Charge Response Simulation of Liquid Argon Compton Cameras for Precise

 $\Delta E/E = 0.5$

MeV gap

Energy [MeV]

Fig. 1 Continuum sensitivity

around MeV Band[1]

10⁻¹³ | NuSTAR

MeV Gamma-Ray Event Reconstruction

Shota Arai

(The University of Tokyo) shota.arai@phys.s.u-tokyo.ac.jp

H. Odaka, H. Kawamura, K. Shirahama, R. Tatsumi, M. Tanaka (The University of Osaka), S. Takashima (RIKEN), K. Hagino, A. Bamba (The University of Tokyo)

1. Introduction

- MeV gamma-ray opens new perspectives
 - Nucleosynthesis of heavy elements
 - Nuclear reactions in black hole accretion disks
 - Particle acceleration
 - Transition from thermal to non-thermal emission

Why still unexplored? — The "MeV Gap"

- Insufficient effective area
- → MeV band remains poorly explored ("MeV gap", Fig. 1).
- High instrumental and environmental backgrounds
- Difficulties in event reconstruction

Gamma Ray and AntiMatter Survey (GRAMS)

- A balloon-borne / satellite-based mission for MeV gamma-ray observations and darkmatter searches via antiparticles.
- A liquid argon time-projection chamber provides superior sensitivity in the MeV band
- A prototype balloon experiment (pGRAMS) is scheduled for **Spring 2026 in Arizona, USA**.
- A detector for the demonstration of Compton imaging, NanoGRAMS, is under development. (S. Takashima's presentation on Nov. 21th for details)
- In this study, we aim to explore the feasibility of using not only GRAMS but also general LArTPCs as Compton cameras.

LArTPC:

- A promising technology for next-generation MeV Compton cameras.
- **Scalable and cost-effective**, enabling a large effective area (~1000 cm² for GRAMS).
- Acts as both a Compton camera and a 3D particle tracker, enabling clear discrimination between charged-particle backgrounds and gamma-ray events.

2. Detector Concept of LArTPC

- Incident gamma rays interact with LAr via:
 - Compton scattering
 - Photoelectric absorption
- LArTPC measurement:
 - 3D hit positions:
 - z-axis from the time difference between scintillation light and ionization charge
 - x-y plane from the 2D charge readout
 - **Energy deposition** from the charge-signal pulse height
- Event with (> 3 hits) or (a Compton Scattering + a Photoelectric absorption) → Enable reconstruction of the incident gamma-ray energy and direction using Compton kinematics (Right).
- A single event constrains the source direction to a **Compton cone**.
- Overlapping multiple cones provides the final direction reconstruction (Fig. 3).

