Nov. 16 – 21, 2025 Academia Sinica, Taipei

The Pentadimensional Tracking Space Detector project, R&D for space-borne LGAD Si-microstrip tracking detectors

M. Barbanera² (INFN - Perugia)

on behalf of the PTSD team

E. Cavazzuti¹, M. Duranti^{2,3}, V. Formato², J. Hu², M. Mergè¹, M. Miliucci¹, M. Movileanu², B. Negri¹, A. Oliva², M. Savinelli³, V. Vagelli^{1,2}

1) Italian Space Agency

2) INFN

3) Università degli Studi di Perugia

+ many thanks to L. Pacini (INFN) and F. Moscatelli (CNR and INFN)

Pentadimensional Tracking Space Detector (PTSD)

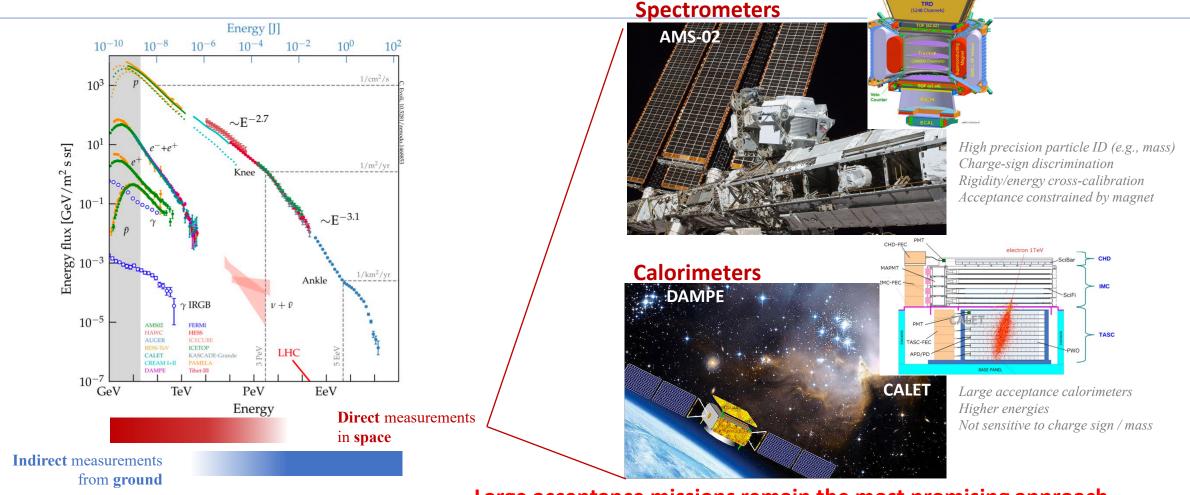
is a project funded by NextGenerationEU and Italian Ministry of University and Research PNRR M4.C2.1.1, PRIN 2022, n. 2022JNF3M4, CUP I53D23001190006

The Pentadimensional Tracking Space Detector project, R&D for space-borne LGAD Si-microstrip tracking detectors

- 1. Scientific context
- 2. Reasons for 5D tracking in space
- 3. The PTSD project: space-driven R&D of LGAD-ustrips detectors
- 4. PTSD first prototypes and measurements
- 5. Design of a PTSD CubeSat with ASI-CEF

Pentadimensional Tracking Space Detector (PTSD)

is a project funded by NextGenerationEU and Italian Ministry of University and Research PNRR M4.C2.1.1, PRIN 2022, n. 2022JNF3M4, CUP I53D23001190006



Charged CRs: state of the art

AMS 02

Large acceptance missions remain the most promising approach to new discoveries and high-accuracy space measurements

Si-µstrip detectors are the preferred solution to instrument large area detectors with larger number of electronics channels coping with the limitations on power consumption in space

Large area Si-microstrip detectors in space


Most space detectors for charged cosmic ray and γ-ray measurements require solid state tracking systems based on Si-μstrip sensors.

Si-ustrip detectors are the preferred solution to instrument

- <u>large area</u> detectors
- large number of electronics channels
- copying with the power consumption limitations in space

Operating Missions							
	Mission	Si-sensor	Strip-	Readout	Readout	Spatial	
	Start	area	length	channels	pitch	resolution	
Fermi-LAT	2008	\sim 74 m ²	38 cm	\sim 880 · 10 ³	228 μm	\sim 66 μ m	
AMS-02	2011	$\sim 7 \mathrm{m}^2$	29–62 cm	\sim 200 · 10 ³	$110 \mu \mathrm{m}$	\sim 7 μ m	
DAMPE	2015	$\sim 7 \mathrm{m}^2$	38 cm	\sim 70· 10 ³	$242 \mu m$	\sim 40 μ m	

Future Missions								
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial		
	operations	area	length	channels	pitch	resolution		
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 · 10 ³	\sim 242 μ m	\sim 40 μ m		
ALADInO	2050	$\sim 80-100 \mathrm{m}^2$	19–67 cm	\sim 2.5· 10^6	$\sim 100 \mu \mathrm{m}$	$\sim 5 \mu\mathrm{m}$		
AMS-100	2050	$\sim 180-200 \mathrm{m}^2$	$\sim 100\mathrm{cm}$	\sim 8· 10^6	\sim 100 μ m	\sim 5 μ m		

^[1] HERD Collaboration. HERD Proposal, 2018 https://indico.ihep.ac.cn/event/8164/material/1/0.pdf

^[2] Battiston, R.; Bertucci, B.; et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO). Experimental Astronomy 2021. https://doi.org/10.1007/s10686-021-09708-w

^[3] Schael, S.; et al. AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2. NIM-A 2019, 944, 162561. https://doi.org/10.1016/j.nima.2019.162561

Large area Si-microstrip detectors in space

Most space detectors for charged cosmic ray and γ-ray measurements require solid state tracking systems based on Si-μstrip sensors.

Si-ustrip detectors are the preferred solution to instrument

- <u>large area</u> detectors
- large number of electronics channels
- copying with the power consumption limitations in space

Operating Missions								
	Mission	Si-sensor	Strip-	Readout	Readout	Spatial		
	Start	area	length	channels	pitch	resolution		
Fermi-LAT	2008	\sim 74 m ²	38 cm	\sim 880 · 10 ³	228 μm	\sim 66 μ m		
AMS-02	2011	$\sim 7 \mathrm{m}^2$	29–62 cm	\sim 200 · 10 ³	$110 \mu \mathrm{m}$	\sim 7 μ m		
DAMPE	2015	$\sim 7 \mathrm{m}^2$	38 cm	\sim 70· 10^3	$242 \mu m$	\sim 40 μ m		

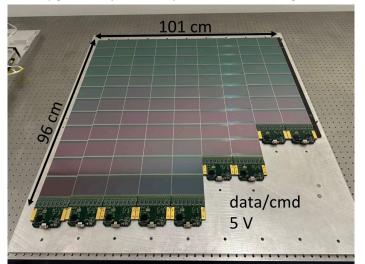
Future Missions								
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial		
	operations	area	length	channels	pitch	resolution		
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 · 10 ³	\sim 242 μ m	\sim 40 μ m		
ALADInO	2050	$\sim 80-100 \mathrm{m}^2$	19–67 cm	\sim 2.5· 10^6	\sim 100 μ m	$\sim 5 \mu\mathrm{m}$		
AMS-100	2050	$\sim 180-200 \mathrm{m}^2$	$\sim 100\mathrm{cm}$	\sim 8· 10^6	\sim 100 μ m	\sim 5 μ m		

^[1] HERD Collaboration. HERD Proposal, 2018 https://indico.ihep.ac.cn/event/8164/material/1/0.pdf

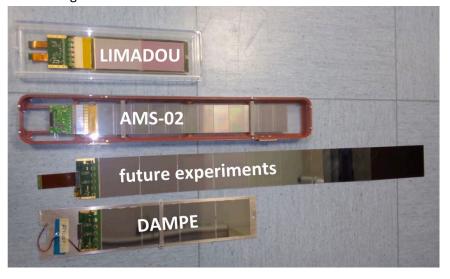
^[2] Battiston, R.; Bertucci, B.; et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO). Experimental Astronomy 2021. https://doi.org/10.1007/s10686-021-09708-w

^[3] Schael, S.; et al. AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2. NIM-A 2019, 944, 162561. https://doi.org/10.1016/j.nima.2019.162561

Capacitance and daisy-chain: example of AMS-LO upgrade


At production level the strips cannot be so long:

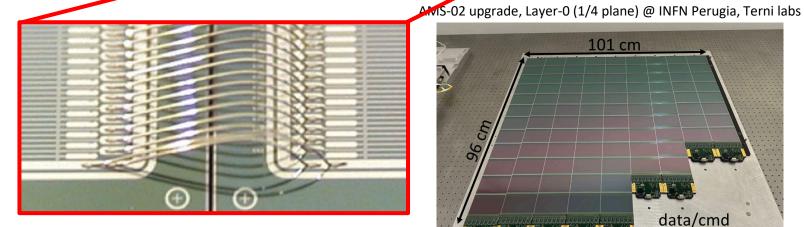
- they must be at least shorter than the wafer diagonal (i.e. 6" – some margin)
- Typically, is at most ~ 10 cm long

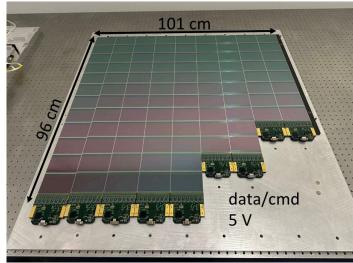


See D. Miao "<u>Design and testbeam study of AMS-02 Layer-0 silicon strip detector ladders</u>" talk

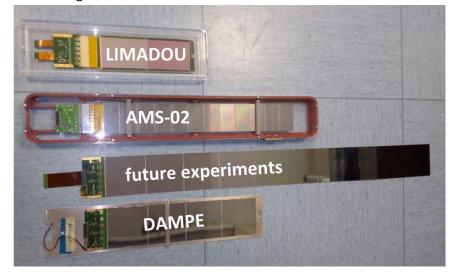
AMS-02 upgrade, Layer-0 (1/4 plane) @ INFN Perugia, Terni labs

INFN Perugia

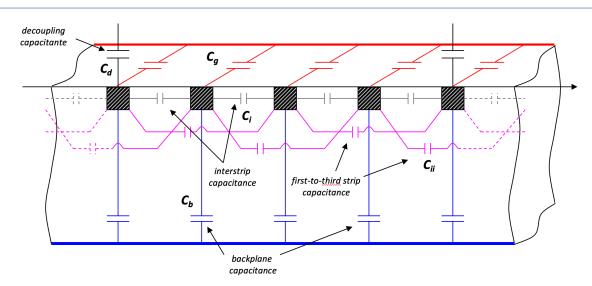

At production level the strips cannot be so long:


- they must be at least shorter than the wafer diagonal (i.e. 6" – some margin)
- Typically, is at most ~ 10 cm long

 \rightarrow 50-100 cm long strips are obtained through daisy-chain



See D. Miao "Design and testbeam study of AMS-02 Layer-0 silicon strip detector ladders" talk



INFN Perugia

p = pitch (typical 25-50 μ m) I = strip length (typical 50-100 cm) d = thickness (typical 300 μ m)

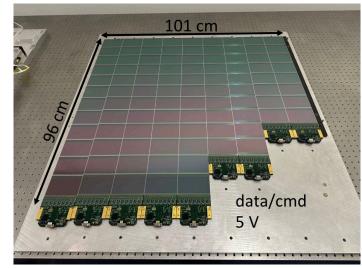
 C_i = interstrip capacitance ~ 1 pF/cm * I = 10 – 100 pF

 C_d = decoupling capacitance ~ 1000 pF (DC sensors) or 120 pF/mm² (AC sensors) > $C_i C_b C_g C_{ii}$

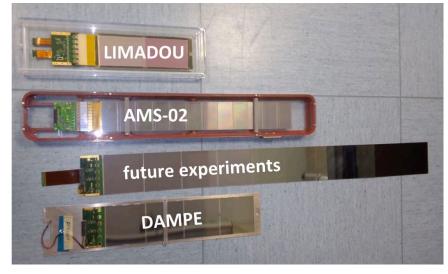
 C_b = backplane capacitance ~ 1 pF/cm * / * p/d = 1/10 * 10 – 100 pF = 1- 10 pF

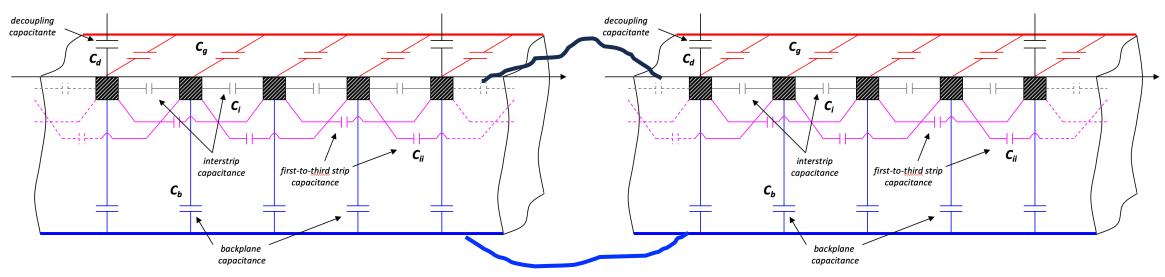
 C_g = guard-ring capacitance << C_i

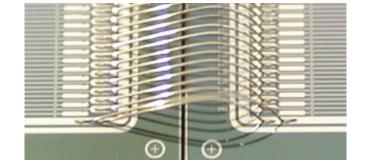
C_{ii} = first-to-third strip capacitance << C_i


For thin and long strips, capacitance must be kept under control

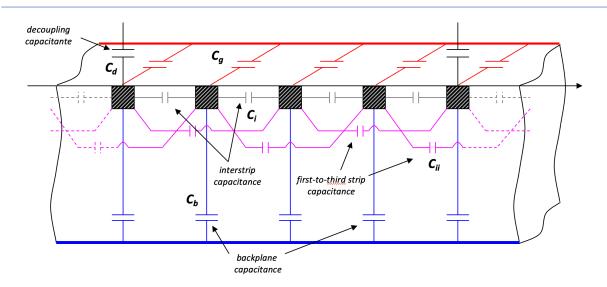
AMS-02 upgrade, Layer-0 ladder @ INFN Perugia




AMS-02 upgrade, Layer-0 (1/4 plane) @ INFN Perugia, Terni labs


INFN Perugia

AMS-02 upgrade, Layer-0 ladder @ INFN Perugia



AMS-02 upgrade, Layer-0 (1/4 plane) @ INFN Perugia, Terni labs

INFN Perugia


```
p = pitch (typical 25-50 \mum)

I = strip length (typical 50-100 cm)

d = thickness (typical 300 \mum)
```

 C_i = interstrip capacitance ~ 1 pF/cm * I = 10 – 100 pF

 C_d = decoupling capacitance ~ 1000 pF (DC sensors) or 120 pF/mm² (AC sensors) > $C_i C_b C_g C_{ii}$

 C_b = backplane capacitance ~ 1 pF/cm * I * p/d = 1/10 * 10 – 100 pF = 1- 10 pF

 C_g = guard-ring capacitance << C_i

C_{ii} = first-to-third strip capacitance << C_i

For thin and long strips, capacitance must be kept under control

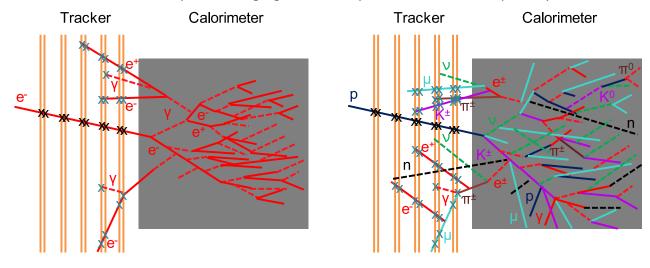
$$C_{interstrip} \sim 1 \text{ pF/cm} * I$$

 $\rightarrow 50 - 100 \text{ pF}$

$$C_{back}$$
 ~ 1 pF/cm * / * p/d
→ 100 – 200 pF

Notice that:

- Typically, 300μm (AMS, DAMPE) 500μm (Fermi-LAT) thick sensors are used
 - \rightarrow C_i is \sim dominant
- when you go thinner (as for LGADs, see later) C_i is negligible with respect to C_b
- \rightarrow a typical "area" of a strip is of $O(\text{cm}^2)$
- \rightarrow a typical "area" for a LHC (LGAD) sensor is < 1 mm²


Large area 5D-Tracking in space

Backsplash particles from downstream calorimeter affect tracking efficiency by tens % at 1 TeV

Different backsplash timing signatures in upstream tracker from primary e^{+/-} or h

The idea of "exploiting" the backsplash hits in a "timing-tracker" was firstly and preliminarily discussed in 2019 (TREDI2019)

Large area 5D-Tracking in space

M. Duranti et al., *Instruments* 2021, 5(2), 20

Backsplash particles from downstream calorimeter affect tracking efficiency by tens % at 1 TeV

Different backsplash timing signatures in upstream tracker from primary e^{+/-} or h

Tracker Calorimeter Tracker Calorimeter

Could be mitigated by the same 4D tracking envisaged for HiLumi LHC (i.e., high pile-up)

Time and 3D coordinate measurement

in each tracker layer

In addition to coordinate and charge |Z| measurements, concurrent timing information at hit-level in tracker (5D-tracking) may improve reconstruction efficiency and particle ID, such as:

IMPROVED TRACK FINDING

Hit timing information improves track reconstruction on high rate environments and identifies backscattering hits from downstream calorimeters

TIME OF FLIGHT

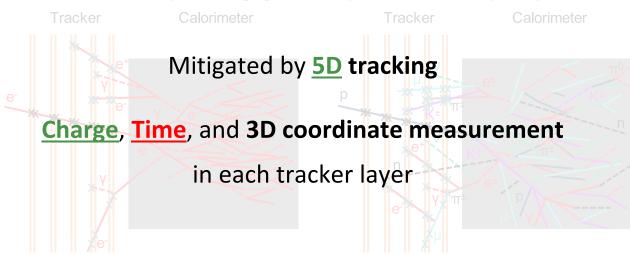
Hit timing resolutions of ~ 100 ps enable ToF measurements with SiMS complementary to scintillators with fast light readout

REMOVE "GHOST" HITS

Separating tracks in time can mitigate the ambiguity of "ghost" hits in SiMS with strips running in perpendicular directions

PARTICLE ID

Track timing identifies slow low-energy particles backscattering from downstream calorimeters for primary hadronic particle crossings


Large area 5D-Tracking in space

M. Duranti et al., *Instruments* 2021, 5(2), 20

Backsplash particles from downstream calorimeter affect tracking efficiency by tens % at 1 TeV

Different backsplash timing signatures in upstream tracker from primary e^{+/-} or h

In addition to coordinate and charge |Z| measurements, concurrent timing information at hit-level in tracker (5D-tracking) may improve reconstruction efficiency and particle ID, such as:

IMPROVED TRACK FINDING

Hit timing information improves track reconstruction on high rate environments and identifies backscattering hits from downstream calorimeters

TIME OF FLIGHT

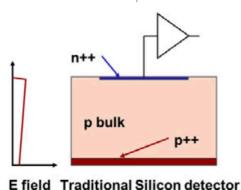
Hit timing resolutions of ~ 100 ps enable ToF measurements with SiMS complementary to scintillators with fast light readout

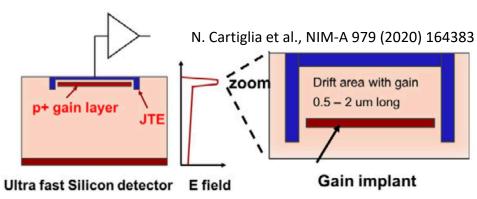
REMOVE "GHOST" HITS

Separating tracks in time can mitigate the ambiguity of "ghost" hits in SiMS with strips running in perpendicular directions

PARTICLE ID

Track timing identifies slow low-energy particles backscattering from downstream calorimeters for primary hadronic particle crossings


Tracking with Low Gain Avalanche Diodes



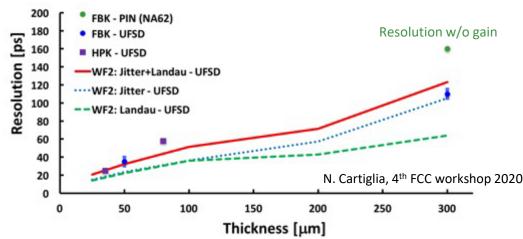
R&D mostly driven by next-generation collider detectors / upgrades

Physics requirement: time information on all hit of tracker detectors for high-energy and high-intensity HEP colliders

- < 30ps timing resolution
- O(10)μm spatial resolution
- $O(10^{16})n_{eq}/cm^2$ radiation tolerance

Basic principle:

- **Thin** Si sensor (<150µm), with intrinsic moderate gain obtained with a gain layer creating high E-field
- Gain: 10-50
- Excellent timing performances: ~20 ps


LGAD design optimized for improved timing resolution (Ultra Fast Silicon Detectors, UFSD)

$$\sigma^2_{\text{TIME}} = (\sigma^2_{\text{TIMEWALK}} + \sigma^2_{\text{JITTER}} + \sigma^2_{\text{TDC}})$$

High-V biased thin sensors \rightarrow saturated v_{drift} increase signal in thin sensors \rightarrow intrinsic gain

