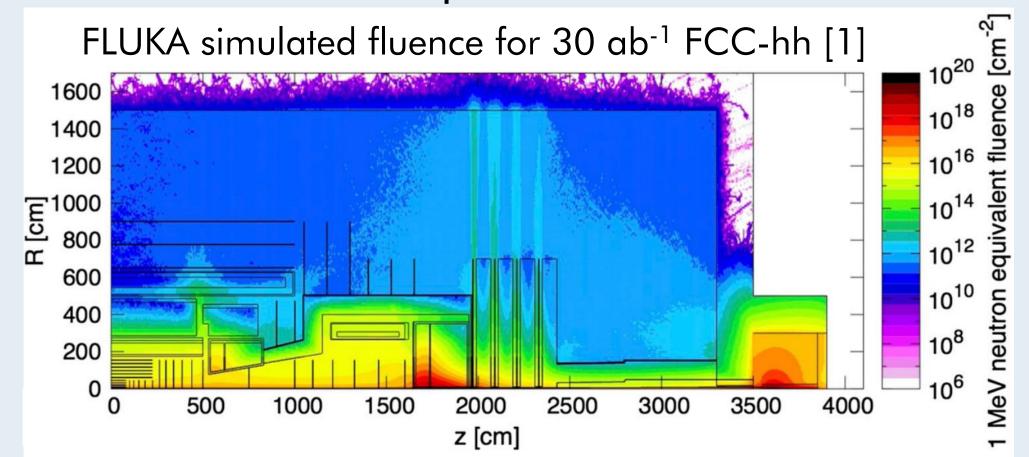
Current and low-field carrier mobility in silicon sensors irradiated to extreme fluences

14th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors, 2025, Taipei, Taiwan


I. Bloch², B. Brüers², V. Cindro⁴, V. Fadeyev⁶, H. Lacker³, P. Li³, I. Mandić⁴, M. Mikuž⁴, **C. Scharf^{3*}**, M. Ullan¹, Y. Unno⁵

*scharfch@hu-berlin.de

1) CNM, 2) DESY Zeuthen, 3) HU Berlin, 4) JSI, 5) KEK, 6) SCIPP

Introduction

Silicon is the material of choice for highly granular and radiation-hard detectors. However, at the innermost tracking layers of the FCC-hh, particle fluences are expected to reach up to $6 \cdot 10^{17} \, n_{eq}/cm^2$

Defect introduction rates typically ~ 1 cm⁻¹, leading to:

- ➤ Defect concentrations $\sim 6.10^{17}$ cm⁻³ >> initial doping concentration $\sim 10^{13}$ cm⁻³
- >As original doping becomes compensated, sensor behavior changes drastically

Is silicon still a viable option for FCC-hh? ■ We must study the effects of extreme radiation damage

Method

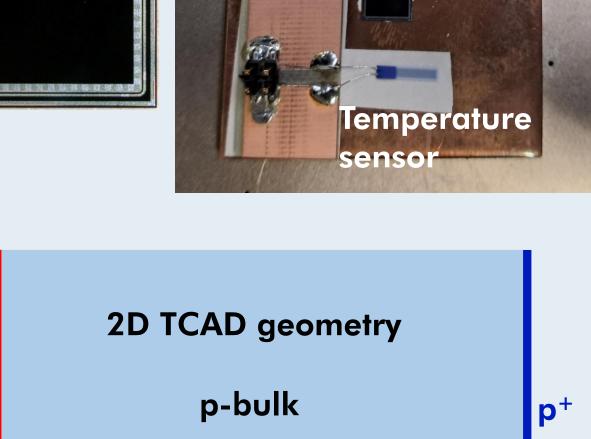
P-bulk

diode

Goal:

Understand how extreme fluences alter silicon sensor electrical properties and whether radiation-damage models for TCAD can reproduce those changes

Measurements:

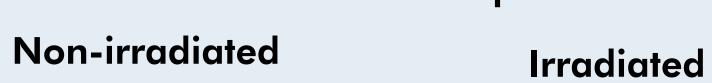

I–V and C–V on ATLAS ITk Strip 8×8 mm² n⁺-p-p⁺ diodes

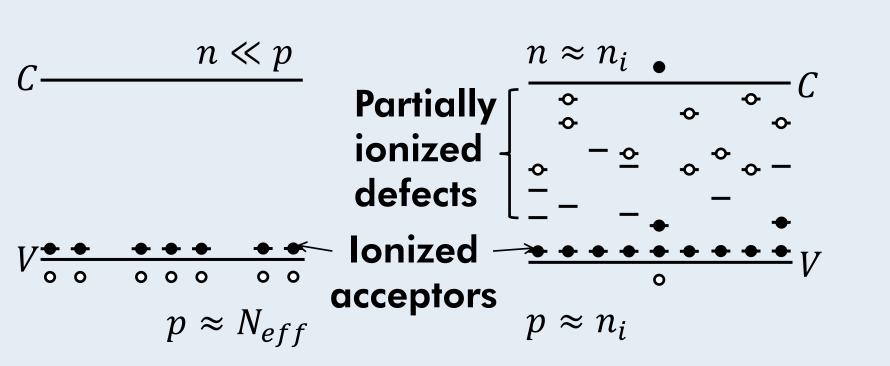
- 295 μ m active bulk with 4×10^{12} cm⁻³ ptype doping
- Irradiated to 2.3×10^{17} and 5.0×10^{17} n_{ea}/cm² with neutrons (JSI, Ljubljana)