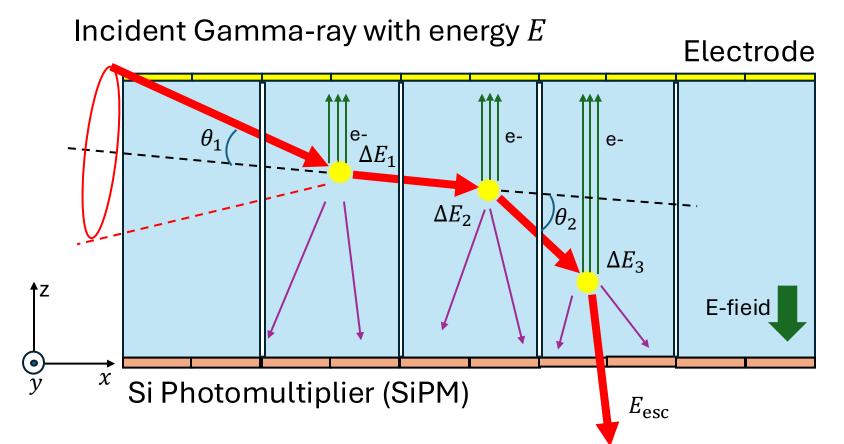


Fig. 2: Schematic of LArTPC

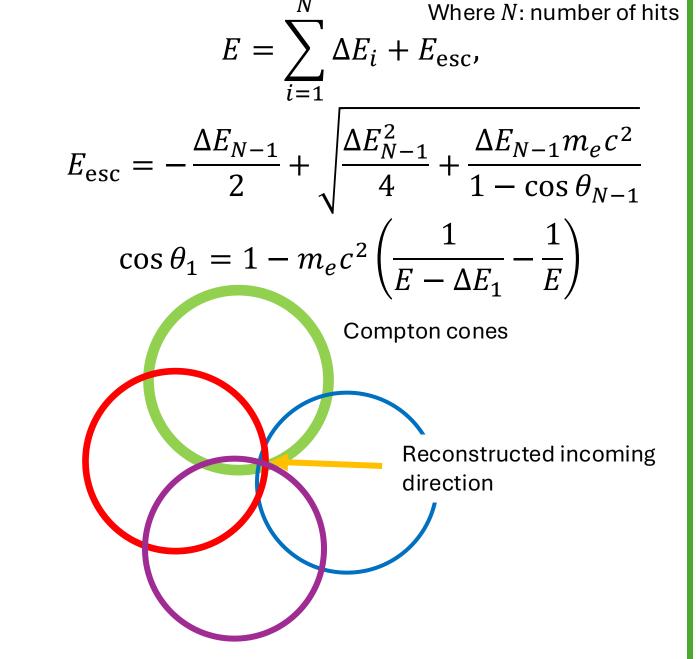


Fig. 3 Schematic of the estimation of the direction

Compton Cone

Effects we considered in this study

3. Performance Evaluation of a Compton Camera

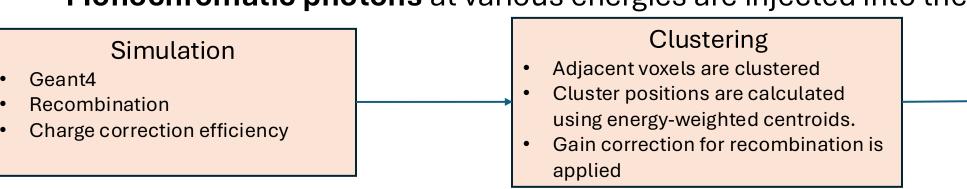
Performance of a Compton camera is measured by ARM, and energy resolution (typically evaluated using FWHM).

ARM (Angular Resolution Measure)

- Difference between the **true** direction and **reconstructed** incoming-photon direction
- The overlap of Compton cones determines the source direction
- →The cone-overlap sharpness directly reflects the **angular resolution**.

Candidate effects to make ARM & energy resolution worse

- Position resolution of energy deposition
 - Pixel Pitch
 - Distortion of electric field (geometrical effects, space charge effect, etc.)
 - Diffusion (longitudinal and transverse)
 - Clustering / hit-finding method
- Energy resolution of energy deposition
- Recombination of ionized electrons (and its fluctuation)
- Electrical & statistical fluctuations
- Charge collection efficiency (CCE) ← Ar ions drift much more slowly than electrons
- Liquid-argon purity
- Performance of reconstruction algorithms


Precise event reconstruction requires both good energy resolution and sharp ARM.

→ How do these detector effects impact the performance of an LArTPC as a Compton camera?

