Parton physics one the lattice: present and future activities in Taiwan

C.-J. David Lin

National Yang Ming Chiao Tung University

國立陽明交通大學

ANPhA 2025 workshop, Taipei 29/11/2025

Parton physics one the lattice: selected present and future activities in Taiwan

C.-J. David Lin (mostly in Hsinchu)

National Yang Ming Chiao Tung University

國立陽明交通大學

ANPhA 2025 workshop, Taipei 29/11/2025

I will only discuss parton-physics projects with significant Taiwan-community involvement

(research groups, not individual researchers)

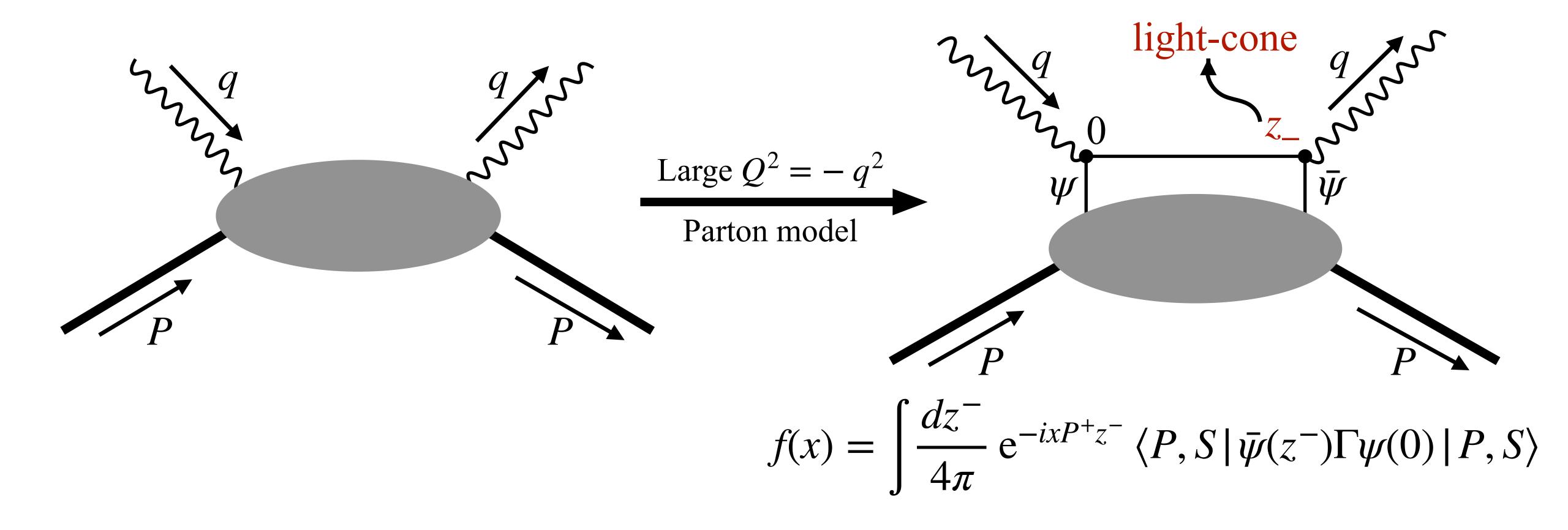
Outline

- The key issue of parton physics on the lattice
- Present: higher moments from HOPE method
- Present & future: Collins-Soper kernel from the soft function

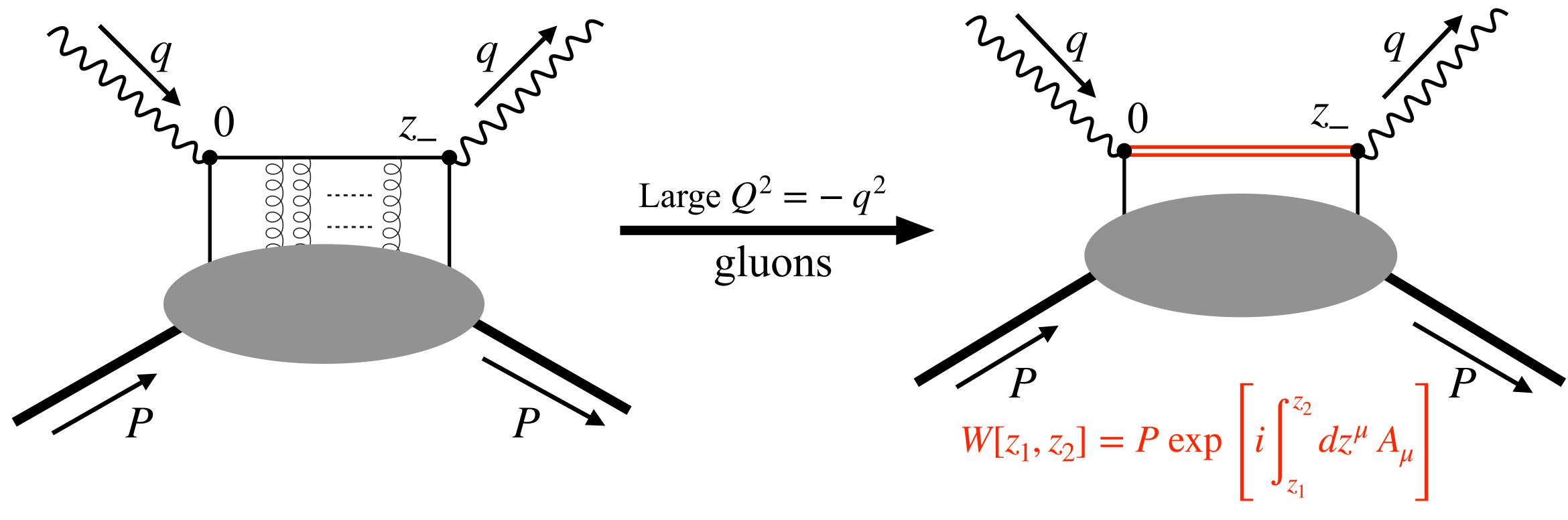
And if there is time....

• Future: Hamiltonian formalism and direct access to light-front dynamics

Hadron structure in parton picture

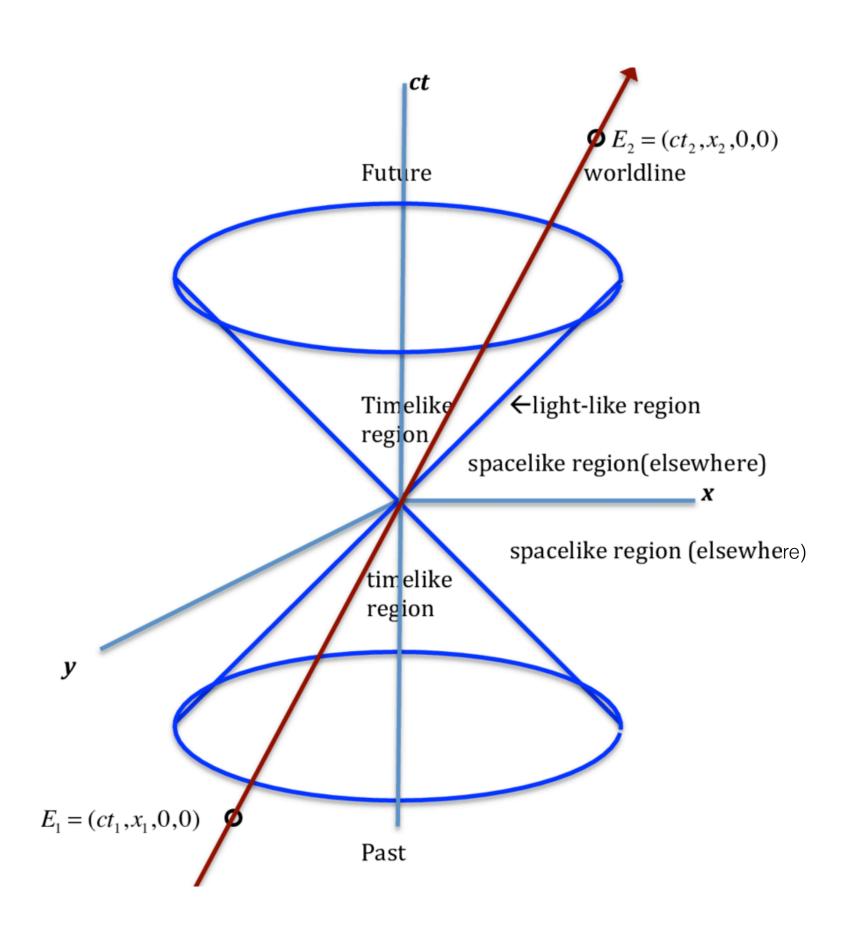


Parton distribution function and Wilson line in QCD



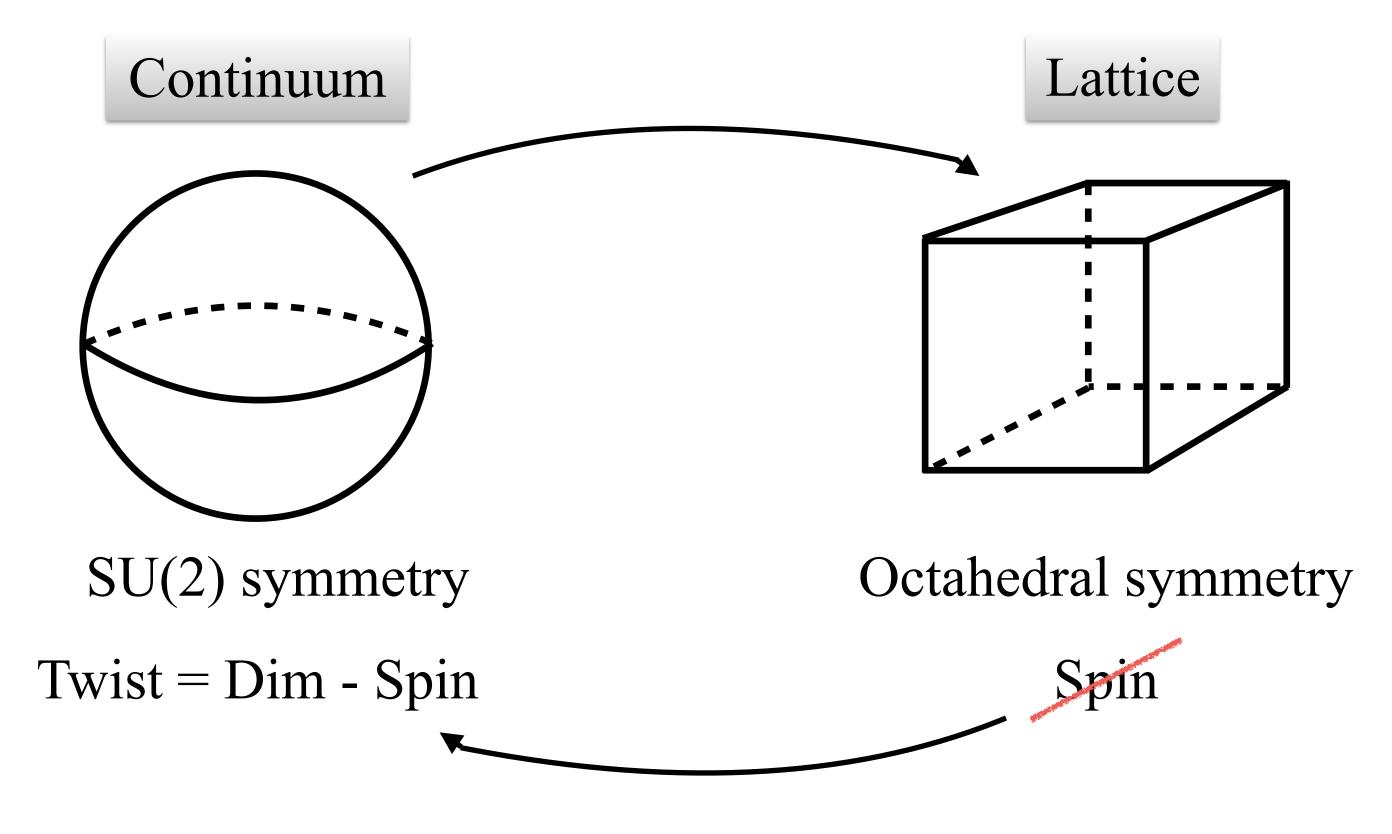
$$f(x) = \int \frac{dz^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle P, S | \bar{\psi}(z^{-}) \Gamma W[z_{-}, 0] \psi(0) | P, S \rangle$$

