




Fachhochschule
Dortmund
University of Applied Sciences and Arts

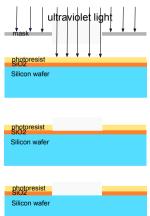


universität freiburg

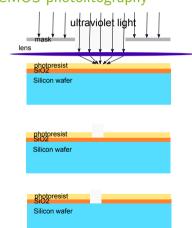
# Characterization of Passive CMOS Strip Detectors after proton irradiation

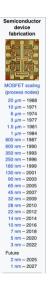
Marta Baselga, J.-H. Arling, N. Davis, J. Dingfelder, I.-M. Gregor, M. Hauser, F. Hügging, K. Jakobs, M. Karagounis, R. Koppenhöfer, K. Kröninger, F. Lex, U. Parzefall, S. Spannagel, D. Sperlich, J. Weingarten, I. Zatocilova

21/11/2025 - 14th HSTD, Taipei

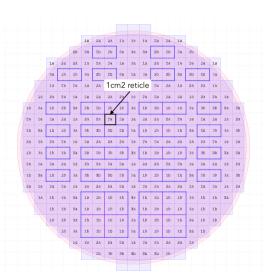

#### Motivation - Strip detectors

- All ATLAS and CMS upgrade strip detectors are fabricated in same foundry
- So far, large area strips are only fabricated in "microelectronics" foundries
- Here we want to prove that CMOS foundries can fabricate strip detectors and do not have any impact in the performance



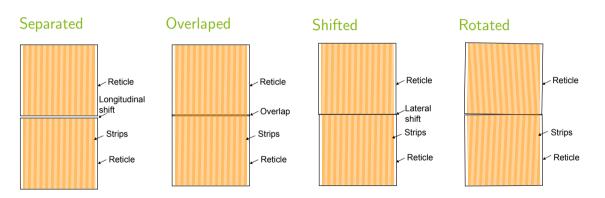


#### What changes regarding microelectronic foundries?

#### "Microelectronics" photolitography




#### CMOS photolitography






#### Mask design



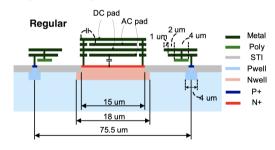


#### Stitching



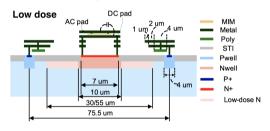

• Simulations in JINST 20 C01027 2025




#### Passive CMOS Strip

- Fabrication in LFoundry with a 150 nm production
- ullet NO electronics included o therefore Passive
- FZ 150  $\mu$ m thick wafer, with resistivity 3-5 k $\Omega$
- Fabricated 2.1 cm and 4.1 cm long strips:
  - 1. 1 cm<sup>2</sup> reticle used (2 set of masks used)
  - 2. The strips had to be stitched 3 or 5 times
- ullet Goalullet to show that stitching does not affect the performance of the strip

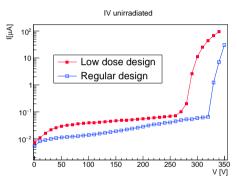



#### Two designs of strips: Regular design and Low Dose design

#### Regular design

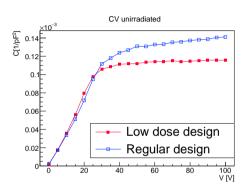


• Similar to the ATLAS strip design


#### Low dose design



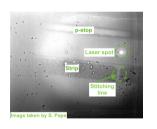
Using low dose implant and a MIM capacitor



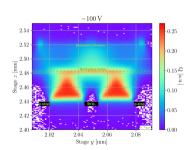

#### Electrical characterization: unirradiated



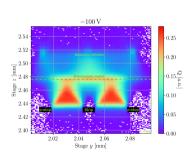



- Depletion around 35 V
- More in NIMA 1033 (2022) 166671




#### Two Photon Absorption Transient Current Technique measurements

- TPA-TCT measurements were performed at CERN SSD
- The charge in stitching and outside stitching does not show any difference


