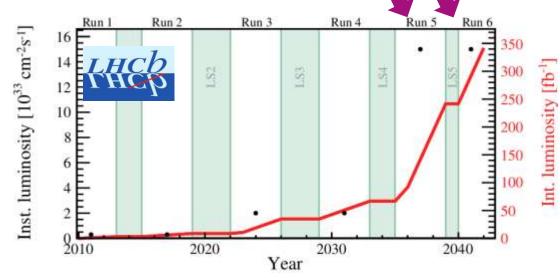


LF-MightyPix: A second HV-MAPS prototype for the LHCb Mighty Tracker

<u>Toko Hirono</u>¹, Sebastian Bachmann², Lucas Dittmann², Richard Leys¹, Nicolas Striebig¹, Celina Welschoff ², Hui Zhang¹ and Ivan Peric¹

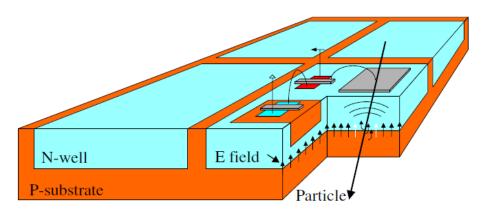
- ¹ ASIC and Detector Laboratory, IPE, Karlsruhe Institute of Technology
- ² Physics Institute, Heidelberg University

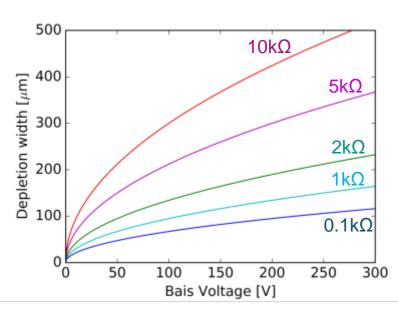

Introduction

Karlsruhe Institute of Technology

- Upcoming experiments: Hight Luminosity
 - High hit-rate capability
 - High radiation hardness
 - Large area, ~O(10m²)
- → Si pixel detectors are good candidates
 - High granularity
 - Radiation hardness has been studied extensively

- Simpler production process suitable for the large-scale production (**)
- Discontinuation of CMOS process might impact the project

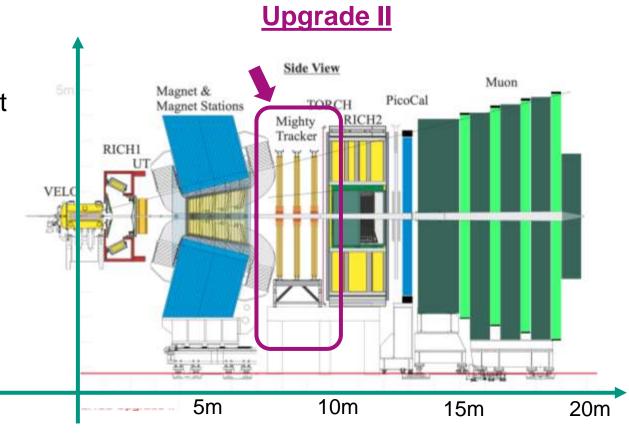

HV-MAPS



- High Voltage Monolithic Active Pixel Sensors (HV-MAPS) = MAPS + High Bias Voltage
 - MAPS: Sensor and readout in a single silicon chip
 - Readout electronics placed inside the n-well and isolated from sensor diode
 - High voltage (~100V) is possible to apply to the sensor diode and deplete sensor

Depletion width d
$$\propto \sqrt{V_{bias} \cdot \rho_{material}}$$

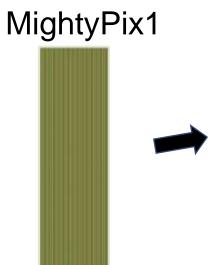
- → Charge collection by drift (not diffusion)
- → Higher radiation hardness