Minkowski space info from Euclidean computations



- Space-like regime \Rightarrow accessible directly
 - → local matrix elements
 - non-local equal-time matrix elements
- Time-like regime \Rightarrow not directly accessible
 - Indirect access to a few quantities
 - --- Challenging in general
- Light cone \Rightarrow shrunk to a point
 - Indirect, limited access
 - --- Challenging in general

Issue with the conventional method



- Lattice breaks rotation symmetry
- >> Spin not a good quantum number
- For a continuum twist-2 \mathcal{O}_i

$$\longrightarrow \text{Obtained } via \ \mathcal{O}_i = \sum_j C_{ij}^{\text{latt}}(a) \mathcal{O}_j^{\text{latt}}$$

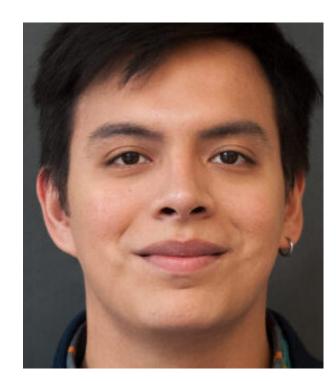
- Often $C_{ij}^{\text{latt}}(a) \sim 1/a^n$
 - \longrightarrow Diverges as $a \to 0$
- Extremely difficult numerically

Only applicable for $\mathcal{O}_{0,1,2,3}$!

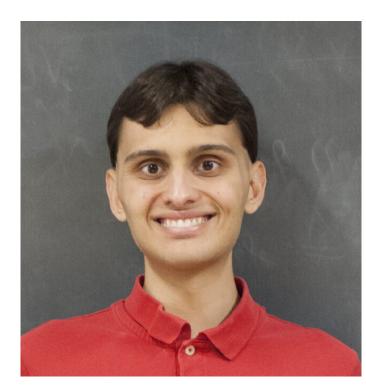
Higher moments from the method of heavy-quark operator product expansion (HOPE)

Alex Chang (NYCU)

William Detmold (MIT)



Matias Escobar (MIT)



Anthony Grebe (MIT \Rightarrow Fermilab \Rightarrow U of Maryland)

Issaku Kanamori (NYCU ⇒ Hiroshima U. ⇒ RIKEN RCCS)

CJDL (NYCU)

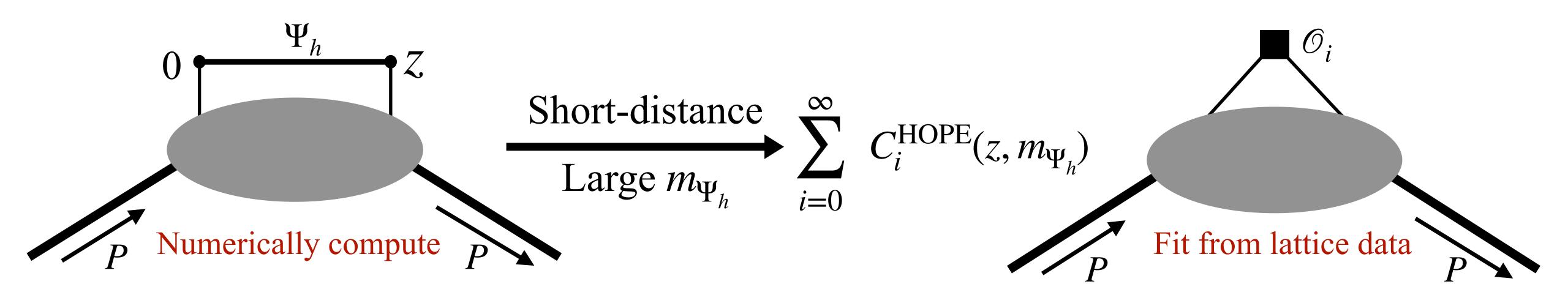
Robert Perry
(NYCU \Rightarrow U of Barcenona \Rightarrow MIT)

Yong Zhao (MIT \Rightarrow Argonne Nat'l Lab)

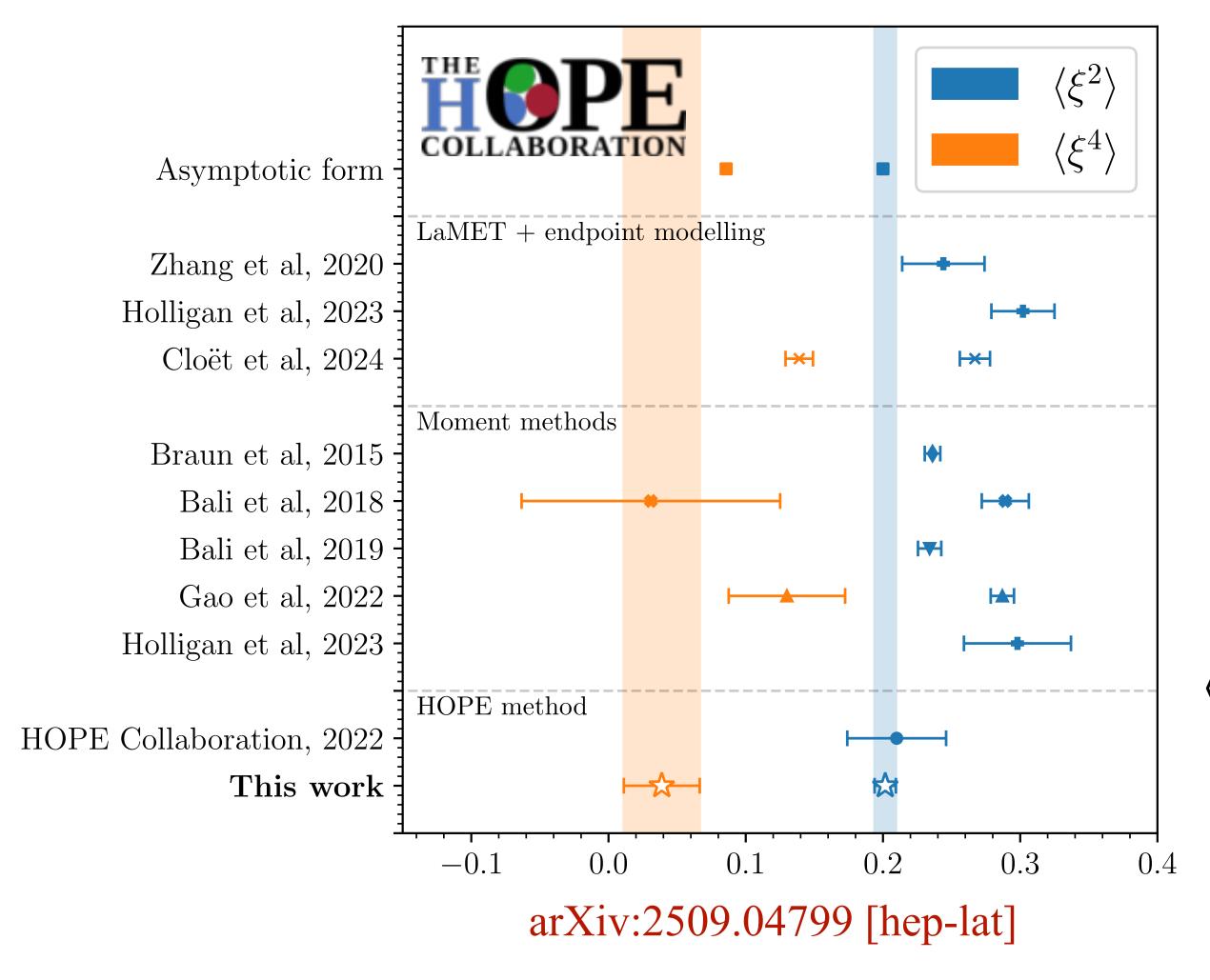
The HOPE method for higher Mellin moments

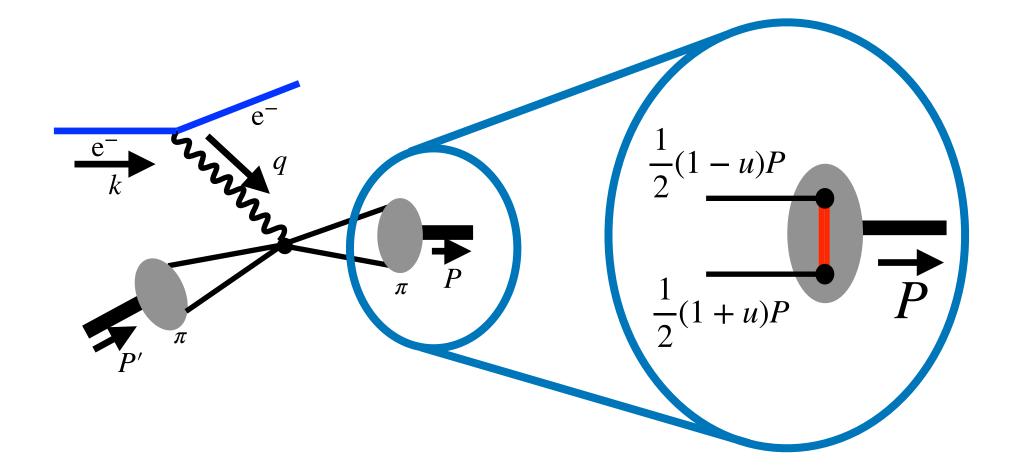
W. Detmold and CJDL, PRD 73 (2006) 014501

HOPE Collaboration, PRD104 (2021) 7, 074511



The HOPE method for higher Mellin moments





$$F_{\pi}(Q^2) = \text{(hard kernel)} \bigotimes \phi_{\pi}(\xi) \bigotimes \phi_{\pi}(\xi')$$

$$\langle 0 | \bar{\psi}(z_{-}) \gamma_{\mu} \gamma_{5} W[z_{-}, -z_{-}] \psi(-z_{-}) | \pi(\mathbf{p}) \rangle = i p_{\mu} f_{\pi} \int d\xi \, e^{i p_{+} z_{-}} \, \phi_{\pi}(\xi)$$

$$\langle \xi^n \rangle \equiv - \int d\xi \; \xi^n \phi_\pi(\xi)$$

Physics of the electron-ion collider: The Collins-Soper kernel from the soft function

The collaboration

Anthony Francis (NYCU)

CJDL (NYCU)

Wayne Morris (NYCU)