Comparison WF2 Simulation - Data

Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

Optimal candidate for large-area 4D Tracking devices

Pentadimensional Tracking Space Detector

R&D activity to increase LGAD Si-ustrip TRL for space from TRL=2 to TRL=5

WP1
Management and dissemination
INFN, ASI

INFN
Perugia, Bologna, Roma Tor Vergata
PI: Matteo Duranti

ASI Headquarters (Roma) co-PI: Valerio Vagelli

Main objective

Develop a breadboard laboratory model for verification of requirements, functionalities, and space qualification of LGAD ustrip

Funding and activities started in Sep 2023, duration 2 years, c.a. 200k€ fundings

Pentadimensional Tracking Space Detector (PTSD)

is a project funded by NextGenerationEU and Italian Ministry of University and Research PNRR M4.C2.1.1, PRIN 2022, n. 2022JNF3M4, CUP I53D23001190006

Pentadimensional Tracking Space Detector - ASI

R&D activity to increase LGAD Si-ustrip TRL for space from TRL=2 to TRL=5

WP1
Management and
dissemination
INFN, ASI

WP2
Sensor design and production
INFN, ASI

WP3
Proto-detector
qualification
INFN, ASI

WP4
Scientific applications
space mission design

ASI, INFN

Perugia, Bologna, Roma Tor Vergata PI: Matteo Duranti

INFN

ASI Headquarters (Roma) co-PI: Valerio Vagelli

A conceptual design of the demonstrator compatible with the constraints in weight, volume, and power budget of a CubeSat platform

Hosted in 2 units of a 3U CubeSat,

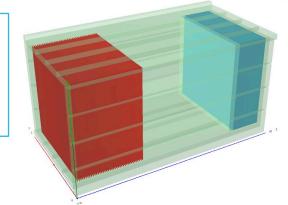
with one additional unit dedicated to the FEE and DAQ of the demonstrator.

Weight < 3 kg Power < 20 W

G.5 cm 10 cm 3 cm LGAD SIMS TRACKER VETO TOF ARRAY 3 cm 3 cm

LGAD SiMS Tracker

40 layers of 150 μm thick SiMS LGADs readout pitch: 150 μm


• expected $\Delta x \sim 15 \mu m$ Target timing resolution $\sim 100 \text{ ps}$

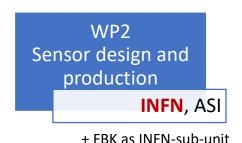
Veto / Time of Flight system

0.5 cm thick Sci-paddles SiPM readout using commercial FEE $\Delta t \sim 30 \text{ ps}$

Electromagnetic Calorimeter

3x3x3 cm³ array of LYSO crystals SiPM readout using commercial FEE Feasibility to add another stack of LYSO array under study

Simulation of the detector performances is ongoing


Perspectives to fly a CubeSat demonstrator to reach TRL=9 in a follow-up activity

Pentadimensional Tracking Space Detector - INFN

R&D activity to increase LGAD Si-ustrip TRL for space from TRL=2 to TRL=5

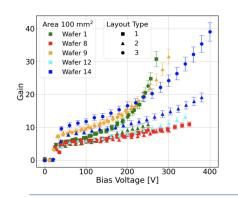
WP1
Management and
dissemination
INFN, ASI

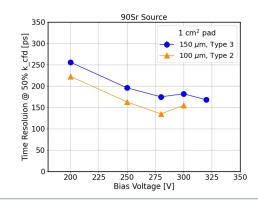
WP3
Proto-detector
qualification
INFN, ASI

WP4
Scientific applications
space mission design
ASI, INFN

INFN
Perugia, Bologna, Roma Tor Vergata
PI: Matteo Duranti

ASI
Headquarters (Roma)
co-PI: Valerio Vagelli

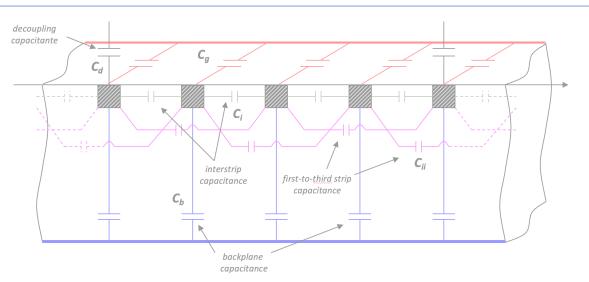

Is possible to cover tens of m² of tracking areas with LGADs and:


- <100 (ideally 20-30) ps timing
- <10 μm spatial resolution
- <100 W / m²
- <100 K_{ch} / m^2

Future Missions								
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial		
	operations	area	length	channels	pitch	resolution		
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 · 10 ³	\sim 242 μ m	\sim 40 μ m		
ALADInO	2050	$\sim 80-100 \mathrm{m}^2$	19–67 cm	\sim 2.5· 10^6	$\sim 100 \mu \mathrm{m}$	$\sim 5 \mu\mathrm{m}$		
AMS-100	2050	$\sim 180-200 \mathrm{m}^2$	$\sim 100\mathrm{cm}$	$\sim 8 \cdot 10^6$	$\sim 100 \mu\mathrm{m}$	$\sim 5 \mu\mathrm{m}$		

from ASAPP 2025 L. Cavazzini's talk

Space LGADs for AstroParticle Physics: Performances


How much is the maximum length of a Si LGAD µstrip?

Is it possible to "daisy chain" LGADs?

Is there a way to mitigate this problems and, for example, reduce the capacitance even with very thin LGAD sensors?

In-series readout of LGADs: the SiPM example

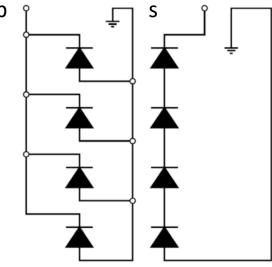

```
p = pitch (typical 25-50 µm)

I = strip length (typical 50-100 cm)

d = thickness (typical 300 µm)
```

 C_i = interstrip capacitance ~ 1 pF/cm * I = 10 - 100 pF

 C_d = decoupling capacitance ~ 1000 pF (DC sensors) or 120 pF/mm² (AC sensors) > $C_i C_b C_g C_{ii}$

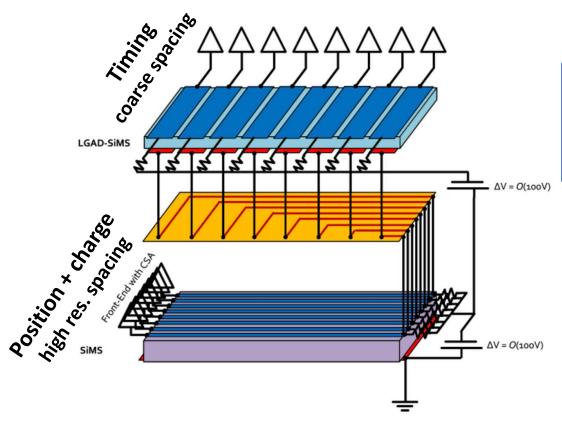

 C_b = backplane capacitance ~ 1 pF/cm * l * p/d = 1/10 * 10 – 100 pF = 1-10 pF

C_g = guard-ring capacitance << C_i

C_{ii} = first-to-third strip capacitance << C_i

For thin and long strips, capacitance must be kept under limit

- p) standard "parallel" readout
- **V** bias voltage independent on number of sensors
- X total capacitance seen by readout FEE scales with number of sensors



N. Kratochwil et al., PANDA experiment

- s) "in-series" readout
- X bias voltage scales with number of sensors
- √ total capacitance seen by readout FEE scales down
 with number of sensors
- --> can we "port" this approach to LGADs?

"Stacked" 5D sensor

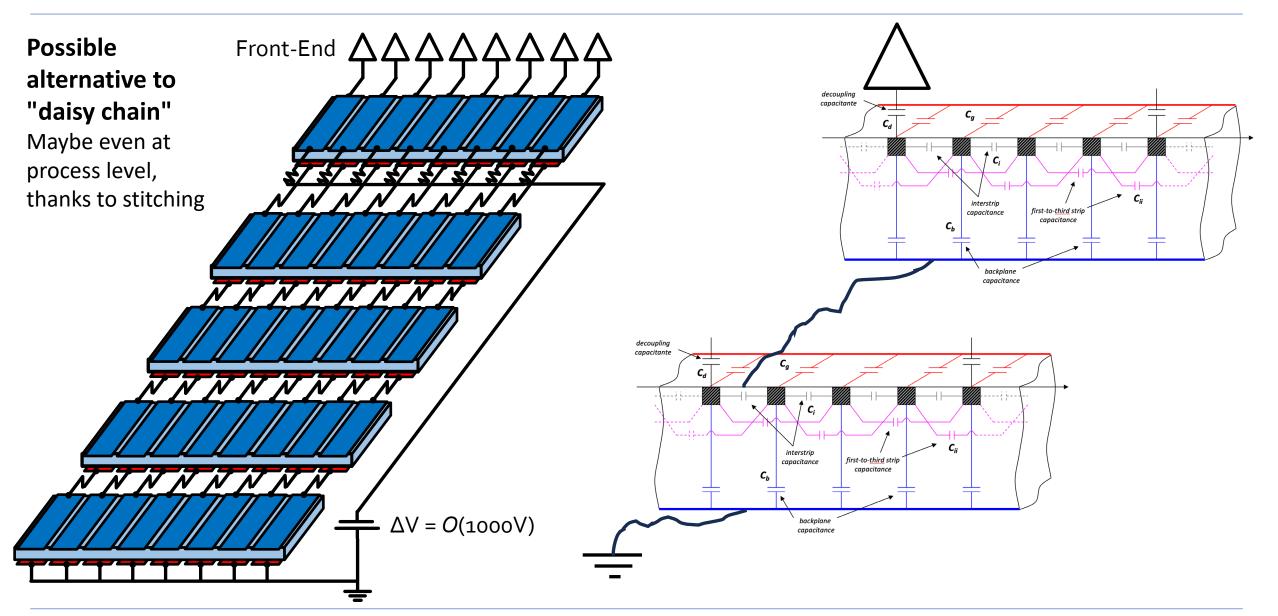
Starting proposed design

Possible connections for a 5D detector made of a thin LGAD Si-µstrip sensor for timing and moderate resolution coordinate measurement coupled with a thicker standard SiMS sensor for charge and high-resolution coordinate measurement.

