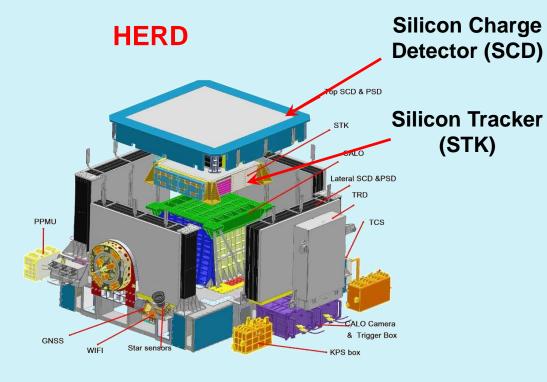
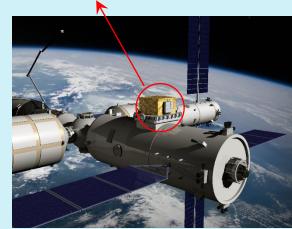
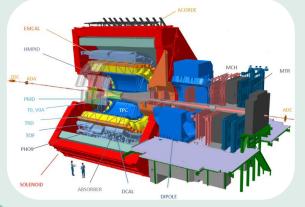
Silicon Detector R&D's in China For Major Particle Physics Experiments

Jianchun Wang (IHEP)

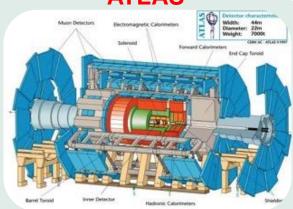

HSTD14, Nov 16-21, 2025, Taipei


Space Station Based Experiments

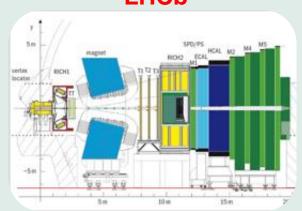
Detector launching is expected ~2028



The LHC Experiments

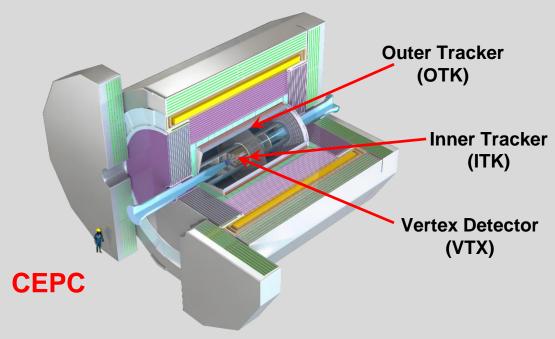

ATLAS ITK, HGTD

CMS HGCAL, MTD-ETL

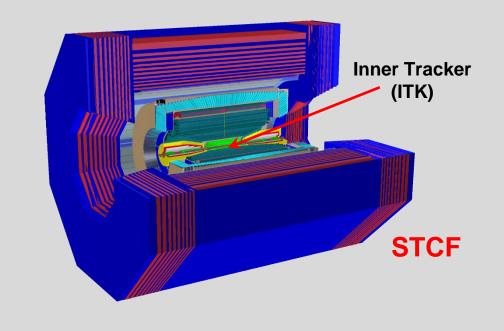

ALICE ITS3, FoCal

LHCb UP
ALICE VD, ML, TOF

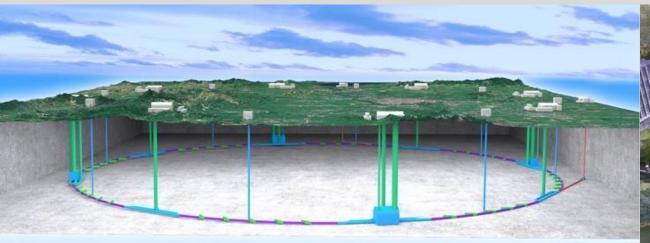
LHCb



CMS A Compact Solenoidal Detetor for LHC A Compact Solenoidal Detector for LHC A Compact Solenoi