#### IR image



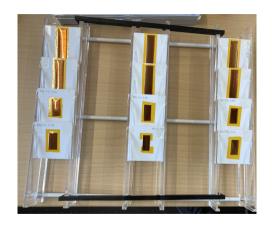
#### TPA-TCT in the stitch area



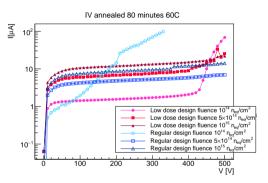
#### TPA-TCT outside the stitch

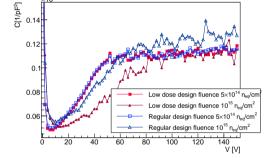


Measurements taken by to Sebastian Pape, Michael Moll, Marcos Fernandez Garcia, and Esteban Curras




#### CERN irradiation with 24 GeV/c protons (IRRAD)


 Several samples were irradiated at different fluences from IRRAD


|            | Fluence                       |
|------------|-------------------------------|
| $1 \times$ | $10^{14}\mathrm{n_{eq}/cm^2}$ |
| $5 \times$ | $10^{14}\mathrm{n_{eq}/cm^2}$ |
| $1 \times$ | $10^{15}\mathrm{n_{eq}/cm^2}$ |

Annealed at 80 min 60 °C



#### Electrical characterization: irradiated and annealed





CV annealed

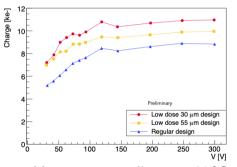
- No break down before 400 V
- Depletion around 60 V or lower



#### Alibava setup

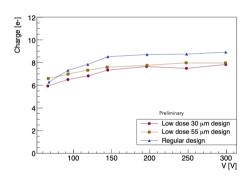
- Alibava readout system
- Analog readout of the strips
- Using Beattle chip from LHCb
- Charge investigated using electrons from a Sr90 source

# Sketch of the setup Sr90 daughter board and PCB Alibava mother board Scintillator spectrum


Landau signal

ADC

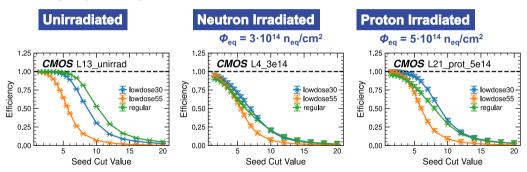
Counts


#### Alibava measurements

#### Fluence $5 \times 10^{14} \, n_{eq}/cm^2$



- Measurements talken at  $-20\,^{\circ}\text{C}$
- Close to non irradiated values
- Inverted performance for the three geometries

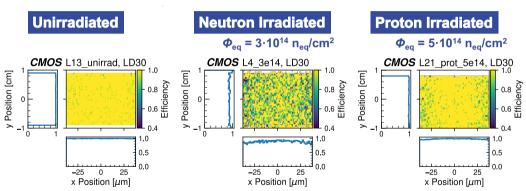

#### Fluence $1 \times 10^{15} \, n_{eq}/cm^2$





#### Test beam results

#### Efficiency dependency with the seed cut




[I. Zatocilova, CMOS Strip Sensors - Characterisation, Simulation and Test Beam Results, 2nd DRD3 week]



#### Test beam results

#### In strip efficiency



[I. Zatocilova, CMOS Strip Sensors - Characterisation, Simulation and Test Beam Results, 2nd DRD3 week]



### Next steps



#### Monolythic Active Strip Sensors (MASS)

- Increasing number of production foundries
- No so much bonding (avoiding 1500 bonds from chip to strip)
- No gluing







#### Monolythic Active Strip Sensors (MASS)

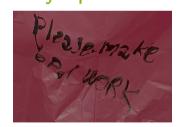
#### Monstera (MONolithic STrip Extended Readout Architecture)