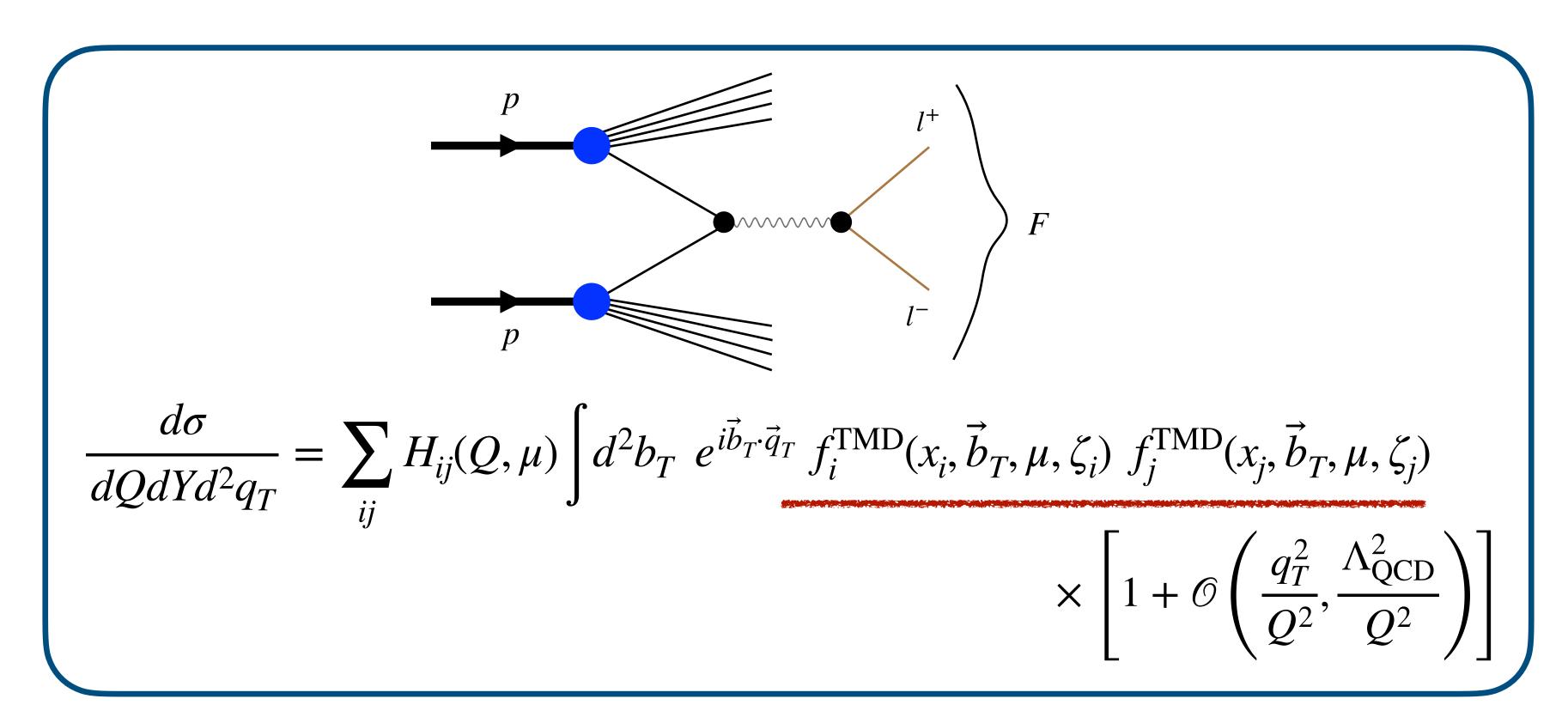
Yong Zhao (Argonne Nat'l Lab)

arXiv: 2312.04315. [hep-lat] (Lattice 2023 proc.)

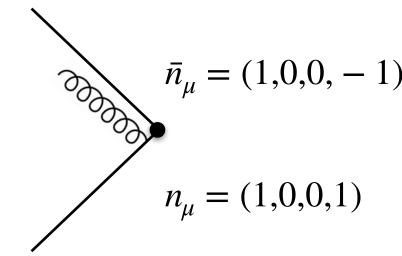
arXiv: 2412.12645 [hep-lat] (Lattice 2024 proc.)

& journal paper to appear soon

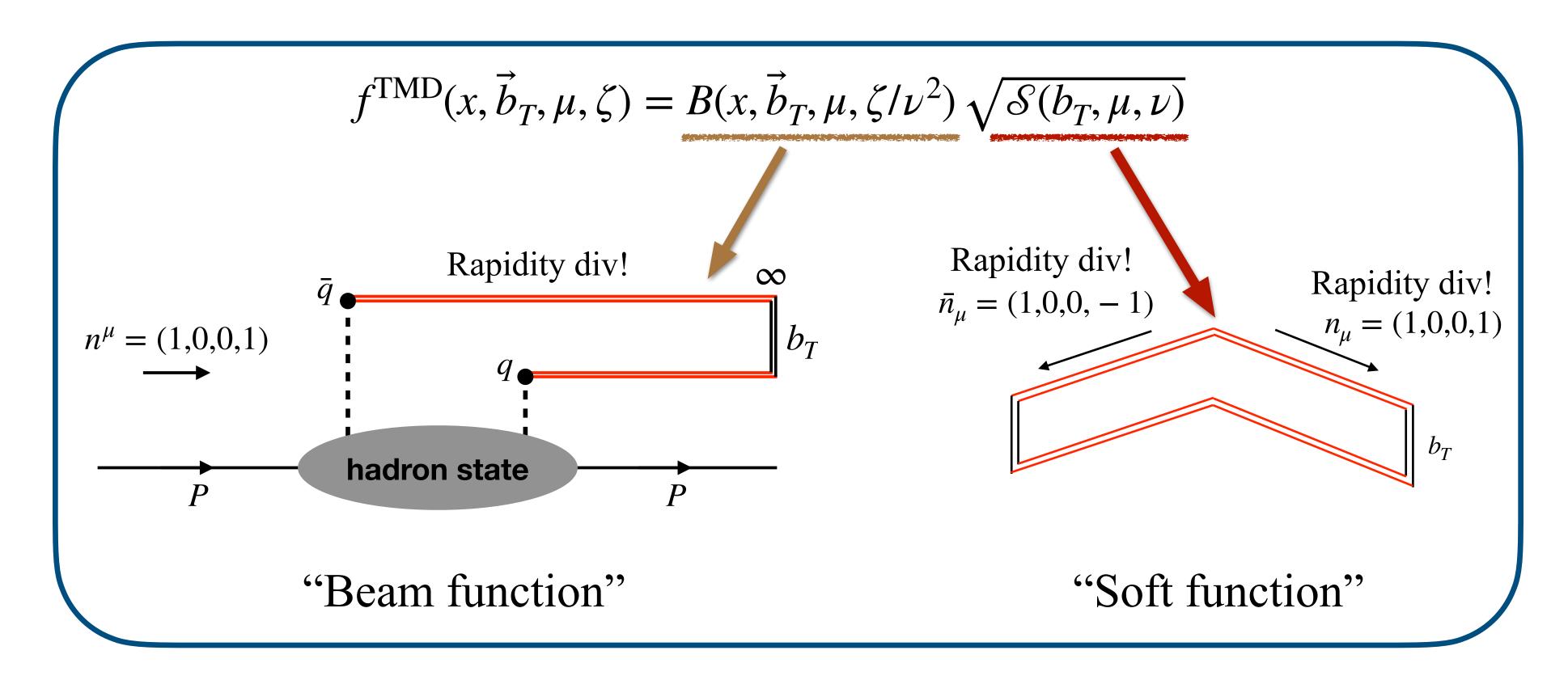
Drell-Yan factorisation and TMDPDF



 $\zeta_{i,j}$ from "rapidity divergence" and $\zeta_i \zeta_j = Q^4$



Drell-Yan factorisation and TMDPDF



And the "Collins-Super (CS) kernel" for evolution in ν (ζ)

 $\mathcal{S}(b_T, \mu, \nu) \Rightarrow \mathcal{S}_I(b_T, \mu), K(b_T, \mu) \Rightarrow \text{both are } universal$

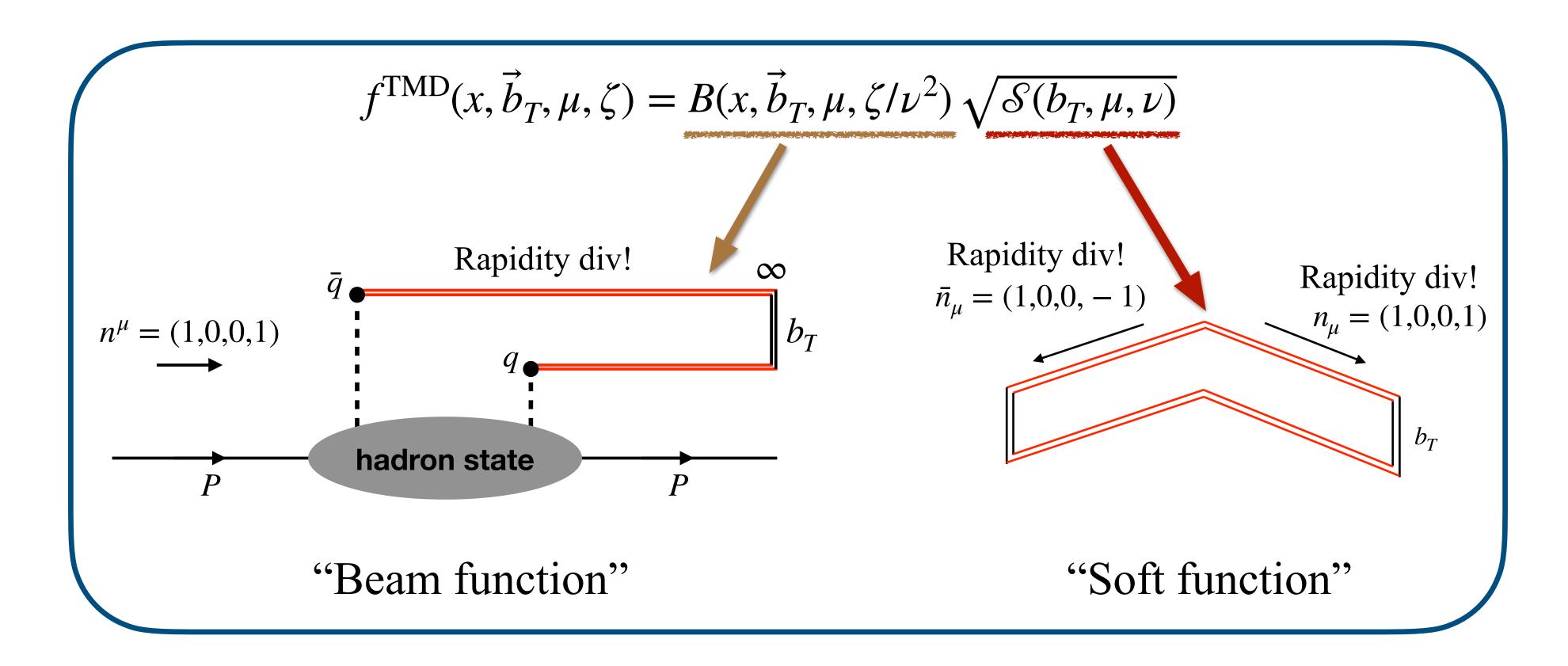
Relating quasi-TMDPDF to TMDPDF

M.A. Ebert, S.T. Schindler, I.W. Stewart, Y. Zhao, JHEP 04 (2022) 178

$$\underbrace{\tilde{f}^{\text{TMD}}(x, \vec{b}_T, \mu, P^z)}_{\text{pertub. theo.}} = \underbrace{C^{\text{TMD}}(\mu, x P^z)}_{\text{pertub. theo.}} \underbrace{g_S(b_T, \mu) \exp\left[\frac{1}{2}K(b_T, \mu)\log\frac{(2x P^z)^2}{\zeta}\right]}_{\text{pertub. theo.}} \\
\times \underbrace{f^{\text{TMD}}(x, \vec{b}_T, \mu, \zeta)}_{\text{pertub. theo.}} + \mathcal{O}\left(\frac{q_T^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{P_z^2}\right)$$

- ullet To obtain f^{TMD} , one computes \tilde{f}^{TMD} with lattice QCD
- Also need Collins-Soper kernel, $K(b_T, \mu)$, and the soft function, $g_S(b_T, \mu) \sim \sqrt{S_I(b_T, \mu)}$ \Rightarrow Both non-perturbative and universal

A reminder....