Future Electron Positron Collider Experiments



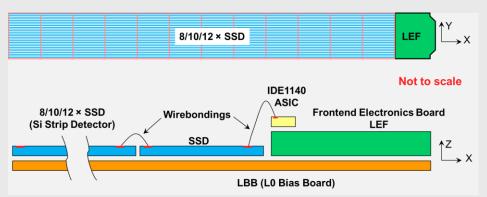
CM Energy ~ 91, 160, 240, 360 GeV \mathcal{I}_{max} ~1.9×10³⁶ cm⁻²s⁻¹ @ 91 GeV

CM Energy ~ 2-7 GeV $\mathcal{I}_{\text{max}} \sim 0.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \text{ @ 4GeV}$

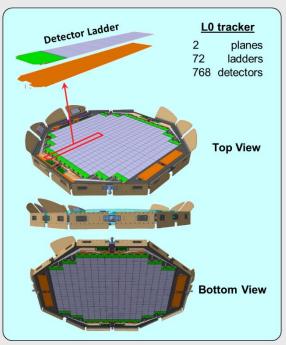
On-going Si Detector R&D Activities

Туре	Detectors	Main Motivation	
Strip Detector	AMS L0 Tracker	Charge measurement Z=1-28 and trajectory measurement	
	HERD SCD, STK	SCD: charge measurement Z=1-28; STK: Photon conversion and trajectory measurement	
	ATLAS ITK	Trajectory measurement, radiation-resilient	
	ALICE ITS3,VD,ML ITS3	ITS3. VD: stitching+bent for low material and close to IP; All: trajectory measurement	
Monolithic Pixel Detector	CEPC VTX, ITK	VTX: stitching+bent for low material and close to IP; All: trajectory measurement	
	LHCb UP	Trajectory measurement, cost effective, radiation-resilient, high hit rate	
	STCF ITK	Trajectory measurement, high hit rate	
	ATLAS HGTD	High precision timing for pile-up separation	
LGAD Timing Detector	CMS MTD-ETL	High precision timing for pile-up separation	
	CEPC OTK	High precision timing and 1-D spatial position measurement	
	ALICE TOF	High precision timing and 1-D spatial position measurement	
SiDet-based	CMS HGCAL	High precision spatial and timing measurement, sampling calorimeter	
Calorimeter	ALICE FoCal	High precision position sampling calorimeter	

Almost all of them are detailed in the presentations and posters at this symposium



AMS L0 Tracker

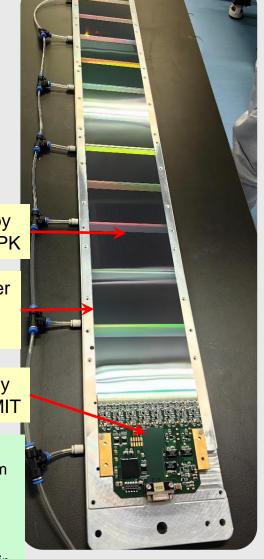


The longest SSD single unit ~ 1 m

Challenges

- Coupling and noise level due to long strips impose big challenges.
- Precise placement of SSDs on a ladder.
 Aim for a < 5 μm precision.
- Highly reliable wire-bonding (>12K wires per ladder).