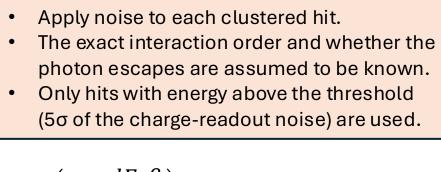
4. Simulation

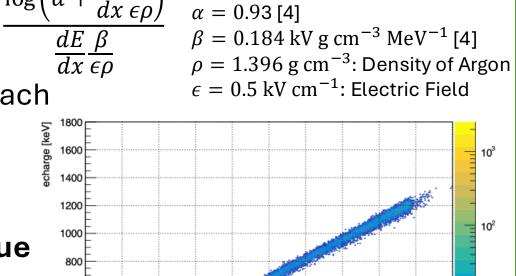
Geant4-based simulation

- Detector-response modeling implemented using the semiconductordetector framework ComptonSoft [2].
- Recombination modeled with the Modified Box (MB) approach [3,4]
- Longitudinal and transverse diffusion included following the formulation in [5].
- Modified charge-collection efficiency (CCE) calculation tailored for
- LArTPC. Geometry: 30 cm \times 30 cm \times 30 cm LAr volume, voxelized.
- Monochromatic photons at various energies are injected into the LArTPC.

Multiple recombination models exist, but the microscopic nature remains uncertain.

→ We adopt the **Modified Box (MB)** model, using **dE/dx from ESTAR** [6] for each step. **Gain Correction**


- A phenomenological gain correction is applied.
- Voxels are grouped along the z-axis to derive the correlation between **true** energy deposition and signal height (after recombination) (Fig. 5). →For each signal height, the **mean true energy** is used as the corrected value.
- The upper region of the sensitive volume is excluded.


Simulation condition

- We made the simulation changing conditions and compared the results: With/without recombination **Underbar: Nominal condition**
 - Pixel pitch, 0.5, <u>1</u>, 2, 3mm
 - Noise parameter: $p_0 = 10$, 5, $\underline{2}$, 0.472 keV (Charge readout noise) $p_1 = 0.05 \text{ keV}^{0.5}$ = limitation by Fano factor (0.107)

Fig. 4: Geometry of simulation

Reconstruction Apply noise to each clustered hit. The exact interaction order and whether the

R: Ratio of electron to photon

Fig. 5: Correlation between energy deposition and signal height

Noise Parameter = $[p_0, p_1]$ $\sigma = \sqrt{p_0^2 + p_1^2 E}$ E: energy deposition [keV]

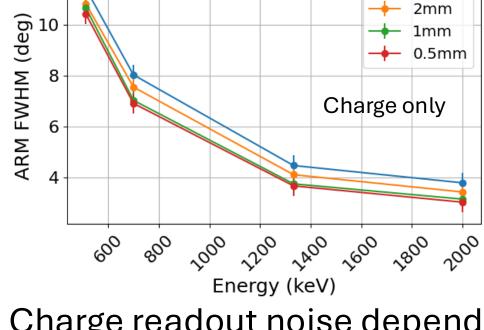
5. Results

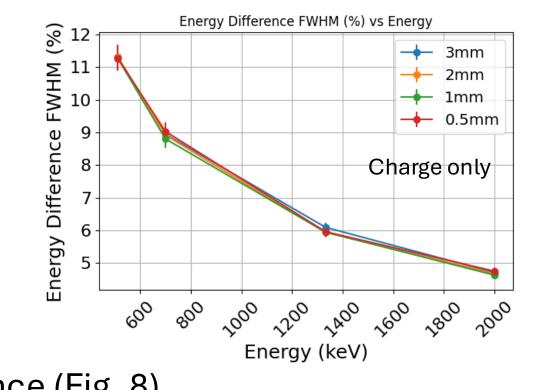
We evaluated the simulation results by FWHM of <u>ARM</u> and <u>energy difference</u> ($E_{\rm rec}-E_{\rm true}$) Reconstructed

With recombination at **500 V/cm** (Fig. 6)

• **ARM** degrades ~ x 2.1 at 1.3 MeV. **Energy resolution** worsens ~ x 5 at 1.3 MeV.

The spectroscopic performance can be improved by using the light signal in addition to the charge signal.