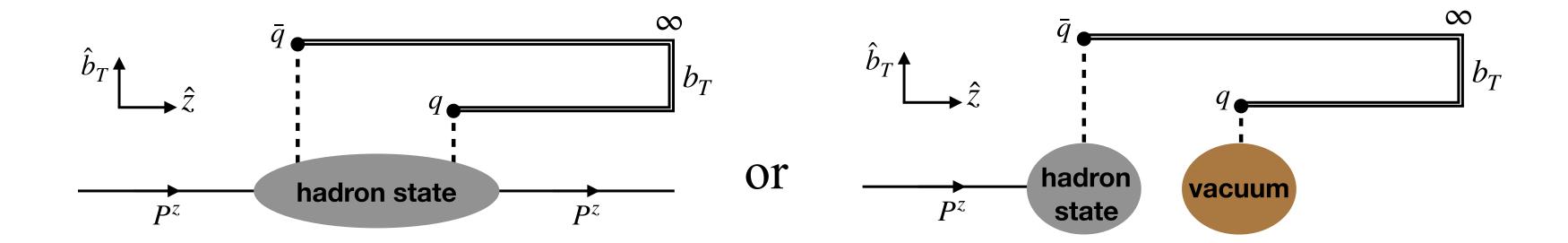


Rapidity divergence appears in both the beam and the soft functions

CS kernel from the beam function

M. Ebert, I. Stewart, Y. Zhao, Phys. Rev., **D99** (2019) 034505

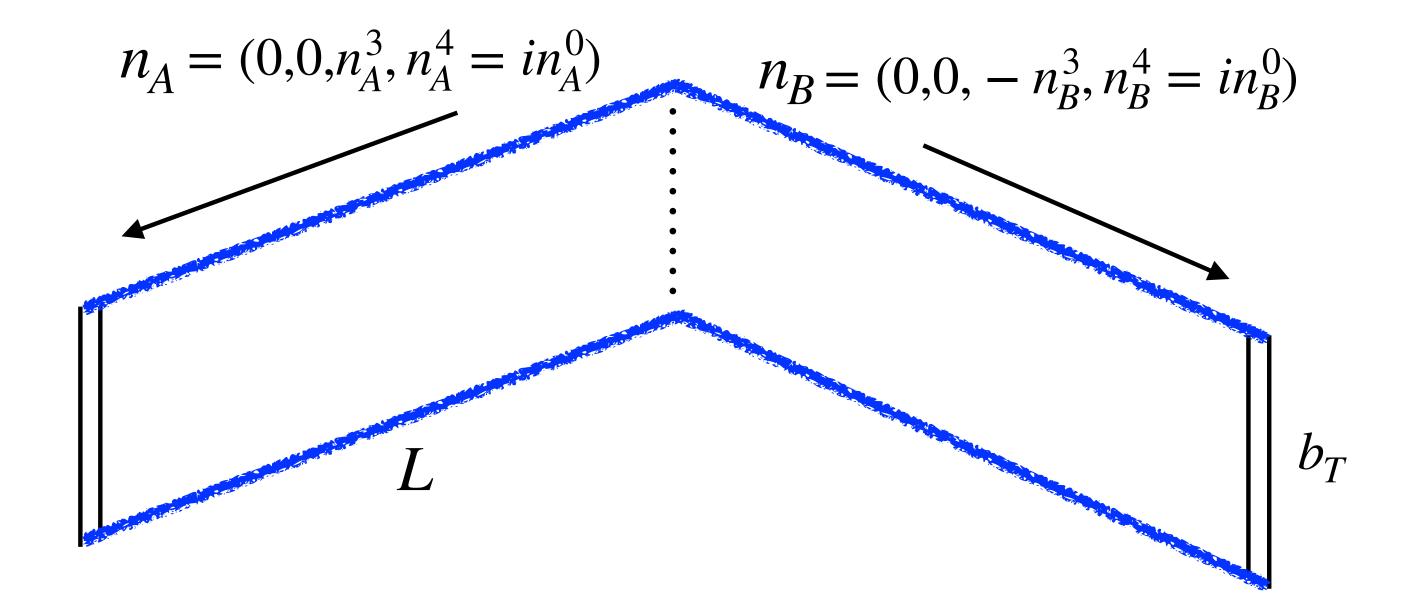
• Compute qTMDPDF (\tilde{f}^{TMD}) or qTMDWF ($\tilde{\Phi}^{\text{TMD}}$)



ullet Determine the CS kernel from the ratio (at large P^z)

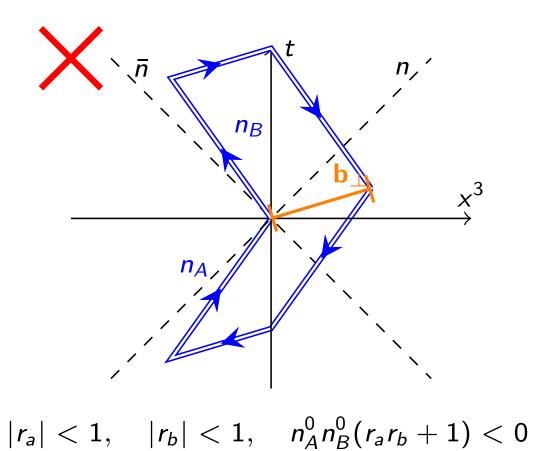
$$K(\mu, b_T) = \frac{1}{\log(P_1^z/P_2^z)} \log \frac{C^{\text{TMD}}(\mu, x P_2^z) \tilde{\Phi}^{\text{TMD}}(x, \vec{b}_T, \mu, P_1^z)}{C^{\text{TMD}}(\mu, x P_1^z) \tilde{\Phi}^{\text{TMD}}(x, \vec{b}_T, \mu, P_2^z)}$$
perturbative

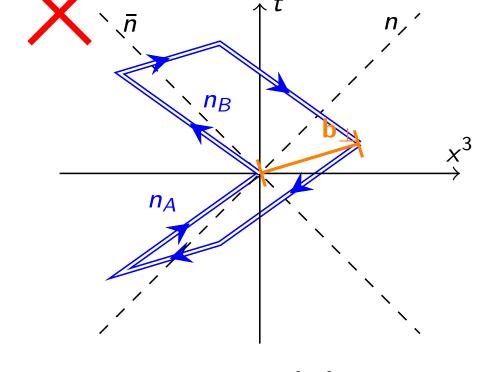
Our approach: CS kernel from the soft function

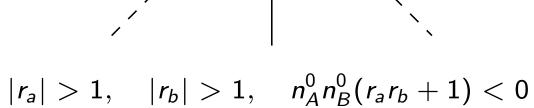


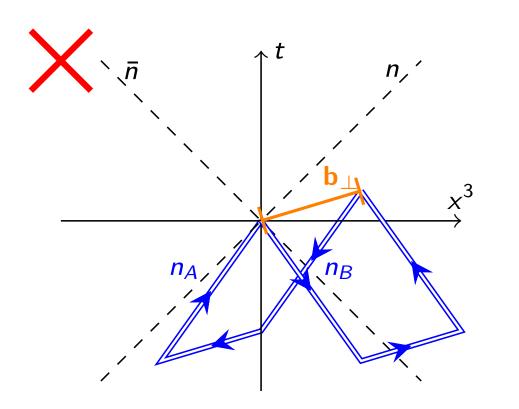
Basic building block: complex-directional Wilson loops in Euclidean space

CS kernel from the soft function

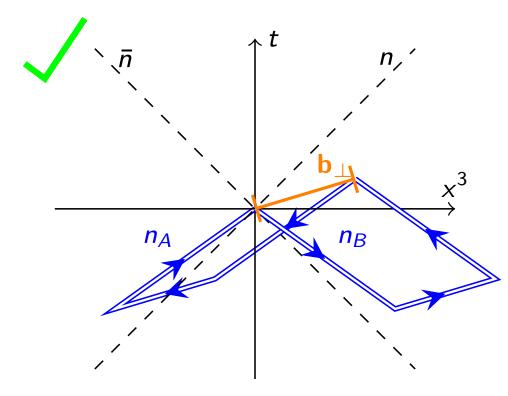








$$|r_a| < 1, \quad |r_b| < 1, \quad n_A^0 n_B^0 (r_a r_b + 1) > 0$$



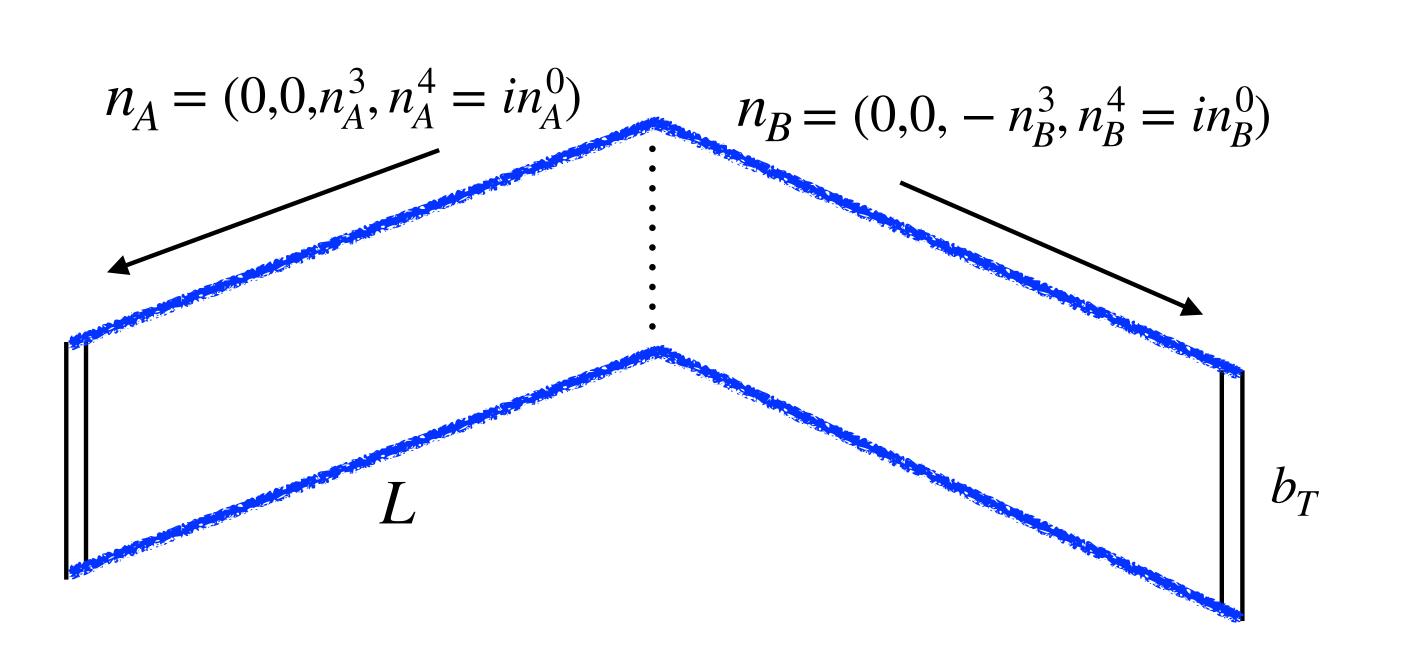
$$|r_a| > 1, \quad |r_b| > 1, \quad n_A^0 n_B^0 (r_a r_b + 1) > 0$$