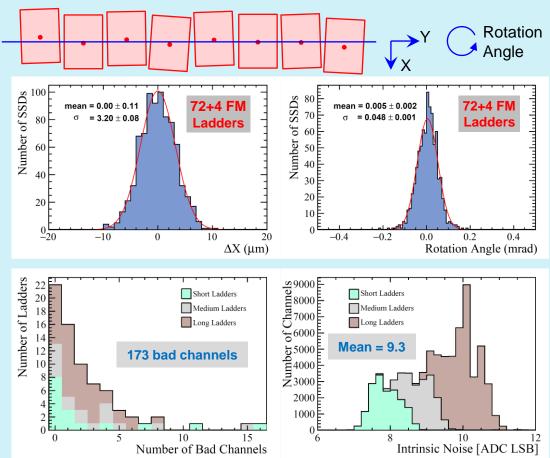
SSD designed by IHEP+Perugia+HPK

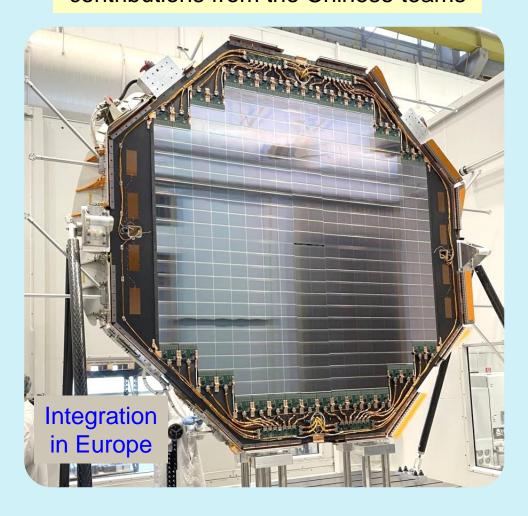

Detetector ladder produced by IHEP+SDIAT

LEF produced by IPAS+NCSIST+MIT

HPK SSD

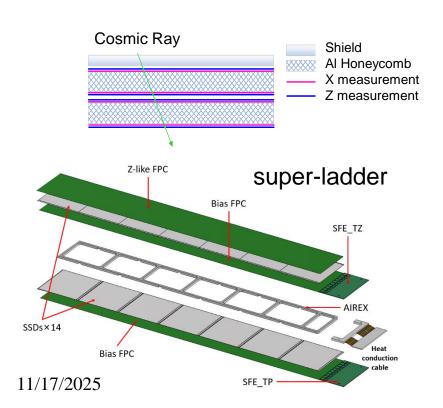
readout pitch 109 μ m readout / bias = 1:4 thickness 320 μ m AC + bias resistor

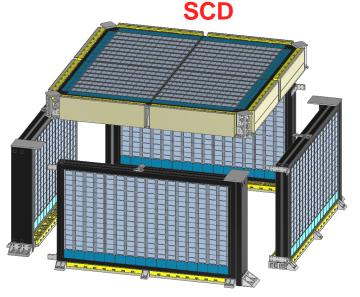

IDE1140 readout chip


AMS L0 Tracker

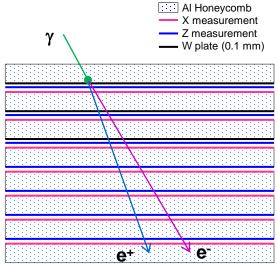
- Dark current of all ladders are < 2 μA @ 50, 80 V
- Optimized for high-Z particles; S/N for MIP ~ 6-7
- Bad channel rate ~ 0.23%
- Non-perfect production contributes to measurement $\sigma_x=3.4 \mu m$, before applying correction

First large silicon detector with major contributions from the Chinese teams





HERD Silicon Detectors: SCD and STK

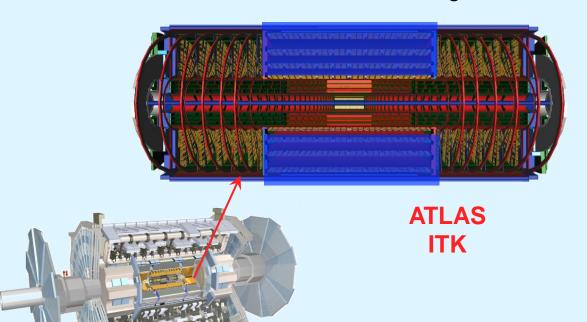

- HERD (High Energy cosmic-Radiation Detection) is to be installed on the Space Station by ~2028. The detector system has SCD, STK, +3 others
- ❖ SCD: 5-side, 8-layer charge measurement Z=1~28, total area 38.8 m²
- ❖ STK: **14-layer** detecting trajectories of $\gamma \rightarrow e^+e^-$ conversion in 3 W plates, angular resolution ≤ 0.1° @ 10 GeV, total active area 8.3 m²
- HPK SSDs: 150 μm pitch, 320 μm thick, DC with bias resistor
- Front end readout chips: IDE1140, VATA450.3