- German consortium
- In DRD3 collaboration
- Designing next submission for next year
- Each strip 75.5 μm pitch will have each own front end



# monstera




#### Conclusions and future work

- Stitching does not have any impact in the performance of the strip detectors before and after irradiation
- ullet Planning a new production with the electronics implemented in the strips is ongoing ullet that would allow to avoid all the bondings of the strips to the chips

#### Last slide

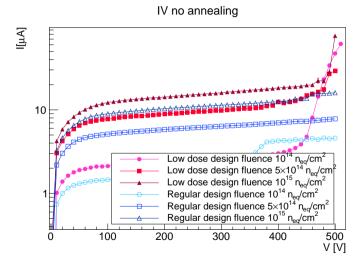
# Thanks for staying till the end of the week! And thanks to the organizers to prepare this nice Symposium







#### More results from passive CMOS strips

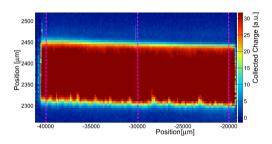

- PSD
  - Proceedings: NIMA 1061 (2024) 169132
- RD50
- Hiroshima (HSTD13)
  - Proceedings: NIMA 1064 (2024) 169407
- VFRTFX23
  - Proceedings: PoS(VERTEX2023)067
- NIMA 1033 (2022) 166671
- NIMA 1039 (2022) 167031
- NIMA 1080 (2025) 170807
- 2025 JINST 20 C01027



# Backup



#### Electrical characterization: Irradiated, not annealed




#### Transient Current Technique measurements

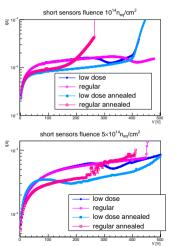
#### TCT and edge TCT with IR laser



Collected charge of the regular design of a long sensor as a function of the laser position at 50 V, illuminating from top. [NIMA 1033 (2022) 166671]



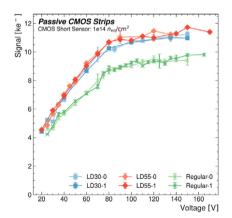
Edge TCT charge from a short LD30 sensor at 100 V (fully depleted). Stitching does not change the collected charge. [N. Sorgenfrei, 40th RD50, CERN]



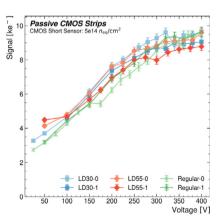

#### Irradiated: IVs and CVs

#### Irraidated with protons at KIT

 23 MeV protons at fluence 1 ×  $10^{14} \, n_{eq} / cm^2$ 


• 23 MeV protons at fluence  $5 \times$  $10^{14} \, n_{eq} / cm^2$ 





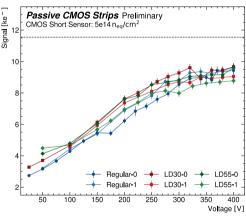

#### Irradiated: Charge in the ALiBaVa setup with Sr<sup>90</sup>

#### Signal of a short detector with Sr<sup>90</sup> source irradiated

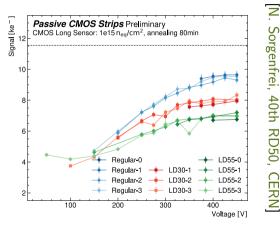


Neutrons fluence  $1 \times 10^{14} \, n_{eq}/cm^2$ 




Neutrons fluence  $5 \times 10^{14} \, n_{eq}/cm^2$ 




[NIMA 1039 (2022) 167031]

#### Irradiated: Charge in the ALiBaVa setup with Sr<sup>90</sup>

#### Signal of a detector with Sr<sup>90</sup> source irradiated



Neutrons  $5 \times 10^{14} \, n_{eq}/cm^2$ 



Neutrons  $1 \times 10^{15} \, n_{eq}/cm^2$ 



CERN