Synopsys TCAD: simple 2D pad geometry

Effective HPTM* [2] and Perugia [3] bulk defect models *) Modified by activating Poole-Frenkel field-enhanced emission

Bundesministerium

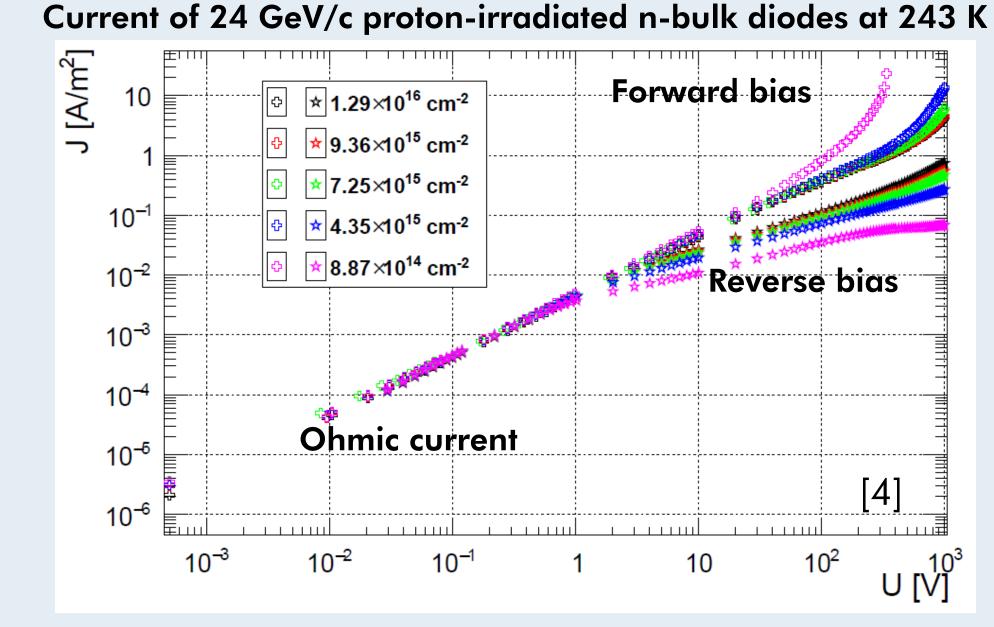

für Bildung


und Forschung

295 μm

What we already knew

Bulk band structure in equilibrium


High concentration of radiation-induced defects in the band gap

Equilibrium
$$(U_{bias} = 0 \text{ V})$$

- > Excess carriers captured by defects
- > Bulk doping and oxide charge compensated by deep defects
- > Free carrier concentrations become intrinsic in equilibrium
- > Mobilities decrease due to ionized-defect scattering

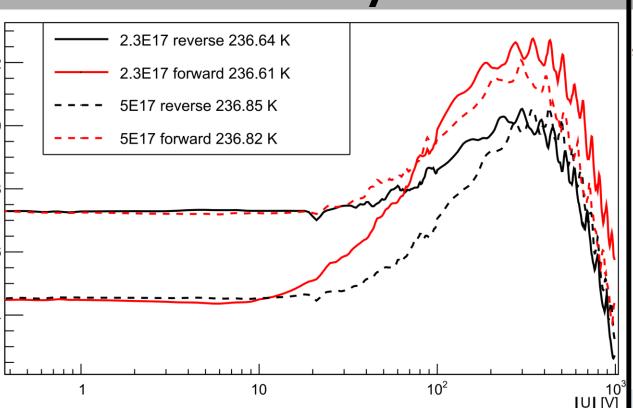
Steady state $(U_{bias} \neq 0 \text{ V})$

- > Space-charge region (SCR) development suppressed
- > Thin SCR regions with very high space charge concentrations
- >SCR generation has limited influence on the current
- > Bulk stays near-intrinsic even at high electric field