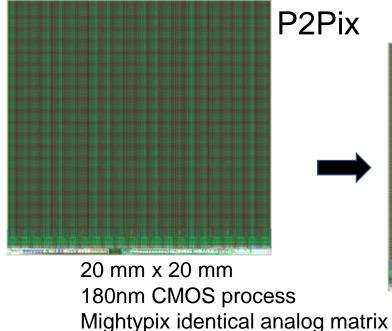
Mighty Tracker in LHCb experiments

- LHCb is a forward-arm spectrometer
- Upgrade I (SciFi Tracker)
 - 3 tracking stations downstream of the magnet
 - Scintillating fibers
 - → Now in operation
- Upgrade II (Mighty Tracker)
 - 3 tracking stations
 - Scintillating fibers
 - HV-MAPS
 - → Higher hit-rate capability and radiation hardness required to survive in Run 5, 6

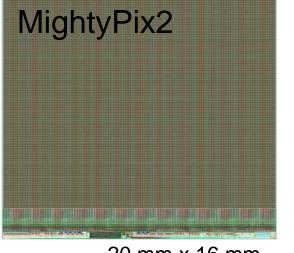
Parameter	MP Specification
Pixel size (bending plane)	≤ 100 μm
Pixel size (non bending plane)	≤ 200 μm
Substrate thickness	<200 μm
Pixel orientation	x
Max. Particle Rate	$17 \mathrm{\ MHz/cm^2}$
Max. Hit Rate	34 Mhit s $^{-1}$ cm $^{-2}$
Min. length of data word	32
Overall efficiency	>96%
Noise rate (End of life)	$\leq 400 \text{kHz/cm}^2$
Transmission rate	4 links of 1.28Gbit/s each
NIEL	$3 \times 10^{14} n_{\rm eq}/{\rm cm}^2$
TID	40 MRad
Power Consumption	$\leq 150 \text{ mW/cm}^2$


Specifications for the LHCb MightyPix sensor, S. Bachmann et al., LHCb-INT In preparation

- Data Output
 - 4 output links or multiplexing to 2 or 1 output
 - 2 data formats: 48bit/hit 32bit/hit
 - DC-Balancing by multiplicative scrambler
- Experiment Control System
 - Multidrop downlink, daisy chain uplink to occupy min. number of eLinks
 - Chip configuration and tuning
 - Monitoring features (ADC, Status registers)
 - I2C interface for debugging
- Timing and Fast Control
 - 5 needed commands
- PLL, BX-CLK phase shifter
- Serial Powering Regulators



MightyPix Development

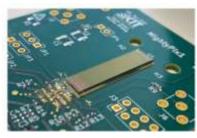


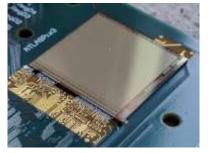
5 mm x 20 mm 180nm CMOS process Basic LHCb specific digital functions (2022-2023)

(2024-2025)

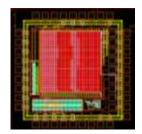
20 mm x 16 mm 180nm CMOS process (Almost) Full LHCb specific functions (2025-2026)

MightyPix3


20 mm x 20 mm 180nm CMOS process Final chip


HV-MAPS in alternative CMOS Process

- Further advantages of HV-MAPS: Several foundries can fabricate chips
 - Commercially available CMOS process
 - No change in CMOS process except resistivity of wafers for larger signal charge.
- Many types of HV-MAPS has been developed using different foundry, feature size, possible options to full fill each projects' requirements

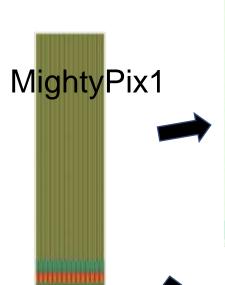

180nm CMOS process

180nm CMOS process

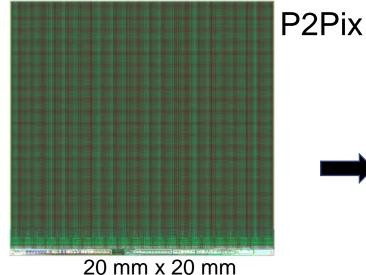
SiGe 130nm BiCMOS process

55nm CMOS process

- A prototype using another CMOS process as a backup
- LHCb specific digital function in silicon



HV-MAPS using 150nm CMOS



MightyPix Development

5 mm x 20 mm 180nm CMOS process Basic LHCb specific digital functions (2021-2022)