Driver design: LGAD + standard Si-µstrip in series readout

- combine a standard μstrip sensor (2D + Z) with an LGAD (2D + timing)
- In-series readout of the "stack" to reduce LGAD capacitance
- use standard µstrip as "structural" material for a very thin LGAD layer

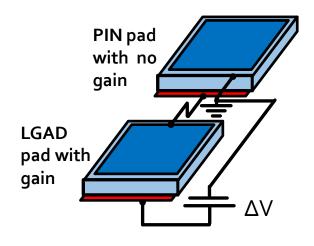
Strips running in opposite directions → measurement of 2D coordinates with different resolutions

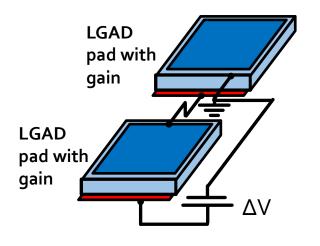

 suits the requirements for a tracking system in a magnetic spectrometer with oriented magnetic field

Of course there are not only benefits:

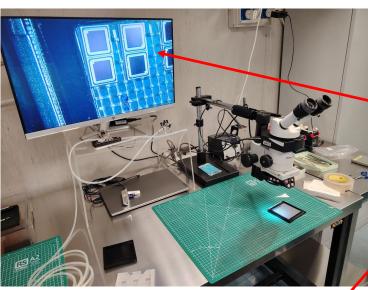
- mechanical structures and interfaces will be an issue
- requires a double-sided LGAD
 - costs and risks of process development, yield, assembly, ... increase

More "advanced" ideas...

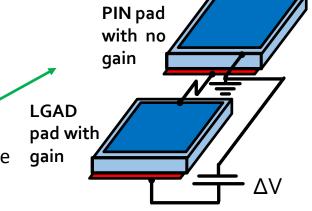


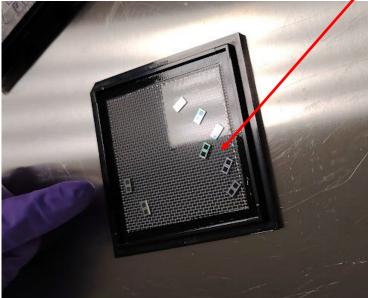

More "advanced" ideas...

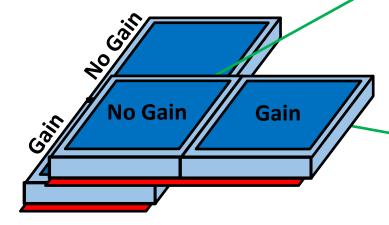
Let's start with a single pad "sandwich"

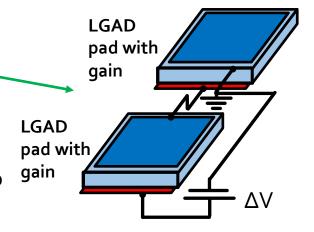

To test the idea

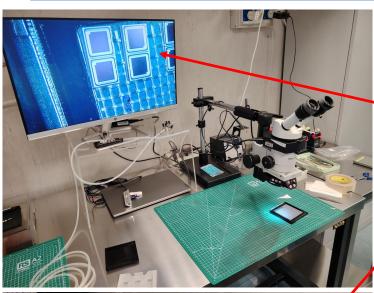
"Stacked" 5D sensor – Proof of concept lab tests





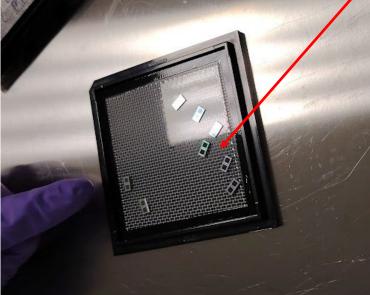

With test structures (FBK, from the MoveIT project, which we thank)


we could test (J. Hu and M. Savinelli) the idea with a prototype like this:



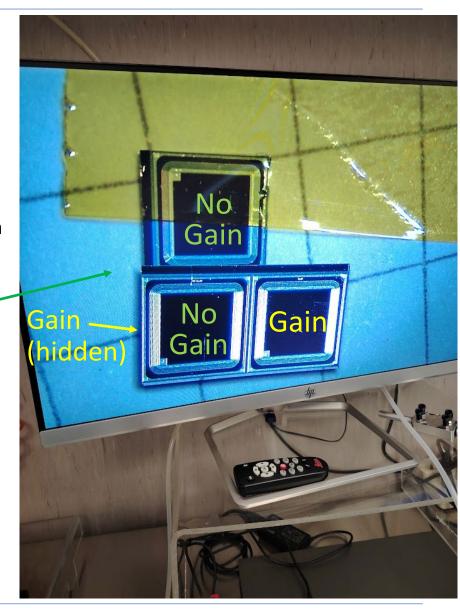
the two devices were glued with small spots of glue: the "No Gain" region on the bottom was "protected" with Kapton so to connect only the "Gain" region with the back of the top device

"Stacked" 5D sensor – Proof of concept lab tests

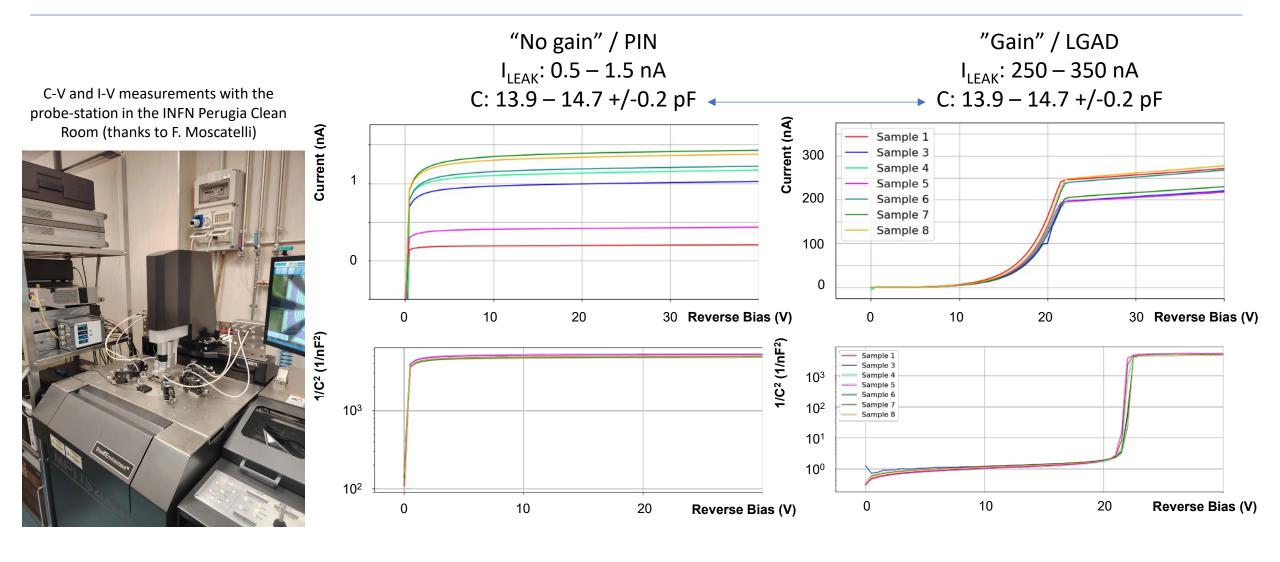




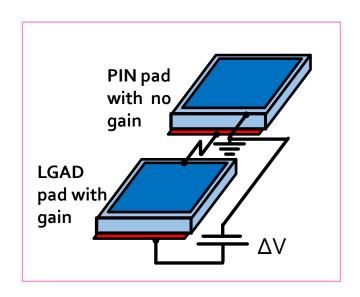
Thanks to test structures (FBK, from the MovelT project, that we thanks)

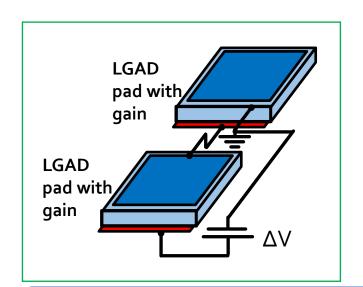


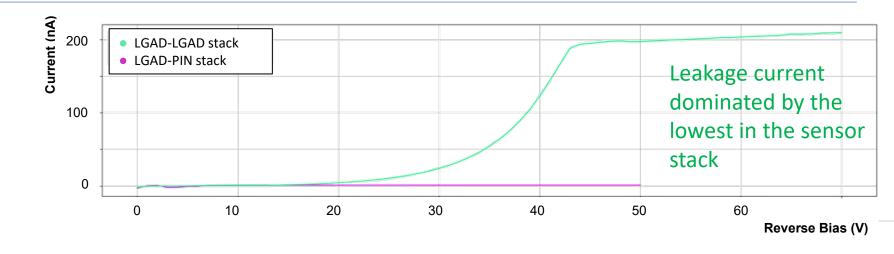
we could test (J. Hu and M. Savinelli) the idea with a prototype like this:

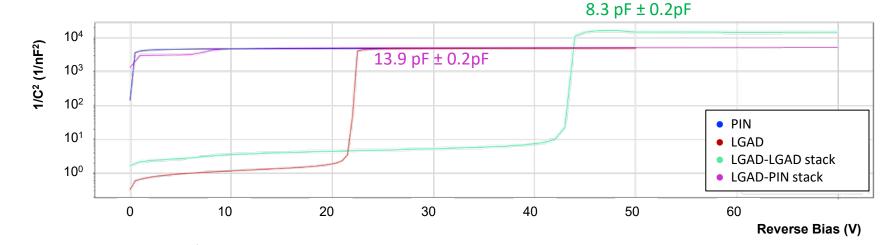


the two devices were glued with small spots of glue: the "No Gain" region on the bottom was "protected" with kapton so to connect only the "Gain" region with the back of the top device


Proof of concept lab tests: single test structure






Proof of concept lab tests: "stacked" test structures

interesting results, more measurements to address discrepancies

FEE board

Based on the Fermilab board (thanks V. Sola, INFN Torino) we're developing our own read-out board:

- 2 stage amps
- 32 channels

- "plate" (with back bias) to stick (conductive tape) the samples to be tested

The 32 channels can be read directly to an oscilloscope or to a digitizer

The board lets us measure the timing performances without dedicate ASICs

TCT

TCT system to measure:

- spatial resolution estimation
- timing resolution estimation

on

- "stacked" test structures
- larger detector (test structures on silicon spares)
- custom sensors (production by end of 2026)

Specifications:

Laser

Component Parameter

Laser diode

wavelength:

 $660\ nm$ or 1064 nm (optional others on demand)

Properties

pulse power: pulse width: few m.i.p. - 100 m.i.p. (equivalent in 300 micron Si)

<350 ps - 4000 ps (tunable)

single core fibre

coupling:

Driver

control:

with PC over USB

running mode:

single pulse: 50 Hz - 1MHz

pattern mode: mHz to 100 kHZ

 ${\bf 1024~bits~deep~sequence~of~pulses}$

minimum distance between two pulses 440 ns


external control:

I/O:

external NIM logical signal

ext. trigger in/trigger out MC/trigger out laser

large scanning tct

Large Scanning-TCT aims for the same applications as Scanning TCT. The main difference with respect to the latter is the vertical placement of the optical system and larger and more robust stages that can carry heavy load. The mounting surface is cooled by a combination of several Peltier elements with the combined power of 200W. The mounting plane is much larger and allows also for wider range of movements. Performance wise the properties of both systems are similar.