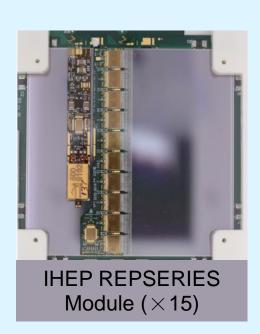
Participating institutes:

IHEP, PMO, Perugia

STK

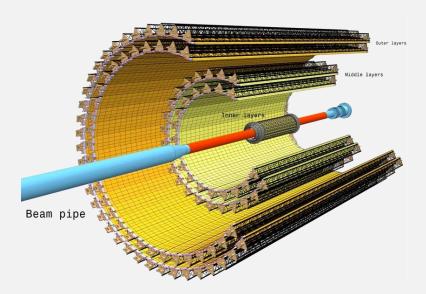
ladder and layer

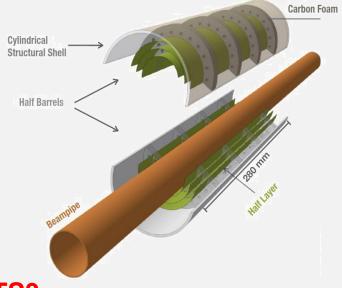




ATLAS Inner Tracker ITK

- Strip strip detector, total area 165 m², 18000 strip modules, to be installed during LS3
- HPK p-type sensor, 320 μm thick; 130nm CMOS readout chips: ABC, HCC, AMAS
- ❖ The module production task shared by ~20 countries. Chinese groups will produce ~10% of the strip barrel modules (1000 modules)
- The groups will perform sensor characterization (1/8 sites), and quality assurance (1/5 sites) using its 80 MeV proton beam at CSNS of IHEP
 Chinese institutes:
- Contribution to the silicon tracker integration at RAL and CERN




SJTU, SDU

ALICE MAPS Tracking Detectors

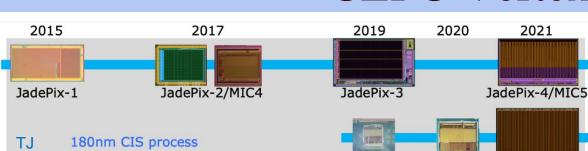
ITS2

- Installed during LS2
- 3 inner, 2 middle, 2 outer layers
- MAPS chip: ALPIDE
- TJ 180 nm CMOS process
- Pixel size: 29×27 μm²
- Low power < 40 mW / cm²
- IP resolution: 5 μm

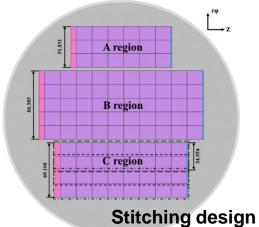
ITS3 (replace the 3 inner layers)

- To be installed during LS3
- TPSCo 65 nm process
- Wafer-scale MOSAIX sensors
- Cylindrical geometry
- Closer to IP: R= (24→19) mm
- Reduced material: $(0.36\rightarrow0.09)\% X_0$
- Spatial resolution ~ 5 μm
- Time resolution ~ O(1000) ns
- Radiation hard ~ 3×10¹² n_{eq} cm⁻²

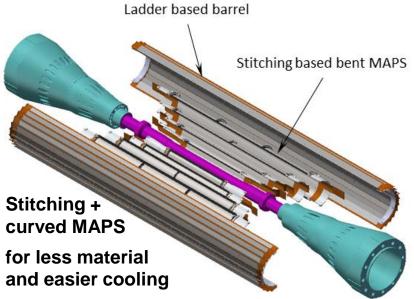
To be installed during LS4

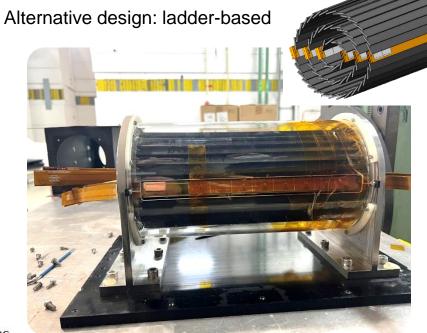

- Retractable and close to beam
- Low material mass ~0.1% X₀
- Spatial resolution ~ 2.5 μm
- Time resolution ~100 ns
- Radiation hard ~ 1×10¹⁶ n_{eq} cm⁻²