20 mm x 20 mm
180nm CMOS process
Mightypix2 identical analog matrix
(2024-2025)

MightyPix2

20 mm x 16 mm 180nm CMOS process (Almost) Full LHCb specific functions (2024-2025)

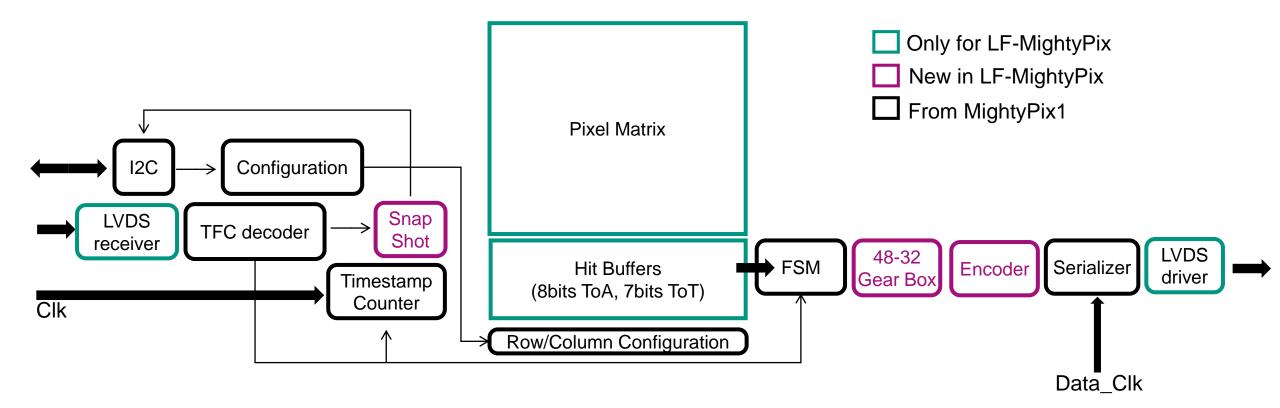
MightyPix3

20 mm x 20 mm 180nm CMOS process Final chip

3 mm x 4 mm 150nm CMOS process Improved LHCb specific digital functions (2024-2025)

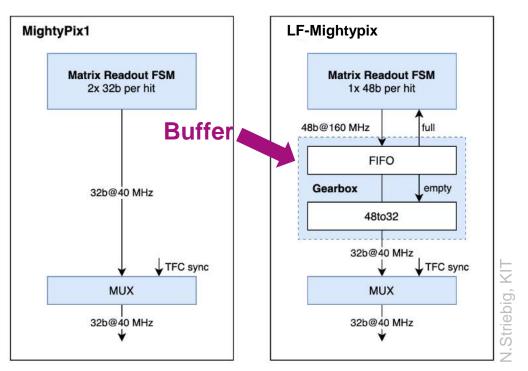
Parameter	MP Specification
Pixel size (bending plane)	_ 100 µm ✓
Pixel size (non bending plane)	≤ 200 μm 🗸
Substrate thickness	280 μm
Pixel orientation	x
Max. Particle Rate	$17~\mathrm{MHz/cm^2}$
Max. Hit Rate	30M hits/s/cm ²
Min. length of data word	48
Overall efficiency	>96%
Noise rate (End of life)	$\leq 400 \text{kHz/cm}^2$
Transmission rate	1 links of 1.28Gbit/s each
NIEL	$3 \times 10^{14} n_{\rm eq}/{\rm cm}^2$
TID	40 MRad
Power Consumption	$\leq 150 \text{ mW/cm}^2$

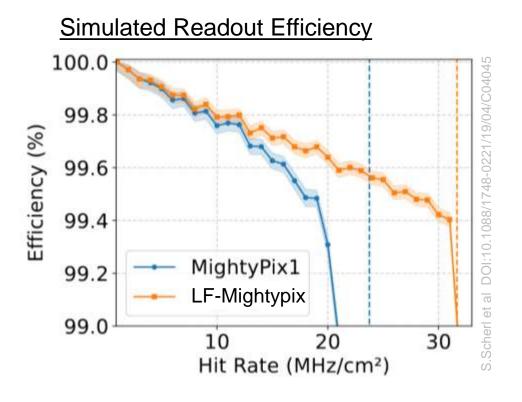
Specifications for the LHCb MightyPix sensor, S. Bachmann et al., LHCb-INT In preparation