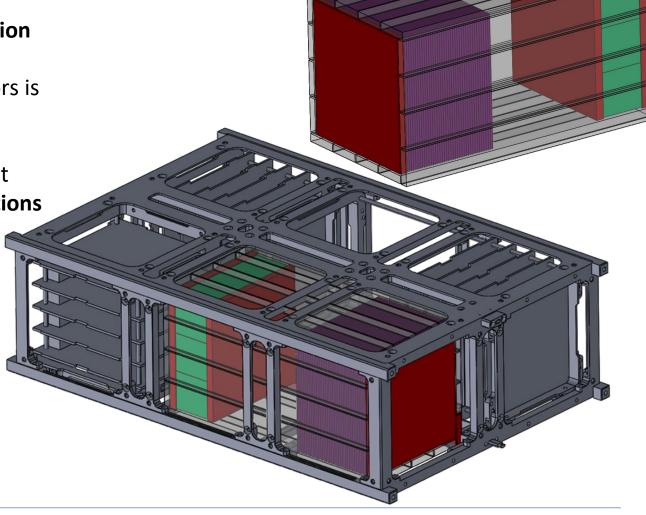
Conclusions

The Pentadimensional Tracking Space Detector project, R&D for space-borne LGAD Si-microstrip tracking detectors

• **5D tracking in space** may open new diagnostics and approaches in cosmic-ray and gamma-ray next-generation instruments

LGAD best candidate technology to achieve <100 ps resolution in large area space trackers

 R&D and spin-in / spin-off from ground accelerator detectors is needed to increase the TRL

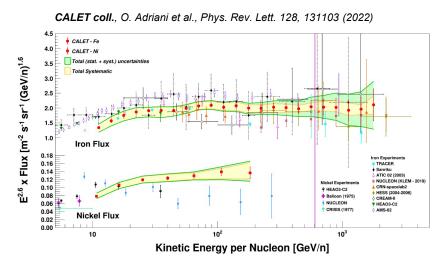

The PTSD program aims at:

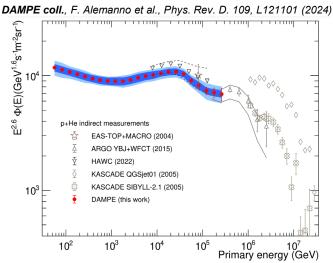
> verifying proof-of concept and test a breadboard instrument

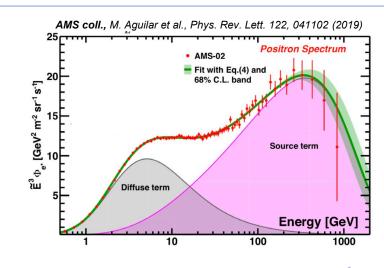
→ reach TRL=5 for a timing Si-LGAD system for space applications

Design optimization through simulations and laboratory measurements

- Stacked LGAD device laboratory tests as proof of concept
- Details on readout board design and production in progress
 - Results are encouraging
- → Consolidating mission requirements for a CubeSat demonstrator to reach TRL=9
- Ongoing in the Italian Space Agency (ASI) <u>Concurrent</u>
 <u>Engineering Facility</u> (CEF) (6 out of 8 sessions already done)




Backup



Charged CRs: state of the art

- What is the origin of the hardening observed in the spectra of CR nuclei at rigidity of 300 GV and \sim 10 TV?
 - Why is the slope of the spectrum of CR proton and helium different?
- What is the origin of the prominent break observed at a particle energy of 1 TeV in the electron spectrum?
- Why do the **proton, positron, and antiproton** spectra have roughly same slopes at particle energies larger than 10 GeV?
 - What is the origin of the rise in the positron fraction at particle energies above 10 GeV?

VI.

COMPOSITION frontier

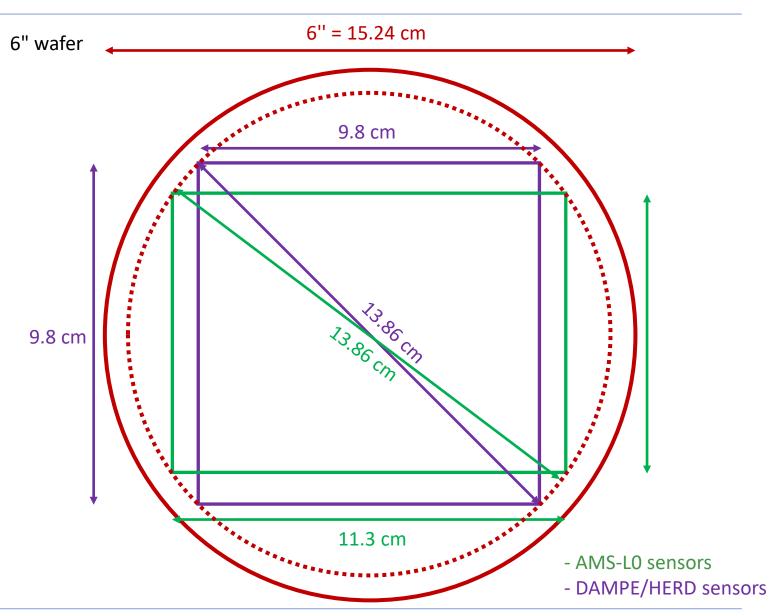
ENERGY frontier **ANTIMATTER** frontier

S. Gabici @ ICRC 2023

CR direct rapporteur

NEW paradigm of CR origin, acceleration and propagation

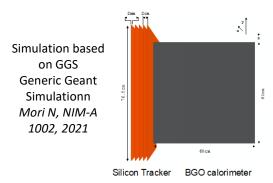
Novel experimental approaches that target all opportunities of space platforms must be addressed, from cubesats and nanosatellite constellations up to large-size space missions and Moon, including stratospheric balloon flight missions.

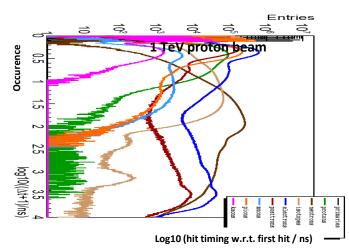

+ synergic activity at ground laboratories and accelerators to tackle **technological challenges** and enable **new observational approaches** Large acceptance missions remain the most promising approach to new discoveries and high-accuracy space measurements

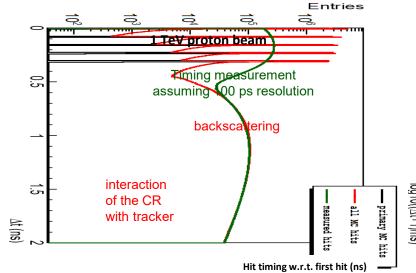
At production level the strips cannot be so long:

- they must be at least shorter than the wafer diagonal (i.e. 6" – some margin)
- typically is at most ~ 10 cm long

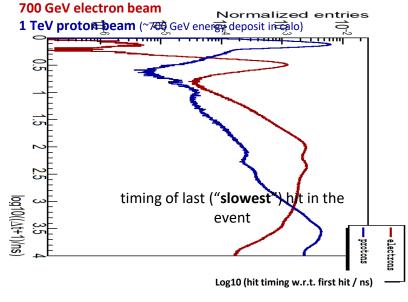
→ 50-100 cm long strips are obtained through daisy-chain




Effects of 5D-Tracking in backscattering events


M. Duranti et al., *Instruments* 2021, 5(2), 20

MC simulation of backscatterd particles from downstream calorimeter on tracker layers



100 ps resolution allows to separate hits from primary particles and from secondary backsplash (tracker and calorimeter are 2cm far from each other)

Prospects for improved tracking efficiency

Different timing signatures from p and e^{+/-} showers

Prospects to use in MVA classifiers for e/p separation

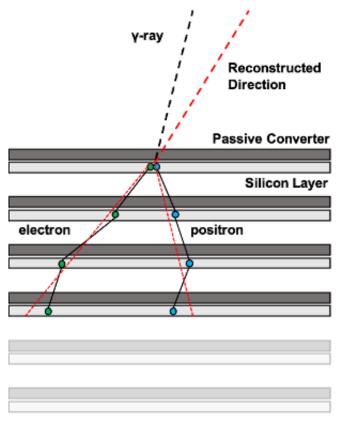
Timing resolution benchmark: < 100 ps (enabled with Si-μstrip LGAD [+ mitigation of FE consumption])

Break-through objectives (e.g.: performant isotope separation): < 50 ps (requires readout noise mitigation approaches)

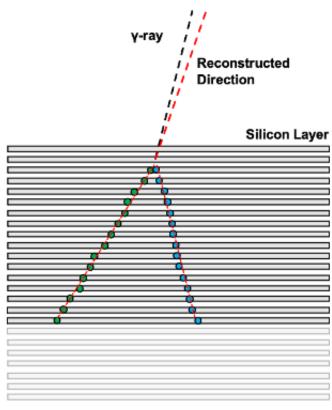
Tracking with Low Gain Avalanche Diodes

Gains from material budget reduction in low-energy CR and g-ray measurements

Thin high signal Si sensors: the LGAD intrinsic gain improves the SNR for thin sensors and allows for reduced active material budget tracking planes


The PSF of γ -ray experiments (Fermi-LAT, DAMPE, ...) is degraded at low energies by Coulomb MS in materials (passive converter and Si-sensors)

- Remove passive materials
- Use thin active detectors
- Increase number of active layers to boost the GR conversion probability (approach first proposed in X. Wu et al., "PANGU: A high resolution gamma-ray space telescope", Proc. SPIE 9144 (2014)


Sub-GeV γ-ray detectors

Opportunity for improved PSF below 1 GeV

PANGU ref.: 1 deg PSF @ 100 MeV (1/5 Fermi-LAT) 0.2 deg PSF @ 1 GeV (1/5 Fermi-LAT)

Novel approach fully active multi-layer tracker

Pentadimensional Tracking Space Detector - INFN

R&D activity to increase LGAD Si-ustrip TRL for space from TRL=2 to TRL=5

WP1
Management and
dissemination
INFN, ASI

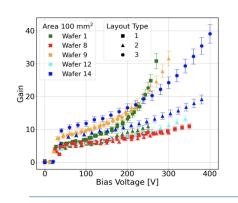
+ FBK as INFN-sub-unit

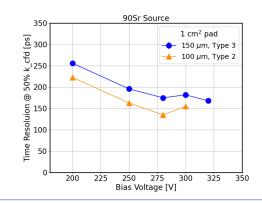
WP3
Proto-detector
qualification
INFN, ASI

WP4
Scientific applications
space mission design
ASI, INFN

INFN
Perugia, Bologna, Roma Tor Vergata
PI.: Matteo Duranti

ASI
Headquarters (Roma)
co-PI: Valerio Vagelli

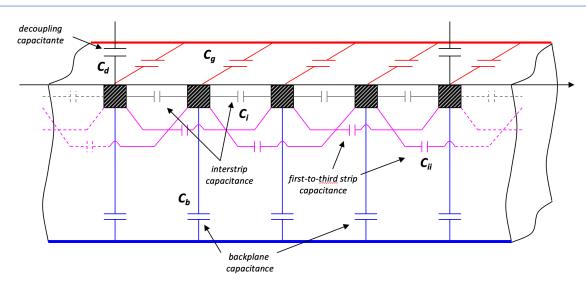

Is possible to cover tens of m² of tracking areas with LGADs and:


- <100 (ideally 20-30) ps timing
- <10 μm spatial resolution
- <100 W / m²
- <100 K_{ch} / m^2

Future Missions								
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial		
	operations	area	length	channels	pitch	resolution		
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 · 10 ³	\sim 242 μ m	\sim 40 μ m		
ALADInO	2050	$\sim 80-100 \mathrm{m}^2$	19–67 cm	\sim 2.5· 10^6	$\sim 100 \mu \mathrm{m}$	$\sim 5 \mu\mathrm{m}$		
AMS-100	2050	$\sim 180-200 \mathrm{m}^2$	$\sim 100\mathrm{cm}$	$\sim 8 \cdot 10^6$	$\sim 100 \mu\mathrm{m}$	$\sim 5 \mu\mathrm{m}$		

from ASAPP 2025 L. Cavazzini's talk

Space LGADs for AstroParticle Physics: Performances



BUT WE ARE NOT HAPPY JUST YET! How much is the maximum length of a Si LGAD μstrip?

