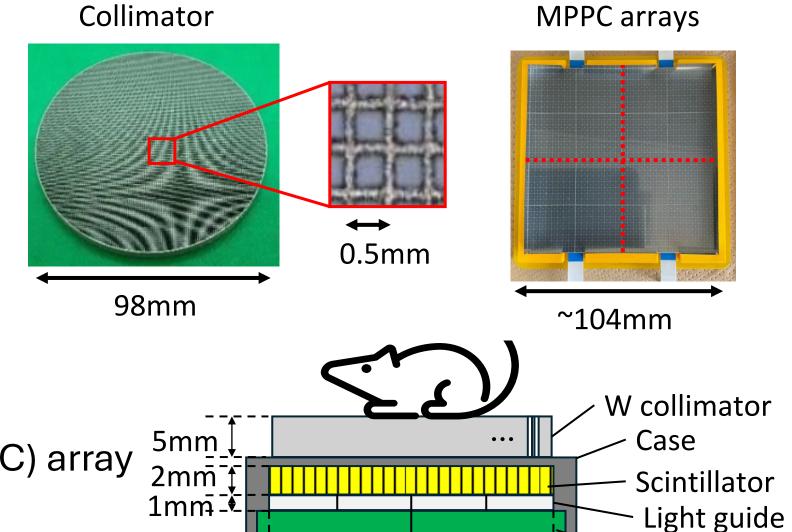
- Actual 100% alpha-ray emitting nuclide
- Can be produced in Japanese cyclotrons
- Emits 79 keV X-rays that can be imaged
- > At-211is particularly promising in nuclear medicine
- Visualize the distribution of At-211 is important

Radiological imaging in animal experiments

- Resolution of human SPECT (5-10mm) is not sufficient
 ⇒ higher resolution is needed
- To confirm drug distribution in vivo
 ⇒ whole body imaging of animals at once
 - > Development of a high-resolution, large-area gamma camera
 - > Animal experiments were conducted using At-211.

Detector configuration

♦ Scintillator


- Dicing Pixelized GAGG(= Gd₃(Ga,Al)₅O₁₂(Ce)) array
- 1pixel: $0.5 \times 0.5 \times t2$ mm³
- Light guide: t1mm
- 50×50 pixels/Scintillator \times 16

♦ Collimator

- Tungsten parallel collimator
- Produced by 3D printer
 ⇒ High-definition structure
- ϕ 98mm
- Pitch: 0.5mm

Photodetector

- Multi-pixel photon counter (MPPC) array
- $50 \times 50 \text{ mm}^2 \times 4$
- Signal readout at 4 ends