Data Output

- 4 Output links or multiplexing to 2 or 1 output
 - 2 data formats: 48bit/hit 32bit/hit
- DC-Balancing by multiplicative scrambler
- Experiment Control System
 - Multidrop downlink, daisy chain uplink to occupy min. number of eLinks
 - Chip configuration and tuning
 - Monitoring features (ADC, Status registers)
 - I2C interface for debugging
- Timing and Fast Control
 - 5 (4 + 0.5) needed commands
- Clock and Reset
- Serial Powering Regulators

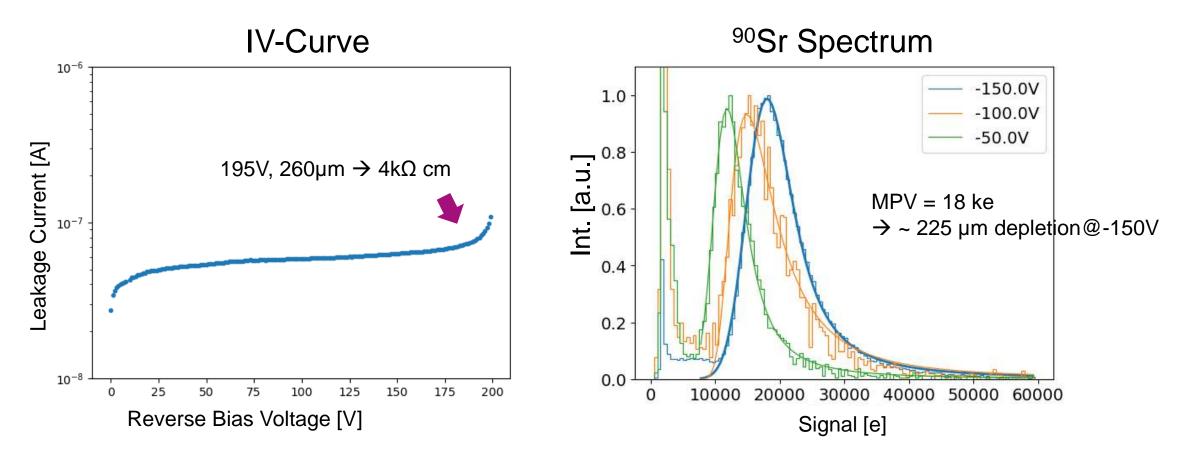
Block Diagram of LF-MightyPix


In-pixel readout, Hit buffer: customized for 150nm CMOS process
TFC, Data Links: implemented in 150nm CMOS process before implementing in large chip