Even if the charge signal is used alone, we can achieve an excellent ARM of 3° and an acceptable energy resolution of 5% at 2 MeV. More realistic energy measurement methods using both the light and charge will be studied in future. Charge only

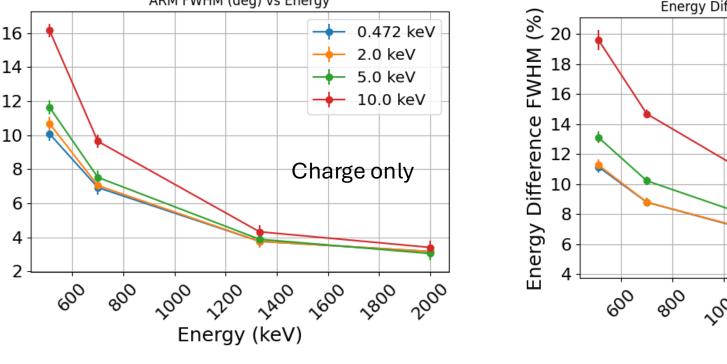

Fig. 6: FWHM of ARM (left) and energy resolution (right) with/without recombination

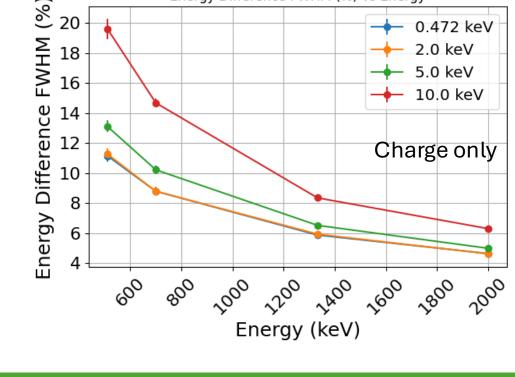
Pixel pitch dependence (Fig. 7)

• For **pixel pitch < 1 mm**, the **ARM** shows almost no degradation.

Reconstructed energy resolution shows little dependence on pixel pitch.

A pixel pitch of 1 mm is sufficient for high-resolution **Compton imaging** unless we measure the tracks of recoiled electrons. 2 mm still yields very good


Fig. 7: FWHM of ARM (left) and energy resolution (right) at several pixel pitch.


angular resolution.

Charge readout noise dependence (Fig. 8)

Charge readout noise significantly affects the ARM, particularly for low-energy photons.

• While the charge readout noise affects the energy resolution, the improvement of the electronics noise below 2 keV does not contribute to the spectroscopic performance. goal of charge readout % 20 -

A noise level of 2 keV can be regarded as the development electronics.

Fig. 8: FWHM of ARM (left) and energy resolution (right) at several charge readout noise

5. Conclusion

- LArTPCs are promising next-generation Compton cameras for MeV gamma-ray astronomy.
- To evaluate their performance, we conducted Geant4-based simulation and postprocessing of realistic detector effects such as recombination and charge readout noise.
- Excellent Compton reconstruction performance will be achievable by the electron signal readout with:
 - Pixel pitch: 1~2 mm
- Electronic noise: ~2.0 keV
- There remains strong potential for further improvement through the combined use of light and charge **signals**, while **charge-only readout** still delivers good performance for high-energy photons (>1MeV).

References

[1] Aramaki et al., "Dual MeV gamma-ray and dark matter observatory - GRAMS Project", Astropart. phys., 114, 107-114, 2020 [2] Odaka et al., "Development of an integrated response generator for Si/CdTe semiconductor Compton cameras", NIM-A, 624, 303, 2010 [3] Acciarri et al., "A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC", JINST, 8, P08005, 2013 [4] C. Adams et al., "Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons", JINST, 15, P03022, 2020 [5] Yichen Li, et.al., "Measurement of longitudinal electron diffusion in liquid argon", NIM-A, 816, 160-170, 2016

[6] Berger, M.J., Coursey, J.S., Zucker, M.A., and Chang, J. (2005), ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). [Online]