100mm

Scintillator array

X-ray 34%

79keV

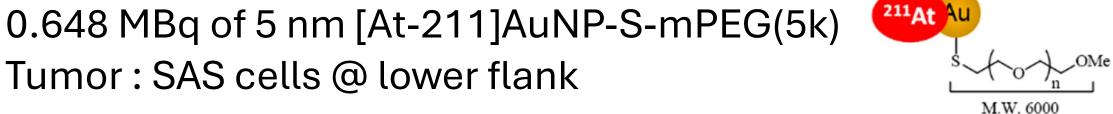
Image Reconstruction Method

♦ Sub-pixel shift

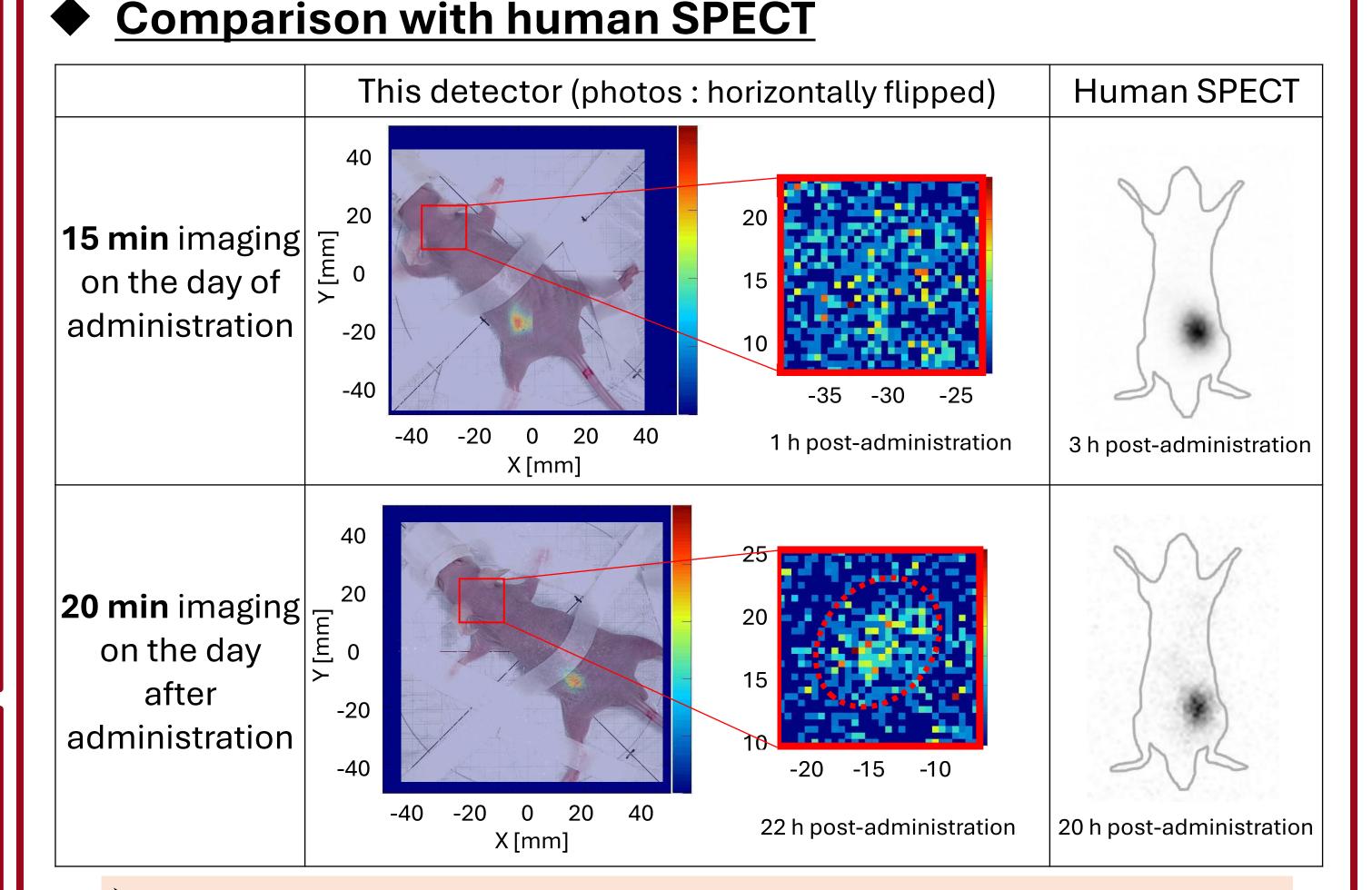
 One of the super spatial resolution methods (Several low-resolution images→high-resolution image)

♦ Steps

- Obtain the original image and the shifted image using a **stage** (shifted by half a pixel in both axes)
- 2. Calculate the average value of the overlapped area of the 2 images
- ⇒ Generates an image with half the pixel size

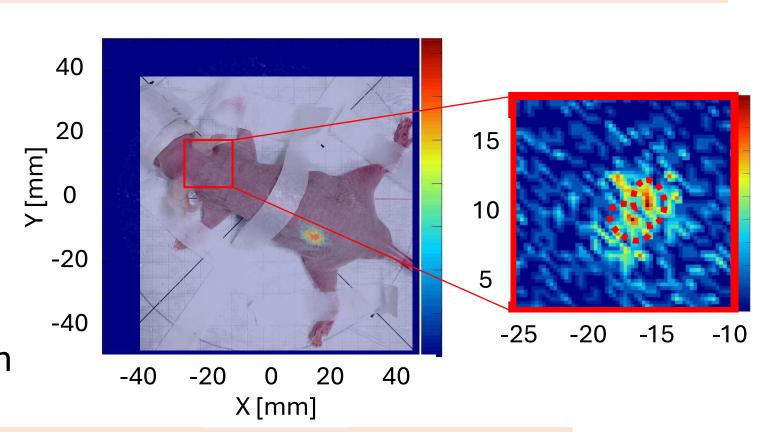

Anesthesia Heater mask Collimator & Detector Stage

Original


Results of imaging in mice

Condition

• Administration: intratumoral administration 0.648 MBq of 5 nm [At-211]AuNP-S-mPEG(5k)



- The results the day after administration showed accumulation in the thyroid and salivary glands, which could not be visualized with SPECT.
- > Autopsy (24 h post-administration)
 - → Confirmed accumulation in the thyroid and salivary glands.

Imaging results with sub-pixel shift

- Total 71 min starting 24 h after administration
- Statistics ...initial position = shifted position

- Although statistics are lacking, the shape of the thyroid/ salivary glands is becoming clearer. (Red dotted line)
- The accumulation was visualized at a high resolution of
 0.25 mm pitch using sub-pixel shift.

Conclusion & Future work

♦ Conclusion

- ✓ Development of a large-area, high-resolution detector for animal imaging.
- ✓ This detector allowed us to visualize the in vivo distribution of 211-At with **higher resolution and sensitivity** than human SPECT imaging.

♦ Future work

- ✓ Imaging of mice that were administered At-211 AuNPs conjugated with a **target molecule** via tail vein injection.
- ✓ Visualization of drug accumulation within tumors following intravenous administration is anticipated.