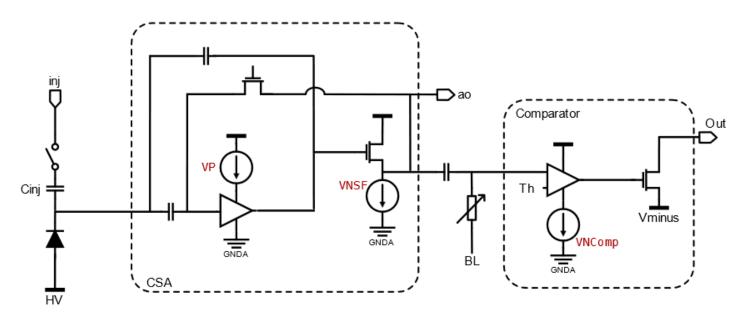


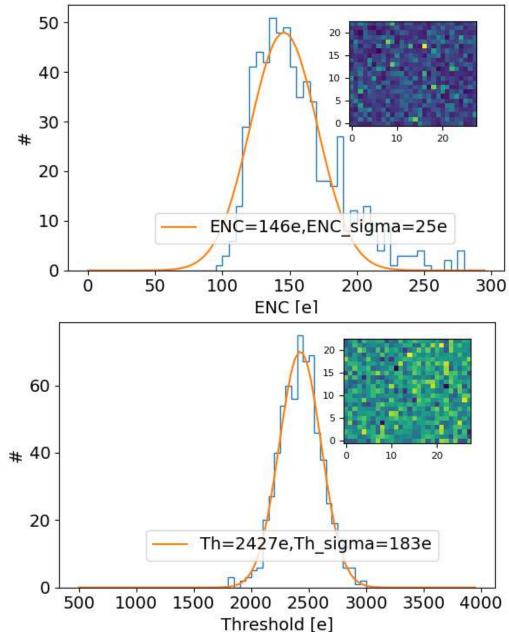
New Features in LF-MightyPix

- 1.28Gbp data link: 32bits/packet
 - MightyPix1: 64bits/hit, ~17MHz/cm²
 - LF-MightyPix : 48bits/hit, ~30 MHz/cm²



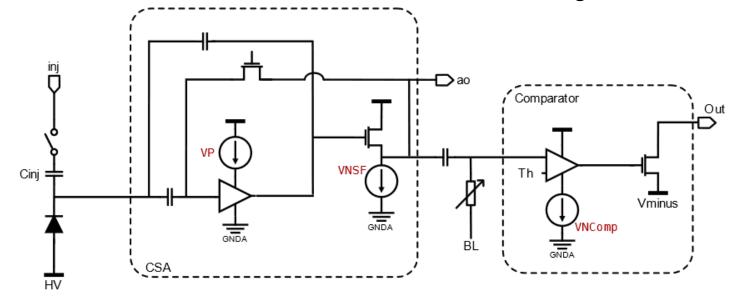
Sensor of LF-MightyPix

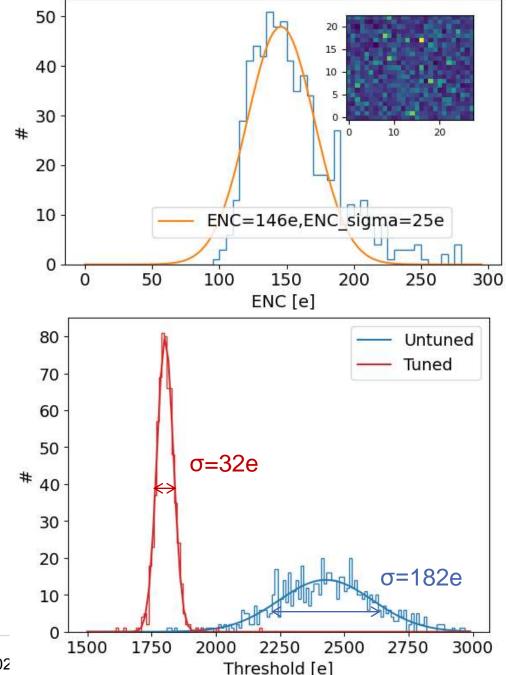



Charge collection from sensor of > 200 µm thickness

In-Pixel Readout of LF-MightyPix

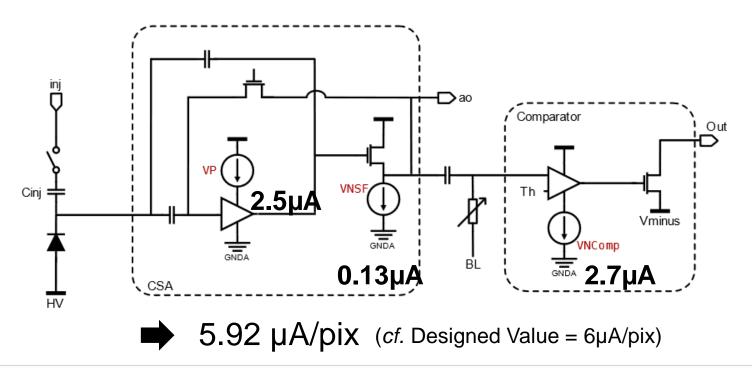
- Designed and optimized for the150nm CMOS process
- CSA + Comparator w/ 4bits fine Tuning DAC
 - ENC 146e
 - Thresholds are in a tunable range