- Does not work in "SIDIS-type"
- Only feasible in space-like regime
 - ⇒ Minkowski = Euclidean
 - ⇒ Gives Collins's soft function

$$S_C(b_T, \mu, y_A, y_B) = S_I(b_T, \mu) e^{2K(b_T, \mu) \times (y_A - y_B)}$$

$$r_{a,b} \equiv \frac{n_{A,B}^3}{n_{A,B}^0} = \frac{1 + e^{\pm y_{A,B}}}{1 - e^{\pm y_{A,B}}}$$

The double ratio method



• Choose
$$r_a = \frac{n_A^3}{n_A^0} = \frac{n_B^3}{n_B^0} = r_b = r$$

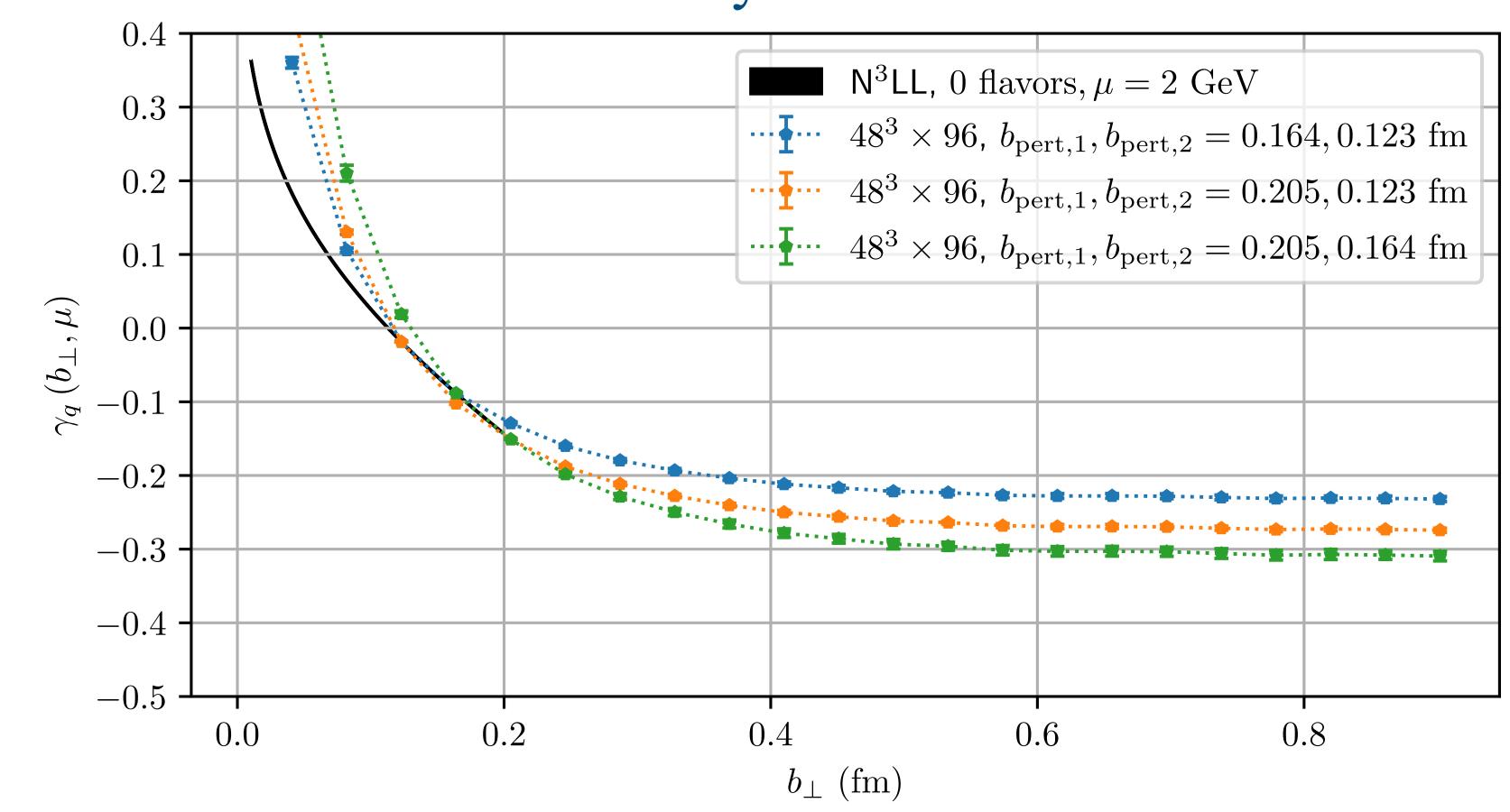
$$\Rightarrow$$
 the Wilson loop = $W(b_T, r, L)$

$$\bullet \ R_{\text{single}}(b_1, b_2, r) = \lim_{L \to \infty} \frac{W(b_1, r, L)}{W(b_2, r, L)}$$

•
$$R_{\text{double}}(b_1, b_2, r_1, r_2) = \frac{R_{\text{single}}(b_1, b_2, r_1)}{R_{\text{single}}(b_1, b_2, r_2)}$$

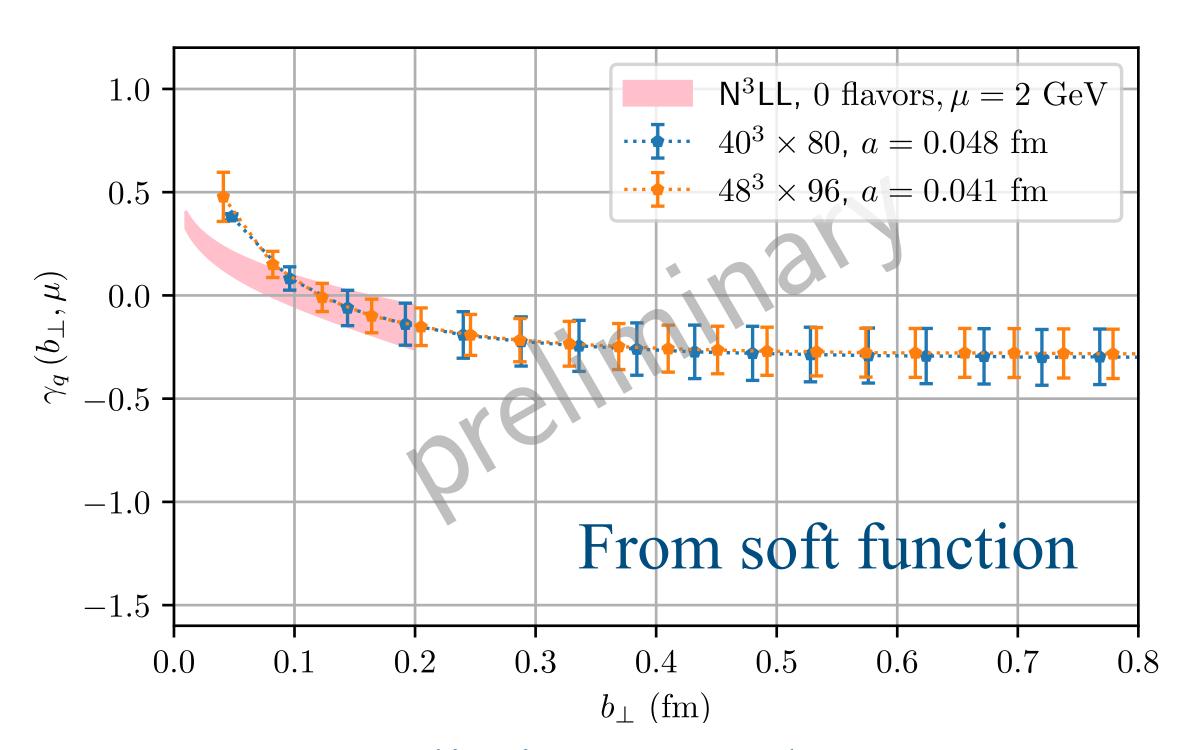
$$\gamma_{q}(b_{1}, \mu) = \gamma_{q}(b_{2}, \mu) + \frac{\log \left[R_{\text{double}}(b_{1}, b_{2}, r_{1}, r_{2}, \mu) \right]}{2 \log \left(\frac{r_{1}+1}{r_{1}-1} / \frac{r_{2}+1}{r_{2}-1} \right)} \Rightarrow \text{note: rapidity renormalisation!} \Rightarrow \text{"match to a perturbative result"}$$

Preliminary numerical results

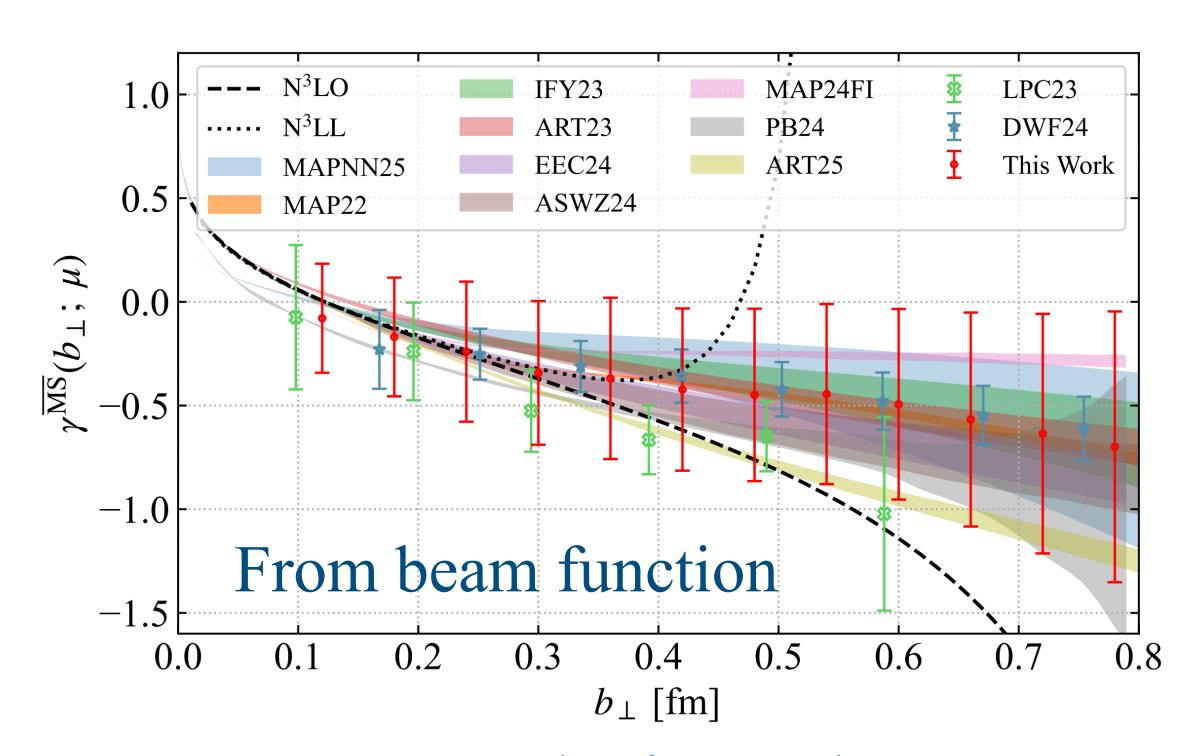


CS kernel extracted at different $b_{\mathrm{pert},1}, b_{\mathrm{pert},2}$ within matching window

Preliminary numerical results



Our preliminary result (systematics still overestimated)



Recent results from other groups (figure from arXiv: 2504.04625)

Note: argument for the behaviour $\gamma_q(b,\mu)$ at large b by Collins and Rogers, PRD 91 (2015) 074020