Is possible to "daisy chain" LGADs?

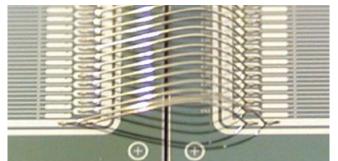
Is there a way to mitigate this problems and, for example, reduce the capacitance even with very thin LGAD sensors?

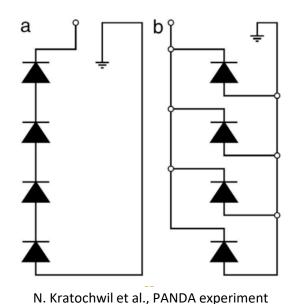
p = pitch (typical 25-50 μ m) I = strip length (typical 50-100 cm) d = thickness (typical 300 μ m)

 C_i = interstrip capacitance ~ 1 pF/cm * I = 10 – 100 pF

 C_d = decoupling capacitance ~ 1000 pF (DC sensors) or 120 pF/mm² (AC sensors) > $C_i C_b C_g C_{ii}$

 C_b = backplane capacitance ~ 1 pF/cm * l * p/d = 1/10 * 10 – 100 pF = 1- 10 pF


 C_g = guard-ring capacitance << C_i


C_{ii} = first-to-third strip capacitance << C_i

For thin and long strips, capacitance must be kept under limit

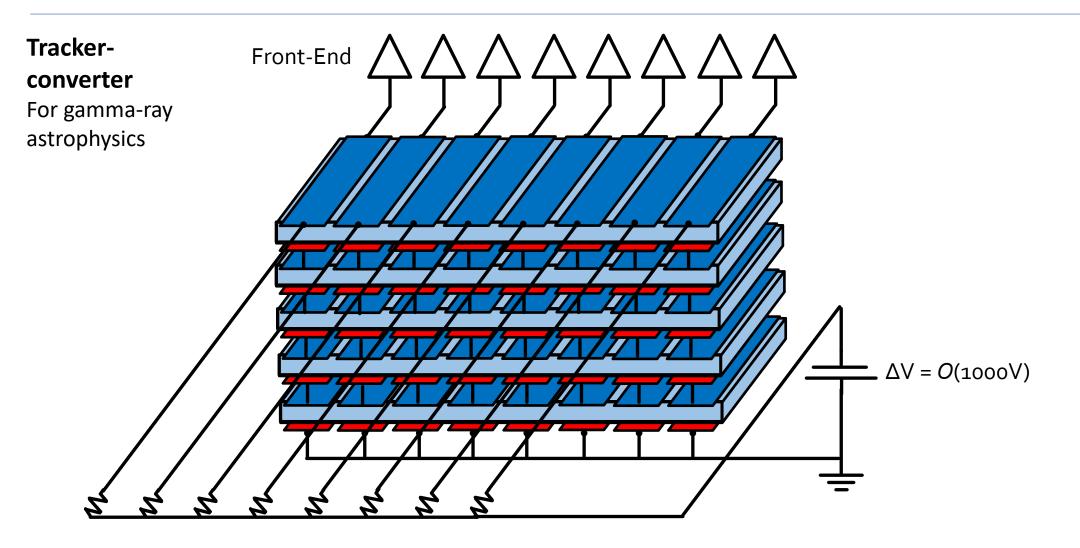
AMS-02 upgrade, Layer-0 ladder @ INFN Perugia

For SiPMs:

- b) standard "parallel" readout
- ✓ bias voltage independent on number of sensors
- **X** total capacitance seen by readout FEE scales with number of sensors
- a) "in-series" readout
- **X** bias voltage scales with number of sensors
- ✓ total capacitance seen by readout FEE scales **down** with number of sensors

→ can we "port" it to LGADS?

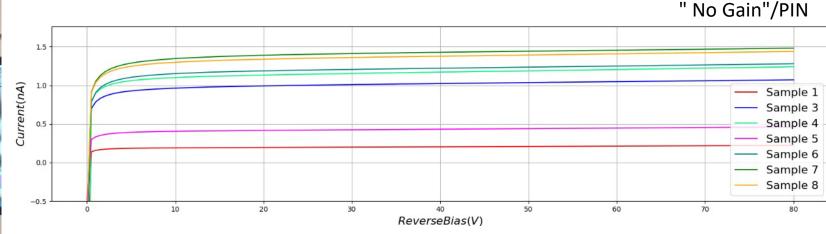
More "evolved" ideas...

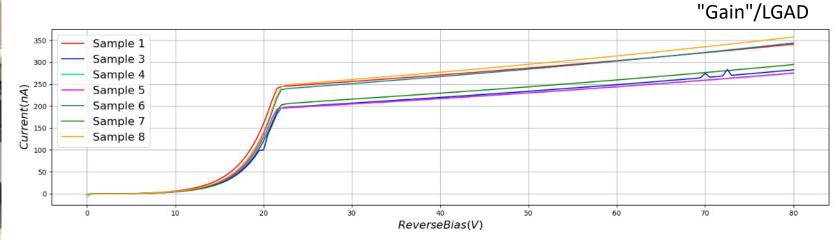


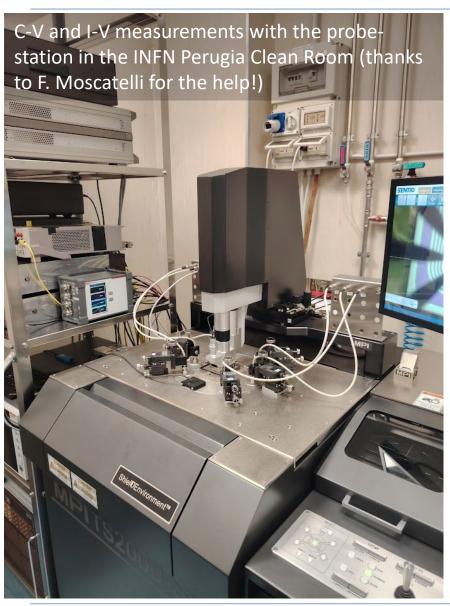
Single timing microstrip sensor Fill factor naturally not

a problem multi-strip SiMS ΔV = O(100V) single channel **LGAD** $\Delta V =$ O(100V)

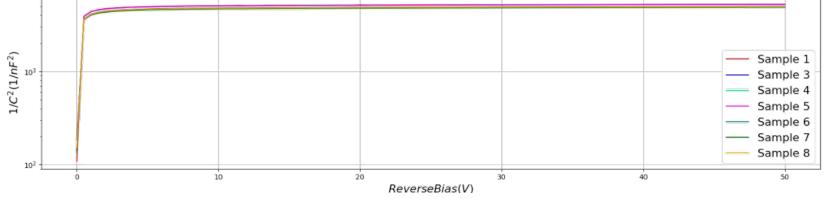
More "evolved" ideas...

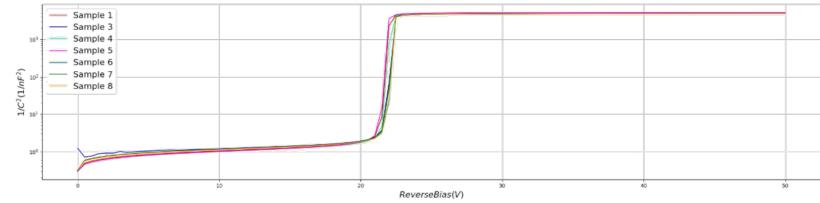




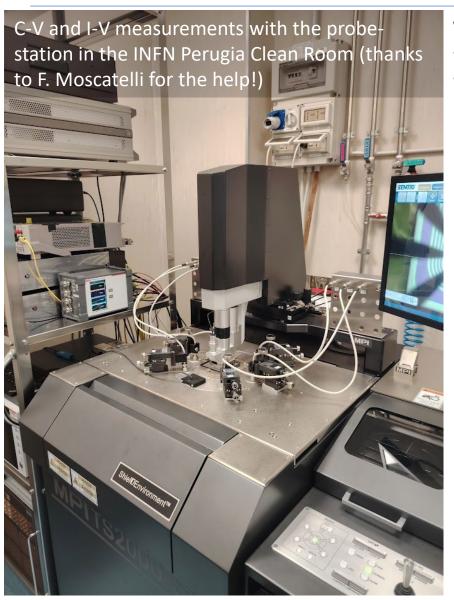

We tested:

- 7 samples (sample 2 was damaged)
- IV: 0.5 1.5 nA (PIN), 250 350 nA (LGAD)

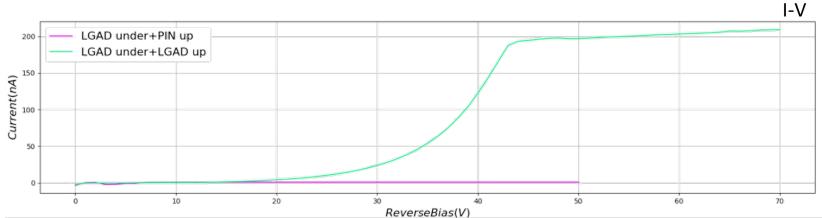


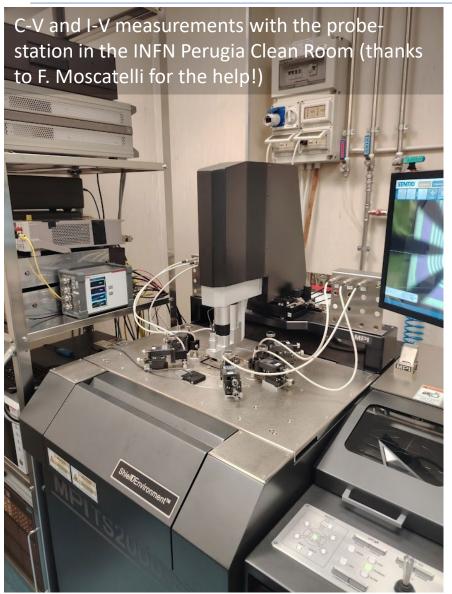

We tested:

- 7 samples (sample 2 was damaged)
- IV: 0.5 1.5 nA (PIN), 250 350 nA (LGAD)
- CV: 13.9 14.7 pF ± 0.2pF (PIN e LGAD)

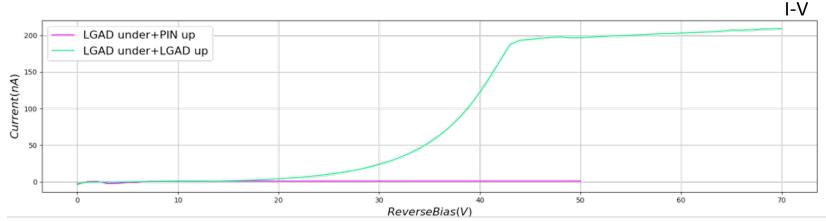

" No Gain"/PIN

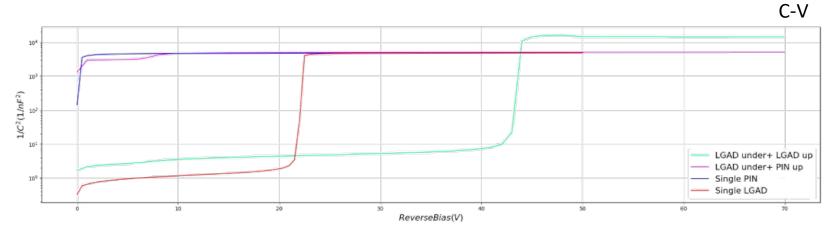
"Gain"/LGAD

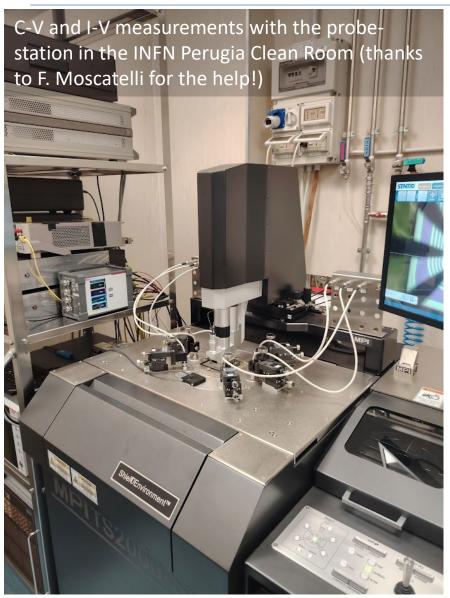



We tested:

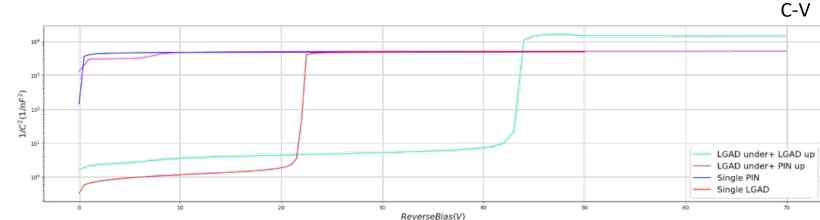
- stacked device
- IV: 1.5 nA (LGAD-PIN), ~ 200 nA (LGAD-LGAD)


The current is dominate by the one with less leakage!



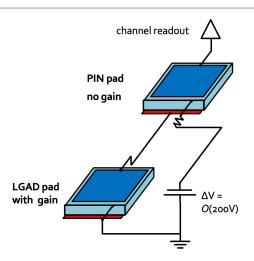

We tested:

- stacked device
- IV: 1.5 nA (LGAD-PIN), ~ 200 nA (LGAD-LGAD)
- CV: 13.9 pF ± 0.2pF (LGAD-PIN) ?? 8.3 pF ± 0.2pF (LGAD-LGAD)

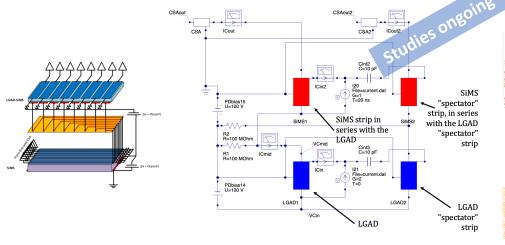


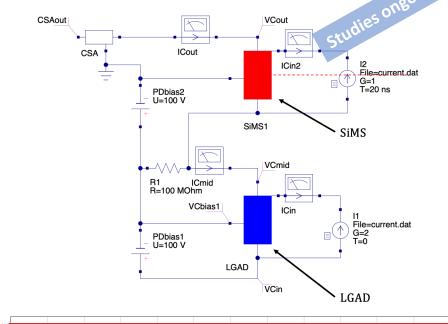
We tested:

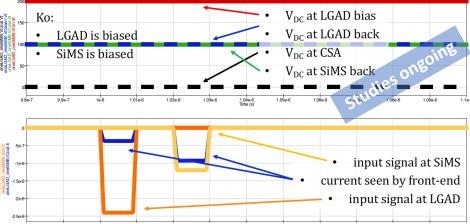
- stacked device
- IV: 1.5 nA (LGAD-PIN), 250 350 nA (LGAD-LGAD)
- CV: 13.9 pF ± 0.2pF (LGAD-PIN) ?? 8.3 pF ± 0.2pF (LGAD-LGAD)
 - the capacitance of the LGAD-LGAD stack is (almost...) half of the two single capacitances (14.3 pF and 13.9 pF \rightarrow 7.1 pF). Why there's around 1 pF more?


$$C_{tot} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

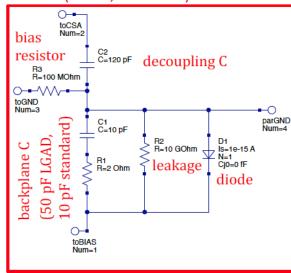
 the capacitance of the PIN-LGAD stack is almost the same of the PIN alone. We know why...

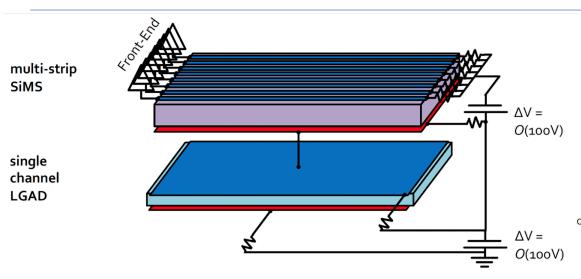

"Stacked" 5D sensor – Proof of concept design


Simple simulations confirm the approach


Feedback on starting design, circuitry to be optimized

Design confirmed also adding adjacent strips

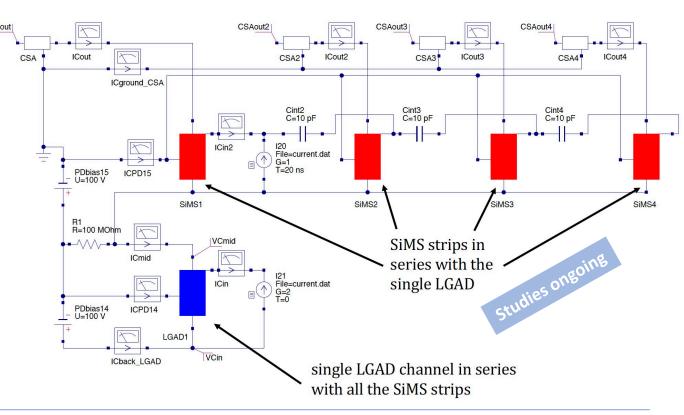

Proof of concept of design


Sensor (LGAD, standard)

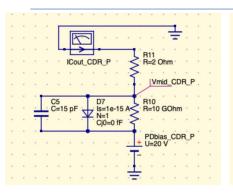
- some modifications needed (additional bias resistor in the middle of the stack)
- LGAD signal seen reduced by the ratio of the SiMS/LGAD capacitances

"Stacked" 5D sensor – Proof of concept design

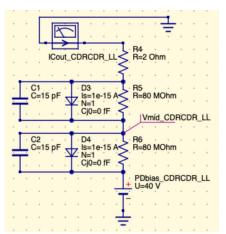
Variant approach

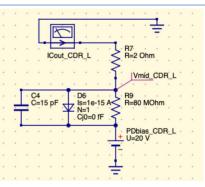

This config could reduce the assembly complexity:

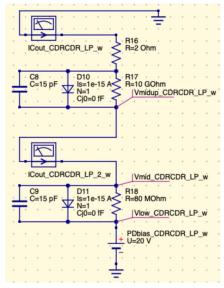
- ✓ no bonding/kapton between LGAD and SiMS: only glue
- X time information common to all channels (✓ that could mitigate the power need)
 - → preliminary studies are encouraging


 \checkmark ALL the readout channels see the LGAD signal (reduced by capacitance ratios

X signal seen by the LGAD is reduced by the ratio of the SiMS/LGAD capacitances

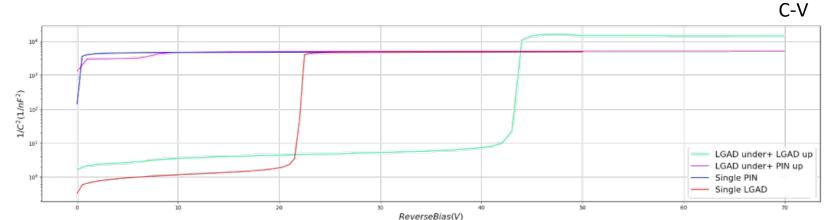

X signal seen by left strip is PROVIDED by the neighbour strips (i.e. no charge couple but the other strips are current sources)




PIN: 10 GΩ to simulate 2nA

LGAD-LGAD stack: same "resistance" → V_{bias}/2 in the center

LGAD: $80 \text{ M}\Omega$ to simulate 250nA


PIN-LGAD stack: $R_{LGAD} << R_{PIN} \rightarrow LGAD$ essentially not biased

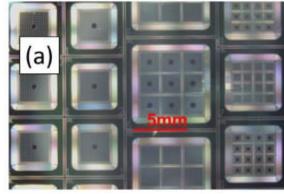
We tested:

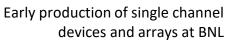
- stacked device
- IV: 1.5 nA (LGAD-PIN), 250 350 nA (LGAD-LGAD)
- CV: 13.9 pF ± 0.2pF (LGAD-PIN) ?? 8.3 pF ± 0.2pF (LGAD-LGAD)
- the capacitance of the LGAD-LGAD stack is (almost...) half of the two single capacitances (14.3 pF and 13.9 pF \rightarrow 7.1 pF). Why there's almost 1 pF more?