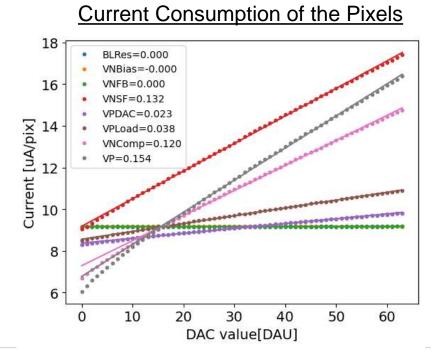




In-Pixel Readout of LF-MightyPix

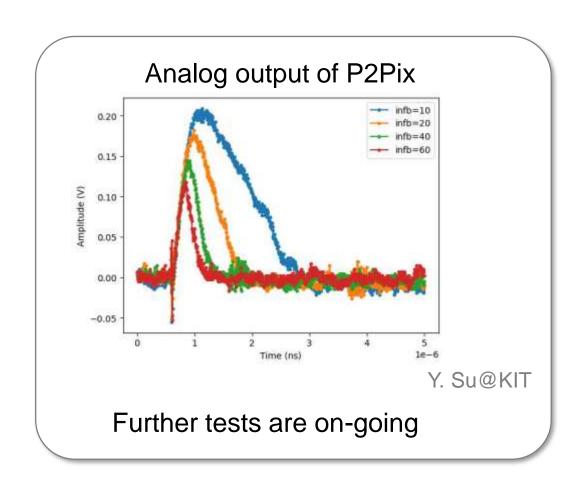
- Designed and optimized for the 150nm CMOS process
- CSA + Comparator w/ 4bits fine Tuning DAC
 - ENC 150e
 - Threshold distribution is in a tunable range





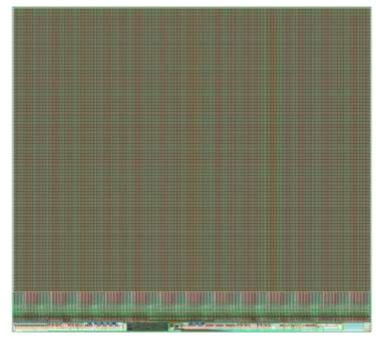
In-Pixel Readout of LF-MightyPix

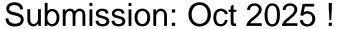
- CSA + Comparator w/ 3bits fine tuning
- Ddesigned and optimized for the150nm CMOS process
- Pixel currents are supplied via the current mirrors controlled by DACs.
 - The slope of VDDA current indicate the power consumption of each block per 1DAU



LF-MightyPix to MightyPix2

- MightyPix1
 - 1.28Gbps data link
- LF-MightyPix
 - 48bits/hit data link with Gear Box
 - TFC
 - Feasibility as a backup process
- Full reticle chip (P2Pix) from another project
 - Pixel Matrix
 - Serial Powering
- MightyPix2 (new features)
 - 4 to 2, 4 to 1 data link Multiplexer
 - 32bits/hit mode
 - DC balanced ECS and TFC decoder
 - SEU hardened digital logics
 - Clock and Resets




LF-MightyPix to MightyPix2

Karlsruhe Institute of Technology

- Mightypix1
 - 1.28Gbps data link
- LF-Mightypix
 - 48bits/hit data link with Gear Box
 - TFC
- P2Pix
 - Pixel Matrix
 - Serial Powering
- New features
 - 4 to 2, 4 to 1 data link Multiplexer
 - 32bits/hit mode
 - ECS(slow control) and TFC 6b8b decoder
 - SEU hardened digital logics

Summary

- LHCb-Control/DAQ compatible HV-MAPS, LF-MightyPix, has been produced using 150nm CMOS process in addition to MightyPix1 (180nm CMOS process, 400Ω/cm²)
- The test results of sensors and pixel matrix shows feasibility of the 150nm process.
- Experiences in porting Sensor/Readout design ensured a backup plan for long-term projects

Using results of MightyPix1, LF-MightyPix and chips from other projects, MightyPix 2 has been designed and submitted