The Hamiltonian formalism

The Hamiltonian formalism: the 1970's

PHYSICAL REVIEW D

VOLUME 19, NUMBER 2 15 JANUARY 1979

Quantum electrodynamics on a lattice: A Hamiltonian variational approach to the physics of the weak-coupling region

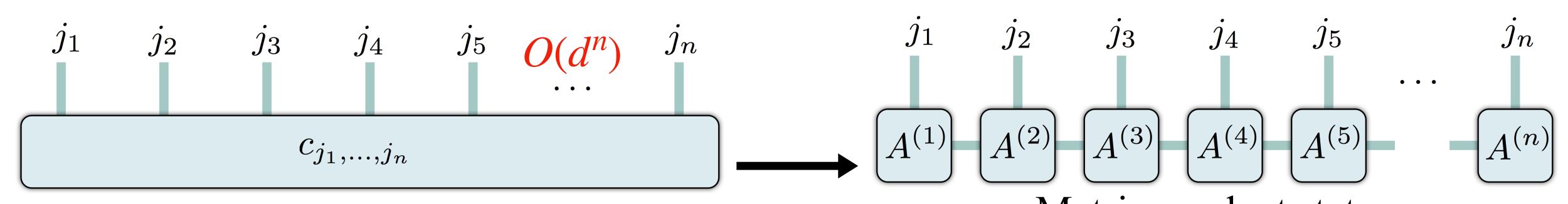
Sidney D. Drell, Helen R. Quinn, Benjamin Svetitsky, and Marvin Weinstein Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 9 June 1978)

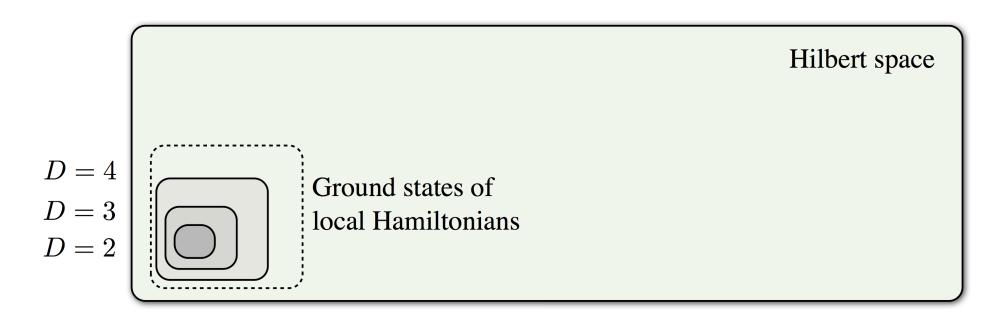
We develop and apply a Hamiltonian variational approach to the study of quantum electrodynamics formulated on a spatial lattice in both 2+1 and 3+1 dimensions. Two lattice versions of QED are considered: a noncompact version which reproduces the physics of continuum QED, and a compact version constructed in correspondence with lattice formulations of non-Abelian theories. Our focus is on photon dynamics with charged particles treated in the static limit. We are especially interested in the nonperturbative aspects of the solutions in the weak-coupling region in order to clarify and establish aspects of confinement. In particular we find, in accord with Polyakov, that the compact QED leads to linear confinement for any nonvanishing coupling, no matter how small, in 2+1 dimensions, but that a phase transition to an unconfined phase for sufficiently weak couplings occurs in 3+1 dimensions. We identify and describe the causes of confinement.

Modern Hamiltonian formalism: tensor networks

Consider a 1-d system of *n* sites, with local Hilbert space of *d* dimensions on each site

$$|\psi\rangle = \sum_{j_1,...,j_n=1}^d c_{j_1,...,j_n} |j_1,...,j_n\rangle = \sum_{j_1,...,j_n=1}^d c_{j_1,...,j_n} |j_1\rangle \otimes \cdots \otimes |j_n\rangle$$





Matrix product state

 $O(ndD^2)$

D is the "bond dimension"

The collaboration

Mari Carmen Banuls (MPQ Munich)

Krzysztof Cichy (Adam Mikiewicz U., Poznań)

CJDL (NYCU)

Manuel Schneider (NYCU)

arXiv: 2409.16996 [hep-lat] (Lattice 2024 proc.)

arXiv: 2504.07508 [hep-lat] (under review)

& work in progress

The massive Schwinger model Gauss's law and temporal gauge

• QED in 1+1 dimensions, $\mathcal{L} = \bar{\psi}[\gamma_{\mu}(i\partial^{\mu} - gA^{\mu}) - m]\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j_{\mu}A^{\mu}$

• Work in temporal gauge, $A_0 = 0$, with Gauss's law \Rightarrow remove gauge field d.o.f.

The massive Schwinger model Canonical quantisation: gauge link and Gauss's law

• Canonical quantisation $(L_m = E(na)/g) \Rightarrow [\theta_n, L_m] = i\delta_{n,m} \Rightarrow e^{-i\theta_n} L_n e^{i\theta_n} = L_n + 1$ If $L_n | l \rangle = l | l \rangle \Rightarrow e^{\pm i\theta_n} | l \rangle = | l \pm 1 \rangle$

• Gauss's law
$$\partial_1 E = g\psi^{\dagger}\psi + \rho$$

⇒ Lattice version $L_n - L_{n-1} = Q_n \equiv \phi_n^{\dagger}\phi_n - \frac{1}{2}[1 - (-1)^n] + q_n$

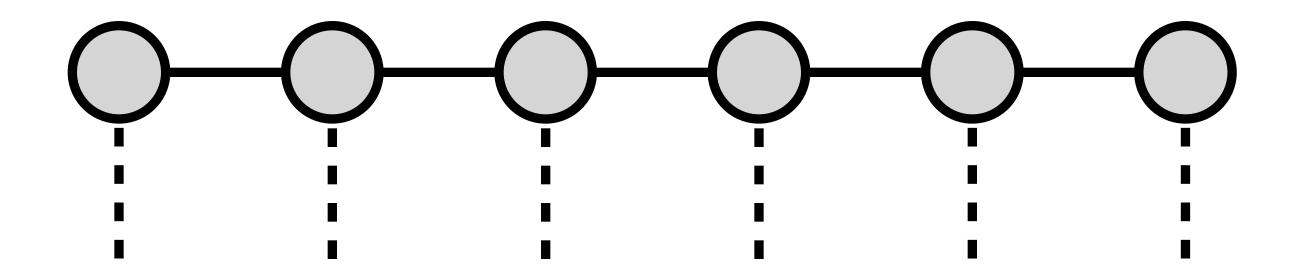
Fermion

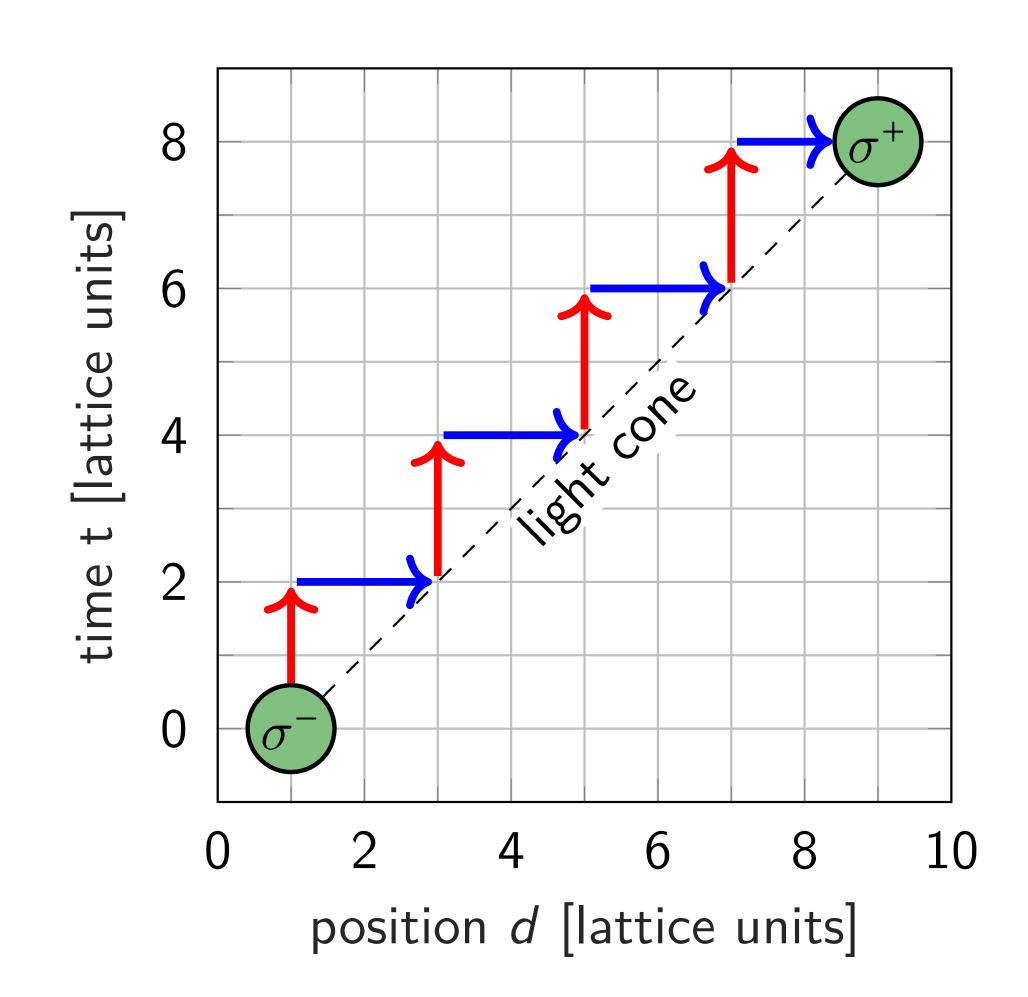
Vacuum

Static charge at site n

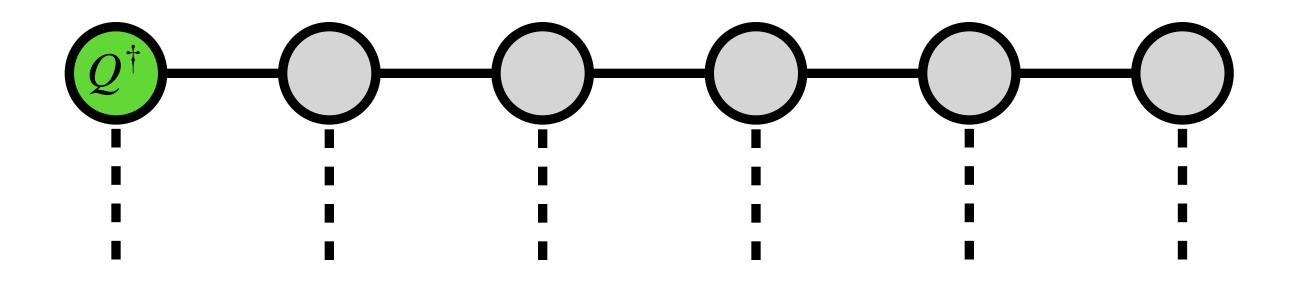
• Then use the Jordan-Wigner transformation to turn it into a spin model