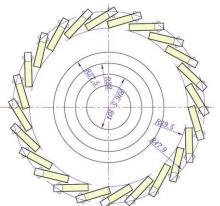
ML


- Low material mass ~1% X₀
- Spatial resolution ~ 10 μm
- Time resolution ~100 ns
- Radiation hard ~ 6×10¹³ n_{eq} cm⁻²

CEPC Vertex Detector






Goal: $\sigma(IP) \sim 5 \mu m$ for high P

TaichuPix-1 TaichuPix-2 TaichuPix full

A TaichuPix-based prototype detector

Outer: double-layer ladder Material $\sim 0.3\% X_0$ / layer

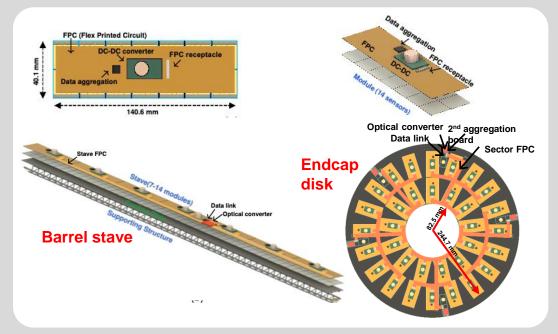
Inner layer: single bent MAPS Material ~ 0.06% X₀ / layer

CEPC Inner Tracker ITK

Goal

Spatial resol. < 10 µm

Power < 200 mW/cm²

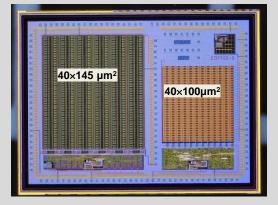

CEPC ITK

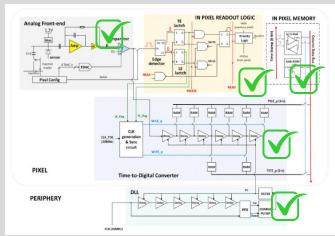
Cost effective

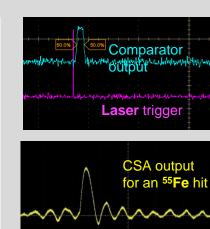
Timing 3-5 ns

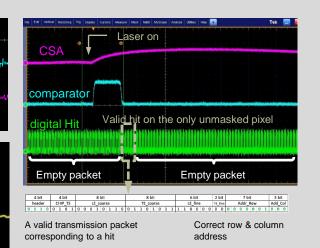
- □ HV-CMOS pixel detector for CEPC inner tracker ITK, area ~15-20 m^{2.}
- ☐ Explore 55 nm and other processes
- Detector design based on typical chip size

Process node: 55 nm Chip size: 2 cm × 2 cm Sensor thickness: 150 µm

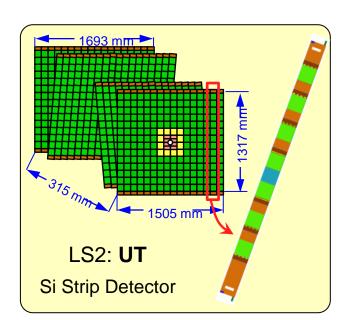

Pixel array: 512 × 128 Pixel size: 34×150 µm²


Spatial resolution: 8 / 40 μm


Time resolution: 3-5 ns


Power consumption: 200 mW/cm²

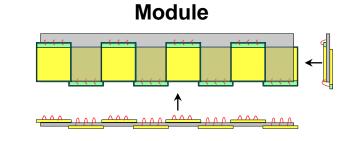
COFFEE 3



LHCb UP Detector

- ☐ A HV-CMOS pixel detector, to be installed during LS4
- ☐ The active area ~7 m²
- ☐ The team has a big overlap with the CEPC ITK team
- Spatial resolution ~ 10 μm
- Time resolution 3-5 ns
- Power < 200 mW/cm²
- Rad-hard: 3×10¹⁵ n_{eg}/cm²

Chinese institutes
IHEP, CCNU, HNU, HTU,
LZU, NPU, UCAS, ...