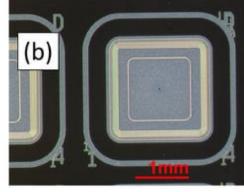
$$C_{tot} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

 the capacitance of the PIN-LGAD stack is almost the same of the PIN alone. We know why...

Roadmap to 5D Tracking in Space

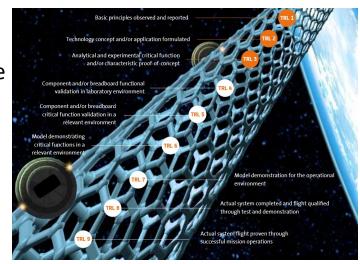



G. Giacomini, Sensors 2023, 23(4), 2132


Technology first assessed by CNM (G. Pellegrini et al., NIM-A 765, 2014) and CERN-RD50

Several facilities involved today in LGAD sensor developments CNM (ES), FBK (IT), BNL (USA), Hamamatsu (JP), IHEP-NDL (CN), Micron (UK), ... and readout electronics Univ. California Santa Cruz (USA), FNAL (USA), INFN (IT)

Typical sensor layouts: 20μm-100μm substrates, single sided, O(mm²) area



Recent production of 1.3 mm × 1.3 mm devices at BNL (match the pixel size of the CMS and ATLAS timing detectors)

Some considerations on large area 5D tracking in space:

- LGAD R&D driven by acceleration applications on pixel layout
- Si-µstrip are consolidated technology largely employed for particle detection in space
- µstrip LGAD detectors not optimized for space applications
- Low Gain Avalanche Diode to be space qualified
- Sensor dimensions will not probably go larger than few cm² (see K. Nakamura, TREDI 2024) R&D to mitigate capacitance noise and power consumptions in daisy-chained sensors

Cubesat payload: mission objectives

GOAL 1. (Technological)

Demonstrate the feasibility of constructing and operating thin LGAD Si-µstrip sensors in harsh space environment – TRL 9

GOAL 2. (Scientific)

Show that LGAD performances are adequate for next generation astroparticle experiments in space

Measurement of converting photons with E > 20 MeV in the LGAD Si-µstrip tracker with reconstruction of the e⁺/e⁻ pair angle in the tracker

with improved vertex reconstruction by identification of backsplash hits

Observation of photons with E > 20 MeV from the Crab Nebula

Verification of detector PSF and confirmation of conversion technique Observation of photons from Crab in the 20 MeV – 50 MeV range Comparison with previous experiments (e.g., CGRO/EGRET) above 50 MeV

Study of charged CRs using the 5D tracking (position, energy deposit and timing) enabled by the LGAD SiMS tracker

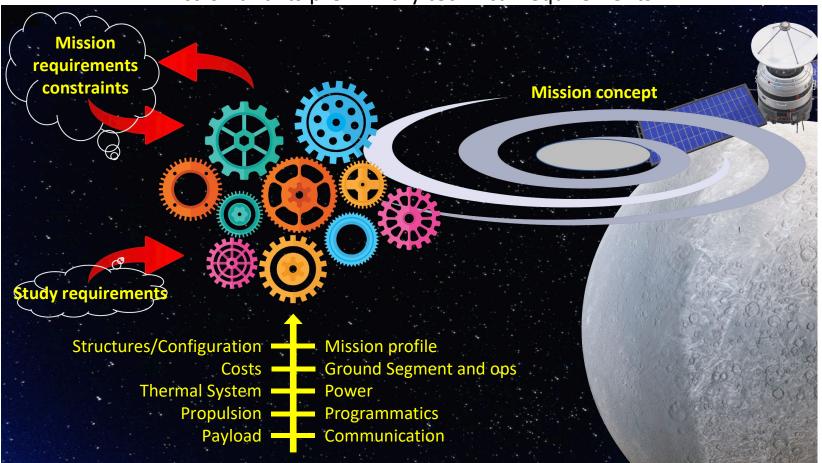
<u>Data-driven</u> characterization of ToF capabilities for LGAD SiMS detectors <u>Data-driven</u> characterization of e/p separation capabilities for LGAD SiMS detectors Monitor the time variation of charged CRs and SEP events

Concurrent Engineering Facility study @ ASI

Through a **cooperative** and **parallel study activity** of the domain experts, ASI-CEF is able to define the feasibility of a space mission and its preliminary technical requirements

Phase 0 or pre-Phase-A mission concept studies, including, e.g.:

- new mission concept assessment
- new technology validation at system/mission level
- space system trade-offs and evaluation of opportunities
- payload instrument conceptual design
- mission/system scientific requirements definition and consolidation
- mass / power / data budget


Concurrent Engineering Facility study @ SI

Through a cooperative and parallel study activity of the domain experts, ASI-CEF is able to define the feasibility of a space mission and its preliminary technical requirements

https://www.asi.it/tecnologia-ingegneria-micro-e-nanosatelliti/lingegneria/concurrent-engineering-facility/including an open call for opportunity (3 deadlines/year) to italian research centers to perform space mission studies @ ASI-CEF

Concurrent Engineering Facility study @ ASI

ASI-CEF: **Cooperative** and **parallel study** of satellite domains to:

- Define the feasibility of a space mission
- Define preliminary technical requirements

Phase 0 or pre-Phase-A mission concept studies, including, e.g.:

- New mission concept assessment
- Payload instrument conceptual design
- New technology validation at system/mission level
- Space system trade-offs and evaluation of opportunities
- Mission/system scientific requirements definition and consolidation
- Mass, power, data budget

https://www.asi.it/tecnologia-ingegneria-micro-e-nanosatelliti/lingegneria/concurrent-engineering-facility/including an open call for opportunity (3 deadlines/year) to Italian research centers to perform space mission studies @ ASI-CEF

Frontier Detectors for Frontier Physics

16th Pisa Meeting on Advanced Detectors

May 26 - June 1 2024 • La Biodola, Isola d'Elba (Italy)

Si-microstrip LGAD detectors for cosmic-ray space-borne instruments

- 5D tracking in space may open new diagnostics and approaches in cosmic-ray and gamma-ray next-generation instruments
 - LGADs are the candidate technology to achieve <100 ps resolution in large area space trackers
 - R&D and spin-in / spin-off from ground accelerator detectors is needed to increase the TRL

The PTSD program aims in verifying the proof-of concept and test a breadboard instrument to validate TRL=5 for a timing Si-LGAD system for space applications

- Activities just started with focus on design optimization through simulations results are encouraging
 - details on readout board design and production in progress.
 - µstrip-LGAD sensor production to be planned

Wide interest in the community to operate LGAD-based detectors in space

(what follows is just a subset of italian programs to the best of my knowledge)

Spoke 4 -Next Generation Detectors of Ionizing Radiation and Fields for Remote Sensing

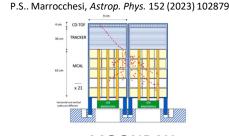
PM2024 - 16th Pisa Meeting on Advanced Detectors

Contribution ID: 343

Type: Poster

Analog Front-End for the Readout of LGAD Based
Particle Detectors

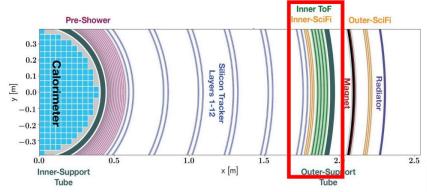
Collaboration Poster by Simone GIROLETTI
Thu afternoon / Fri morning



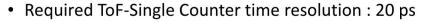
Large area (3x3mm²) pixels with timing and high dyn. range for Z=40

LGAD sensors in future CR space observatories

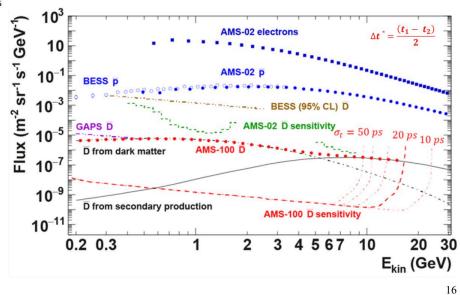
ALADInO magnetic spectrometer Si-Tracker


MOONRAY
Charge Detector ToF

AMS-100 Time of flight



T. Kirn, VCI 2022



- Anti-Deuterons are the most sensitive probe for New Physics in Cosmic Rays
- AMS-100 would observe thousands of Anti-Deuterons in Cosmic Rays

- Z measurements from the signal height
- Provides the trigger and measures $\beta = v/c$

RWTHAACHEN UNIVERSITY

Large area Si-microstrip detectors in space

M. Duranti et al., *Instruments* 2021, 5(2), 20

Most space detectors for charged cosmic ray and γ-ray measurements require solid state tracking systems based on Si-μstrip sensors. Si-μstrip detectors are the preferred solution to instrument large area detectors with larger number of electronics channels coping with the limitations on power consumption in space

Operating Missions									
	Mission	Si-sensor	Strip-	Readout	Readout	Spatial			
	Start	area	length	channels	pitch	resolution			
Fermi-LAT	2008	\sim 74 m ²	38 cm	$\sim 880 \cdot 10^3$	228 μm	\sim 66 μ m			
AMS-02	2011	$\sim 7 \mathrm{m}^2$	29–62 cm	\sim 200 · 10 ³	$110 \mu \mathrm{m}$	\sim 7 μ m			
DAMPE	2015	$\sim 7 \mathrm{m}^2$	38 cm	\sim 70· 10 ³	242 μm	\sim 40 μ m			

Future Missions										
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial				
	operations	area	length	channels	pitch	resolution				
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 · 10 ³	\sim 242 μ m	\sim 40 μ m				
ALADInO	2050	$\sim 80-100 \mathrm{m}^2$	19–67 cm	\sim 2.5· 10^6	\sim 100 μ m	\sim 5 μ m				
AMS-100	2050	\sim 180-200 m ²	$\sim 100\mathrm{cm}$	\sim 8· 10^6	\sim 100 μ m	\sim 5 μ m				

^[1] HERD Collaboration. HERD Proposal, 2018 https://indico.ihep.ac.cn/event/8164/material/1/0.pdf

^[2] Battiston, R.; Bertucci, B.; et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO). Experimental Astronomy 2021. https://doi.org/10.1007/s10686-021-09708-w

^[3] Schael, S.; et al. AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2. NIM-A 2019, 944, 162561. https://doi.org/10.1016/j.nima.2019.162561