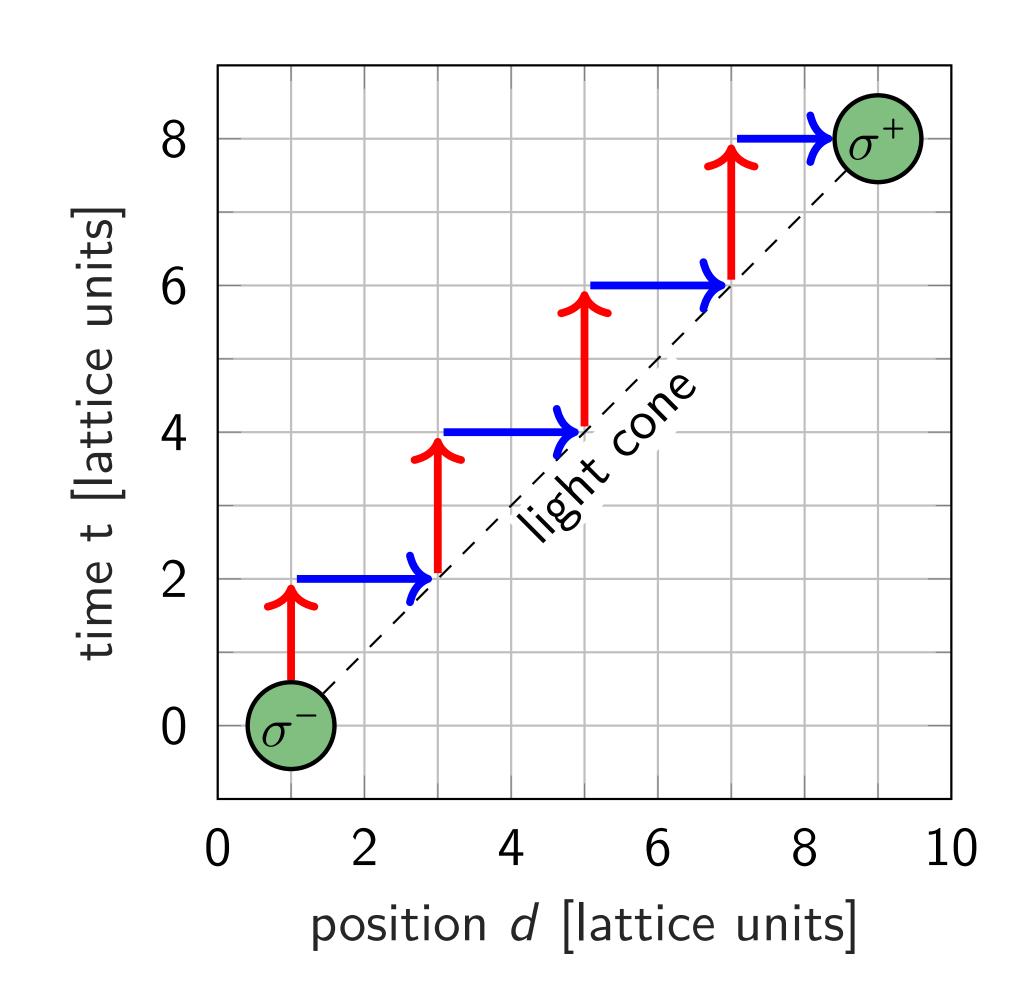
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



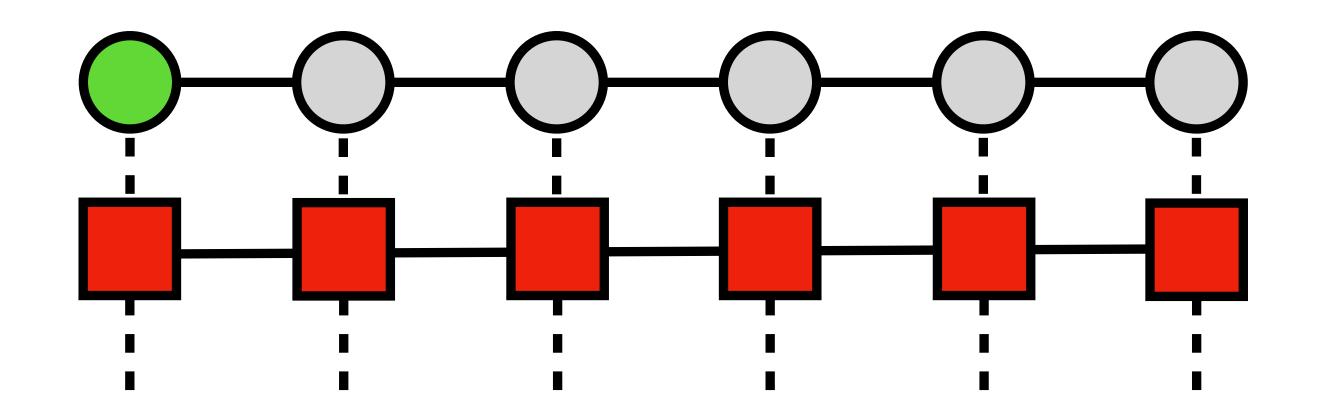


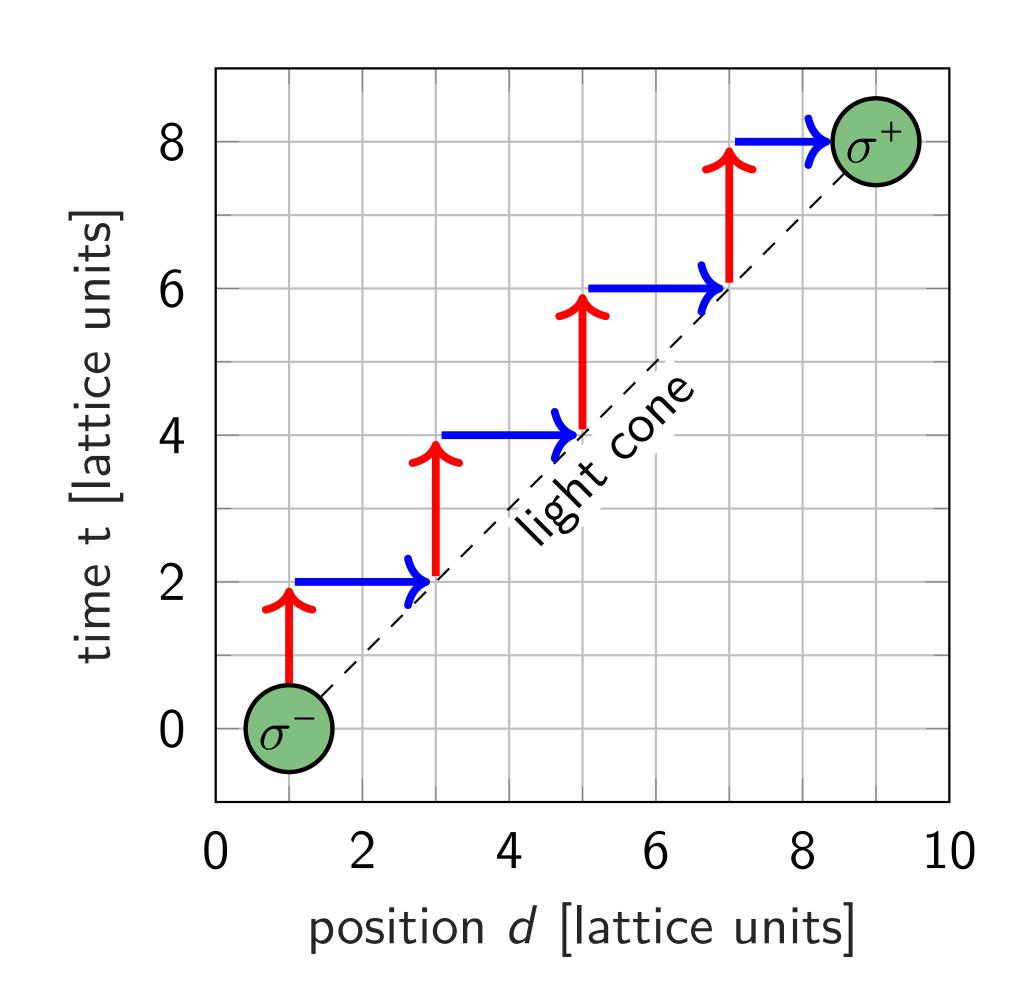
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



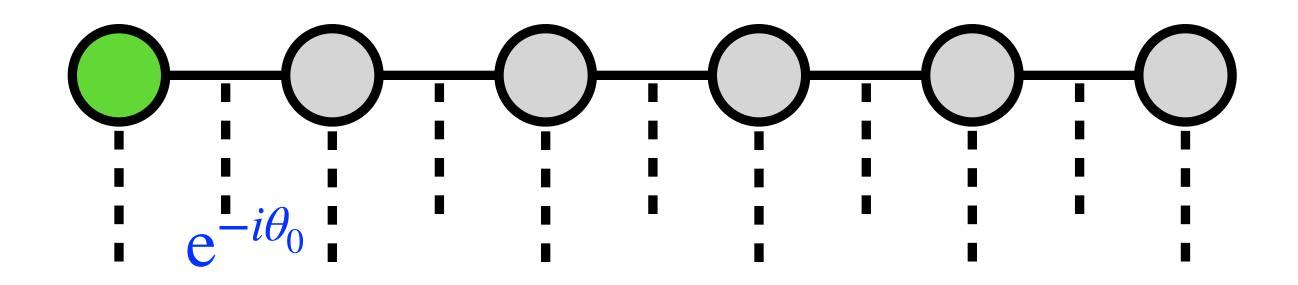


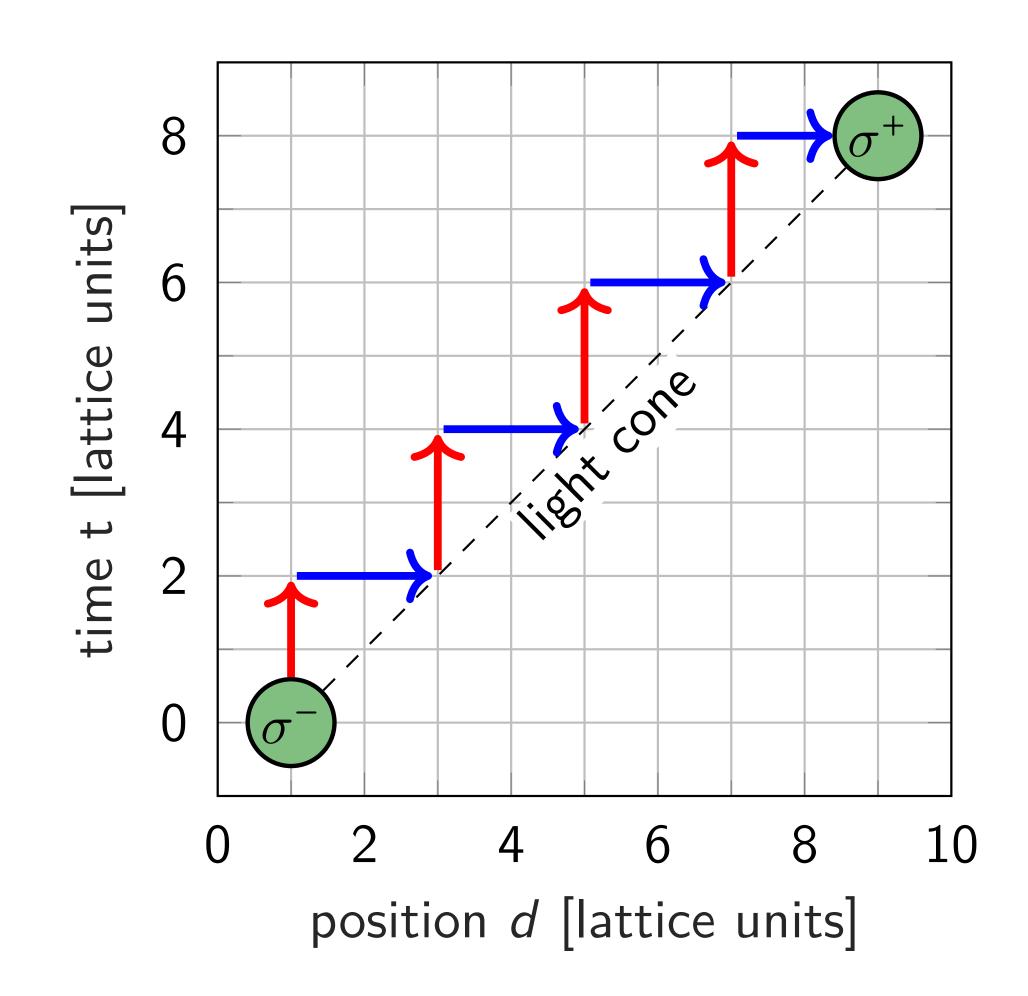
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