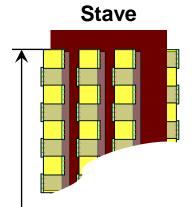

UT@LS2: Si Strip Detector
Prot

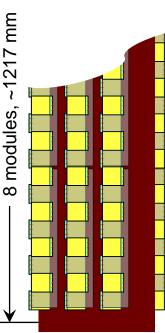
UP@LS4: MAPS Pixel Det

Side View ECAL HCAL
M2 M3 M4 M5

FITALE Tracker

Vertex Locator

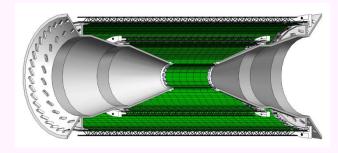

Prototype module



Prototype stave support

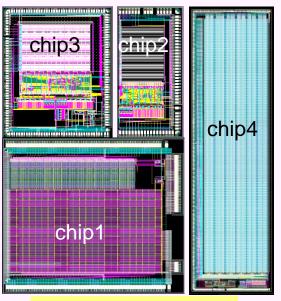
CFRP faces + CF honeycomb,

Ti cooling tubes



STCF Inner Tracker ITK

- * Requirements: tracking efficiency >99% @ p_T >0.3 GeV; >90% @ p_T >0.1 GeV
- ❖ Three-layer MAPS detectors (R = 36, 98, 160 mm), total area: 1.3 m²
- Chinese institutes: USTC, SDU, CCNU, NPU

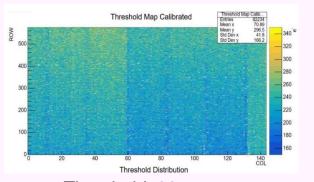

CharTPix chip prototyping

180 nm process, HR epitaxial wafter

chip3 chip4

Total area: 5×5 mm²,
Pixel size: 180×30 μm²
Other variants

130 nm process, HR wafter



Total area: 24×12 mm², Pixel size: 30×30 μm²

Other variants

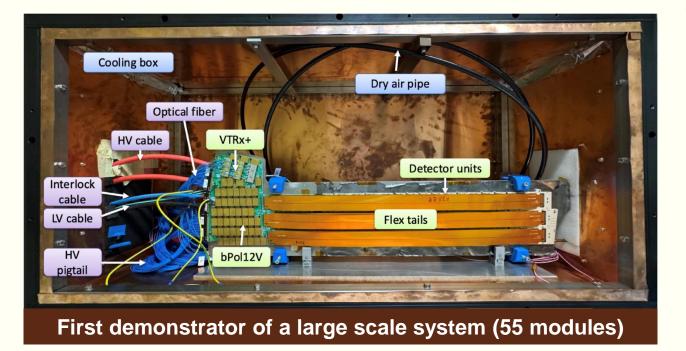
Requirements:

- Power consumption ≤ 50 mW/cm²
- Material per layer ≤ 0.35% X₀
- Spatial resolution ≤ 30 μm
- Time resolution ≤ 20 ns
- Hit rate capability ≥ 1MHz/cm²
- Rad hardness: 1Mrad/y, 10¹¹n_{en}/cm²/y
- ToT measurement

Threshold: 225 Mismatch: 26.5 e

Thermal Noise: 6.6 e

@SUB=-4 V



ATLAS HGTD

- An LGAD-based High Granularity Timing Detector (HGTD), to be installed during LS3
- China team is making key contributions
 - 100% LGAD sensors (IHEP-IME, USTC-IME)
 - 44% detector assemblies
 - 100% FE electronics boards, ~33% flex tails
 - 50% testing of the FE readout ASIC ALTIROC
 - >16% high-voltage electronic systems