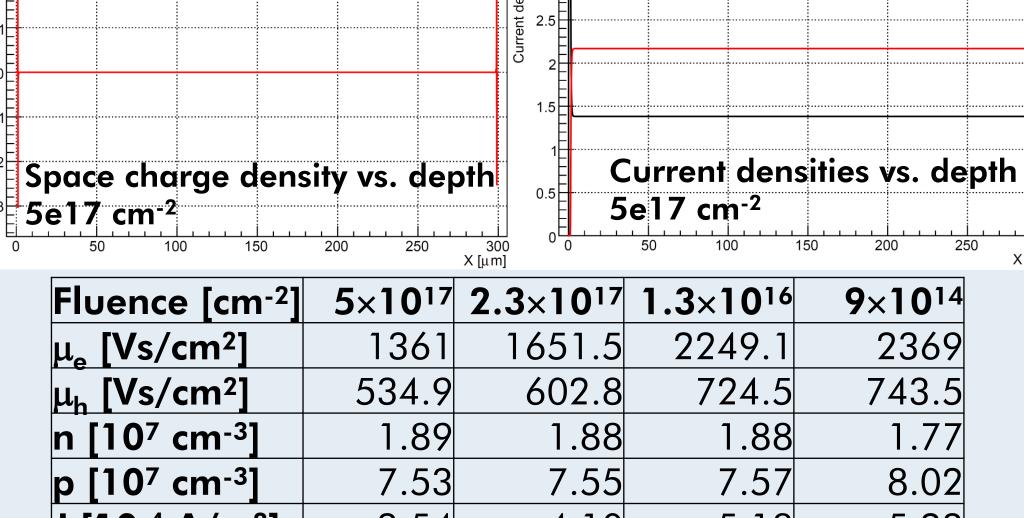
Results

Current and capacitance ••••• 5E17 forward 236.82 K guard ri Current

- Current very similar for forward and reverse bias and no major change between for the two fluences
- Guard ring current very low No major influence of surface currents


Perugia 2.3E17 reverse

Perugia 5.0E17 reverse


Capacitance

120 Hz

Resistivity

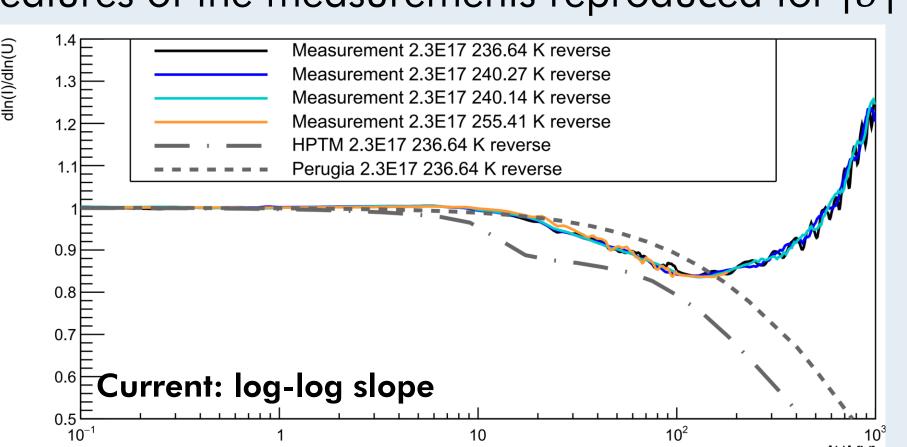
- Resistivity at low voltages increases with fluence due to reduction of the carrier mobilities
- Resistivity increases at intermediate voltages
- \succ Reduction of $\mu_{e,h}(E)$ with E
- > SCR grows marginally, increasing resistivity

HPTM simulation @ 243 K, 0.1 V reverse bias

- 3.54 5.23 $J [10^{-4} A/m^2]$ 4.10 2.13 2.00 2.00 2.01 n_i/n_e 0.501 0.499 0.470 0.498 Naïve resistor expectation $J_e(x) = J_h(x) = const$ not
- fulfilled, but: > Current densities in the bulk are constant

 - > n, p in the bulk independent of the fluence

TCAD radiation-damage models reproduce only order of magnitude of the measured current and capacitance, not the voltage dependence


Comparison with TCAD simulations

- Perugia model predicts reverse trend for forward current
- > Excluded from further considerations in this work
- HPTM model promising:

--- Perugia 5E17 236K forward

Current densities

 \succ Main features of the measurements reproduced for |U| < 100 V

- Exponential current increase at high bias voltages not reproduced by damage models
- The shape seems not to depend on the temperature
- > Increase could be due to SRH generation from cluster defects
- > Needs further study and improved damage models!
- Reduction of the low-field mobilities with the fluence Measurement New data Fit g_{infr}=0.265 130 HPTM simulation (scaled) 120 🗀 Fit $g_{intr} = 0.122$ Data of [4] Extrapolated $\mu_0^{e,h}(oldsymbol{\Phi}_{eq})/\mu_0^{e,h}(0)$ 243 K $\Phi_{\sf eq}$ [cm $^{\! extsf{-}\!2}$]

Resistivity and mobility

- We don't need to know true steady-state bulk carrier concentrations, assuming n, p are independent of Φ_{eq} and $\mu_0^{e,h}(\Phi_{eq})$ scale equally for e,h
- > Approximate empirical Masetti formula [5] to scale $\mu_0^{e,h}(\Phi_{eq})$, using $N_{ref}=1.6e17$ cm⁻³ and $\alpha = 0.715$:
- [1] cds.cern.ch/record/2651300 [2] doi.org/10.1109/NSSMIC.2018.8824412 [3] doi.org/10.1016/j.nima.2022.167180 Fig. [4] bib-pubdb1.desy.de/record/410589
 - [5] doi.org/10.1109/T-ED.1983.21207