Detection area ~ 6.4 m²

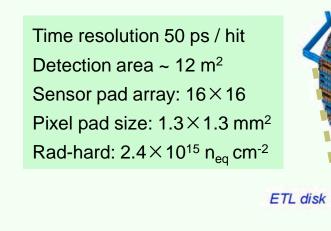
Pixel pad size: 1.3×1.3 mm²

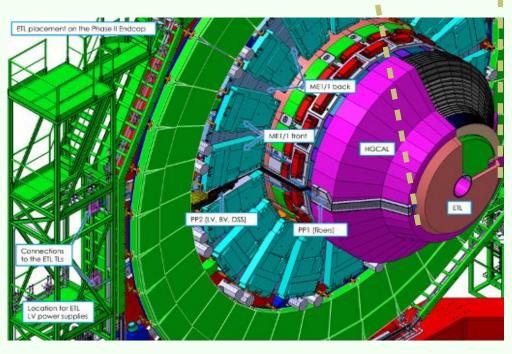
Rad-hard: $2.5 \times 10^{15} \, n_{eq} \, cm^{-2}$, 2 MGy

Chinese institutes

IHEP, USTC, SDU, NJU, ...

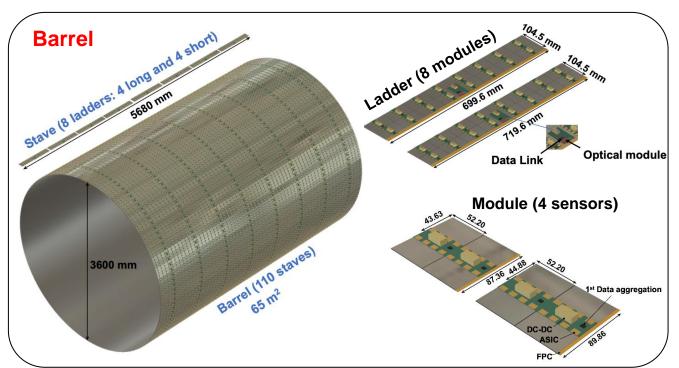
CMS MTD-ETL Detector

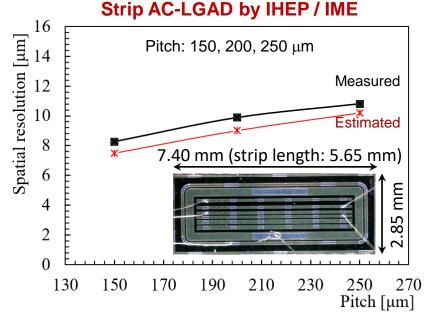


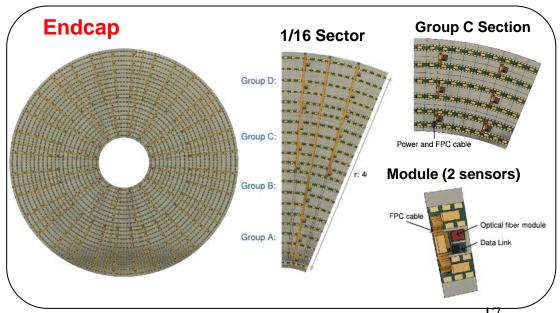

- CMS MIP Timing Detector (MTD) will be installed during LS3. It consists of LGAD-based ETL and LYSO+SiPM based BTL
- LGAD producers: HPK and FBK-LFoundry
- FE readout chip: ETROC TSMC 65 nm technology
- Countries involved: USA, Italy, South Korea, Spain,
 China, Finland et al; total ~ 20 institutes
- Involvement of the Chinese groups in ETL:
 - LGAD characterization during prototyping phase and quality control during production phase
 - 2) MUX64 chip procurement and test
 - 3) ETL DAQ software development

Chinese institutes:

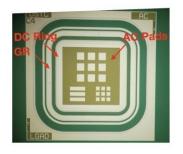
USTC, SCNU, SDU

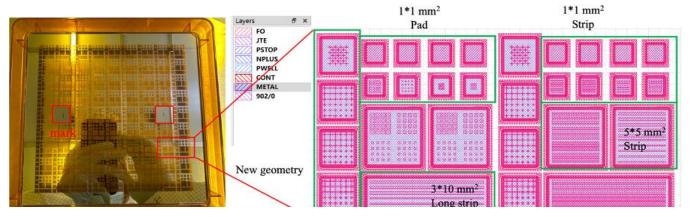


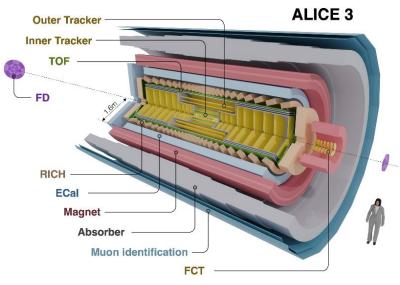



CEPC Outer Silicon Tracker OTK

- ☐ The outer tracker ~ 85 m², Z precision not crucial ⇒ Cost-effective SSD
- □ A supplemental PID at low energy ⇒ LGAD TOF
- An AC-LGAD Time Tracker for both: $\sigma_t \sim 50$ ps, $\sigma_{R\Phi} \sim 10$ μm
- \Box Optimizing sensor: length = 1,2,4 cm, pitch = 100, 200, 500 μ m.
- ☐ Front end readout ASIC LATRIC_v0 has been produced




ALICE AC-LGAD TOF



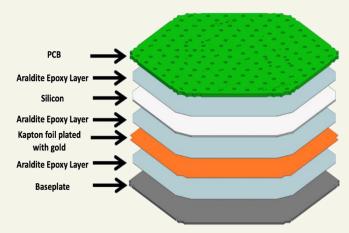
- Exploring an AC-LGAD based TOF as an alternative to the CMOS-LGAD solution, to be installed during LS4
- Total area ~ 40 m², including inner, outer and forward TOF
- Key specification: time resolution 20 ps
- Preliminary achievement: time resolution 35 ps @ room temperature, 26 ps @ -30 °C, spatial resolution ~ 5-9 um

Type	Small pad 75×75 50×50	150×150 100×100	75 50×200
electrode pitch (µm)			
electrode size (µm)			
colunm × row	3×3	3×3	3

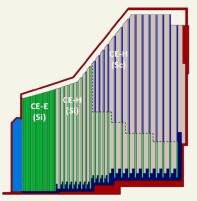
v1 is fabricated and characterized, paper in preparation

v2 is fabricated and being characterized

Proposed by: **USTC**



CMS HGCal and ALICE FoCal-E


Chinese intitutes

> 50 institutes including IHEP, FDU, NNU, THU, ZJU

- \Box First 5D calorimeter: spatial, energy, time; rad-hard $\sim 10^{16} \, n_{ed}/cm^2$
- HPK SiPAD sensor, 8" wafer, 1 or 0.5 cm² cell size, 300/200/120 μm thick
- ☐ HGCROC chip readout by LLR, Omega group
- ☐ Total 26000 modules, 620 m² Si sensor. Module production is shared among 6 module assembly centers (MACs). IHEP and NTU each hosts 1 MAC.
- ☐ Responsible for production of 90% **CuW** baseplates

CMS HGCAL

CIAE, CCNU, ... **ALICE** FoCal-H FoCal-E FoCal-E Transverse segmentation LG cells Longitudinal segmentation 20 W layers (3.5 mm) +18 pad layers(1×1cm²) +2 pixel layers using ALPIDE $(29 \times 27 \mu m^2)$

Closing Remarks

- In the recent years, research of silicon detector technology develop fast in China.
- The Chinese groups are very active in silicon detector efforts for major international experiments: AMS, HERD, ATLAS, CMS, LHCb, ALICE, CEPC, STCF, ...
- Enhanced collaborations are welcome. Hopefully Chinese groups could bring in more ideas, technologies, opportunities and other resources to this fascinating domain.

Thank you for your attention!

Disclaim: There are many other interesting silicon detector R&D activities by the Chinese groups. The selection is simply based on my personal taste and preference. My sincere apology to those that could not be covered.

Acknowledgement: Thanks to my colleagues who provided very useful materials in a short notice. Special thanks to Xiaomei Li, Yiming Li, Zhijun Liang, Nan Lu, Wenxi Peng, Xin Shi, Zebo Tang, Lailin Xu, Huaqiao Zhang