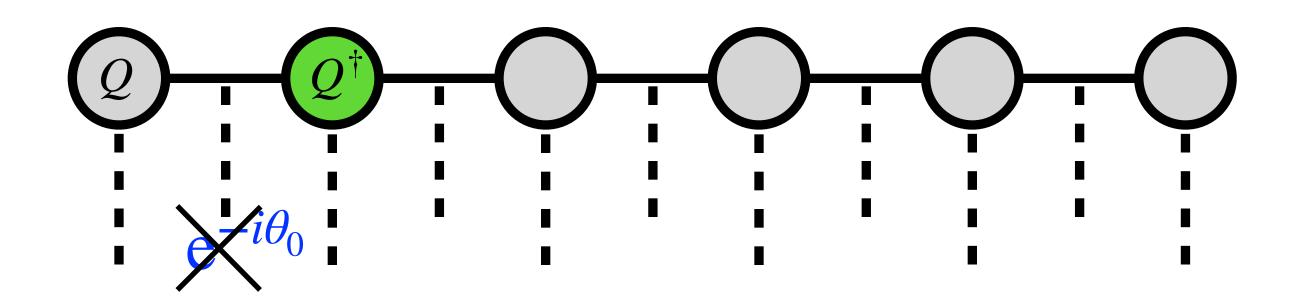


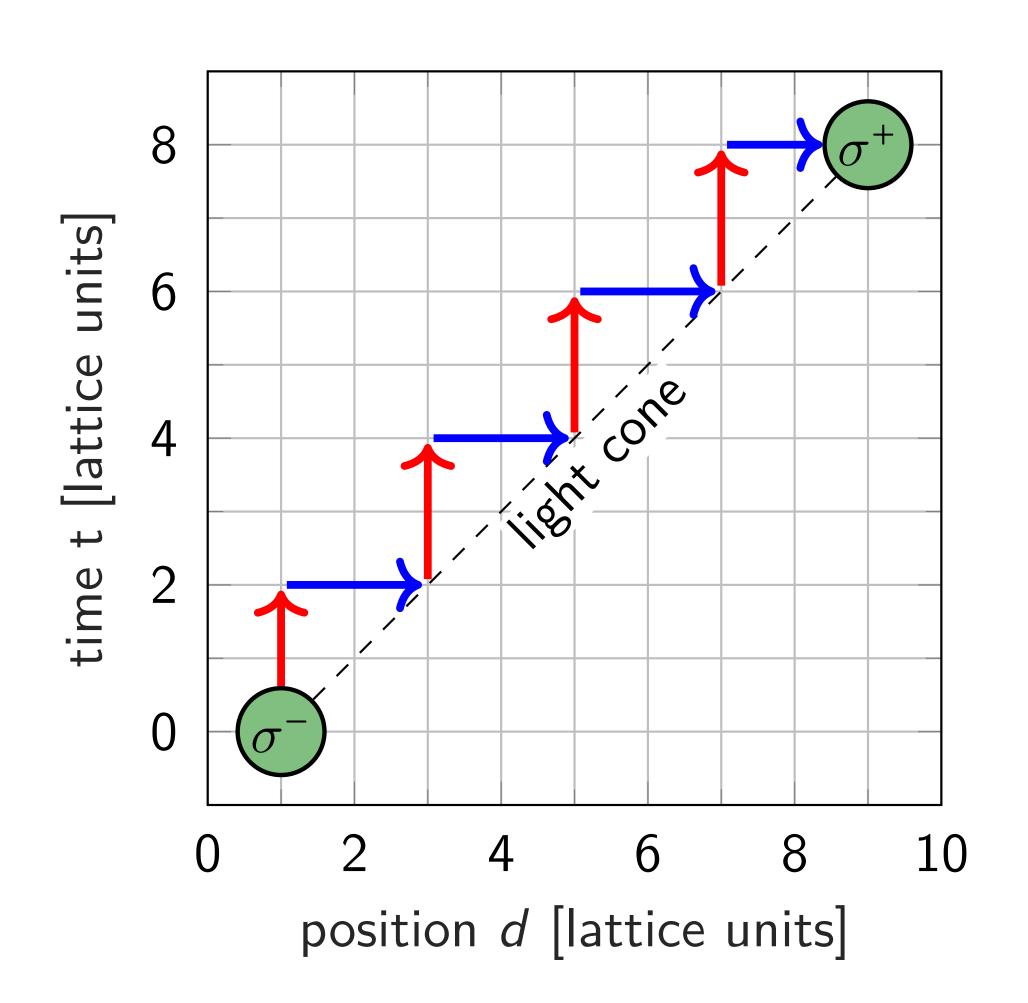
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



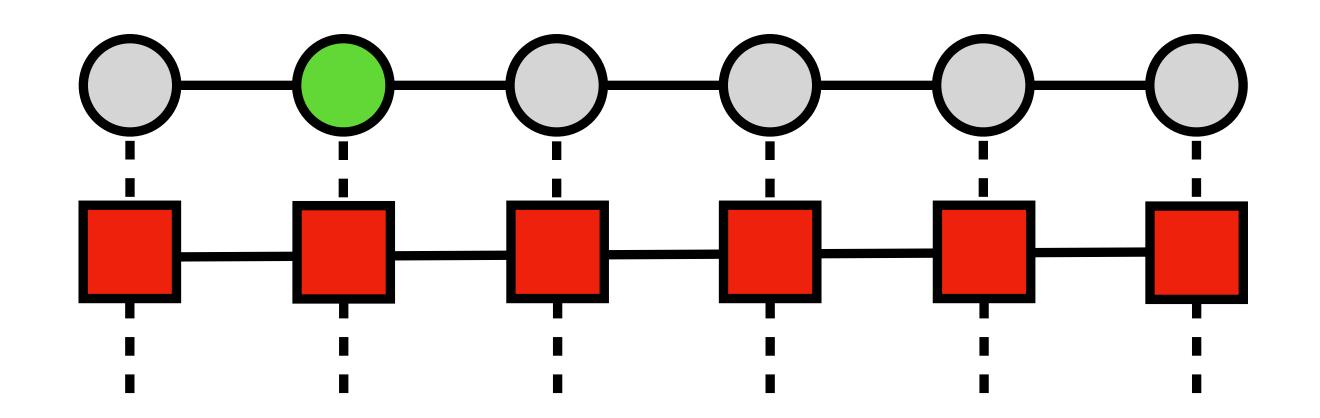


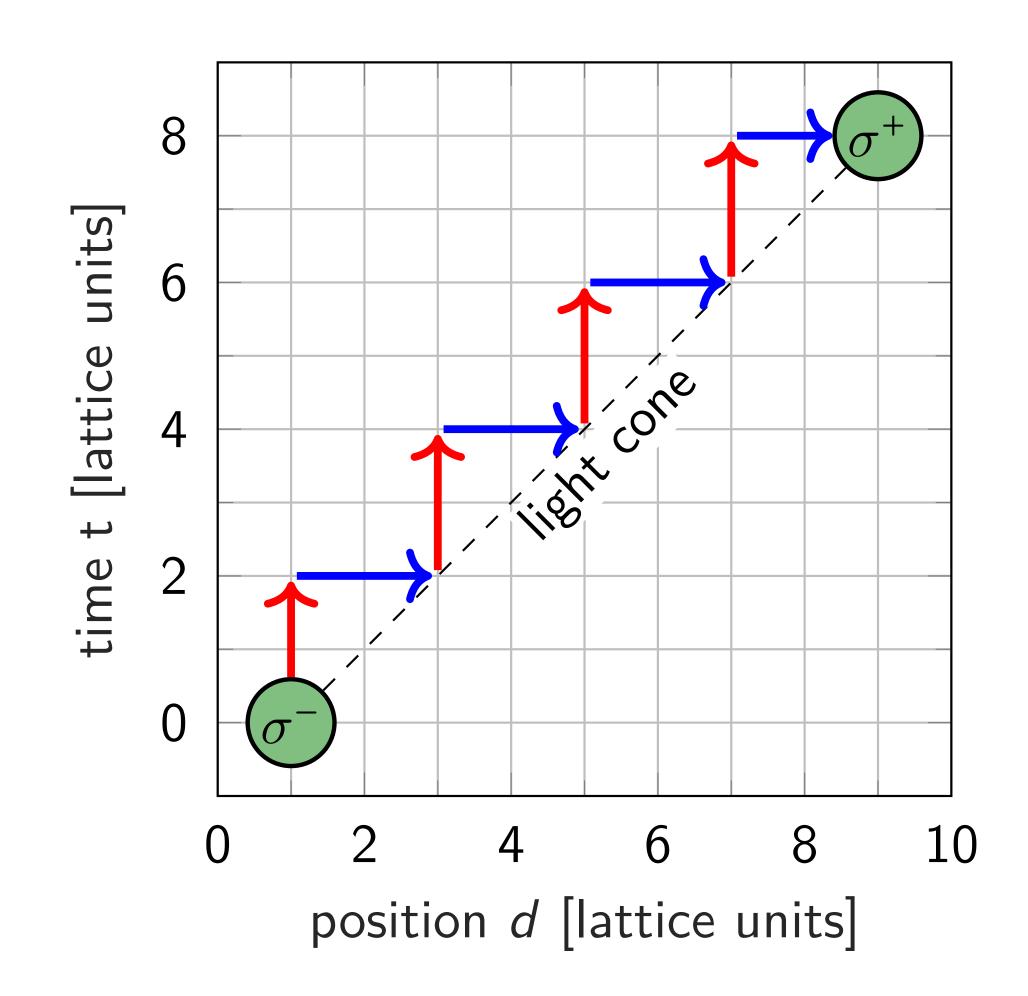
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



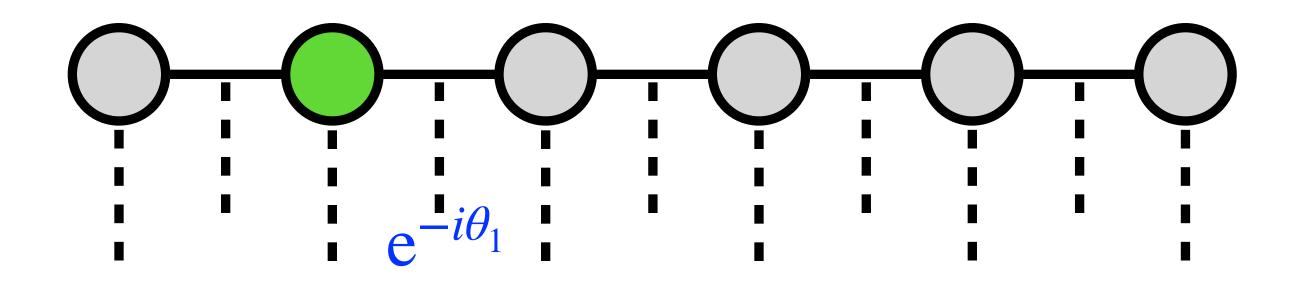


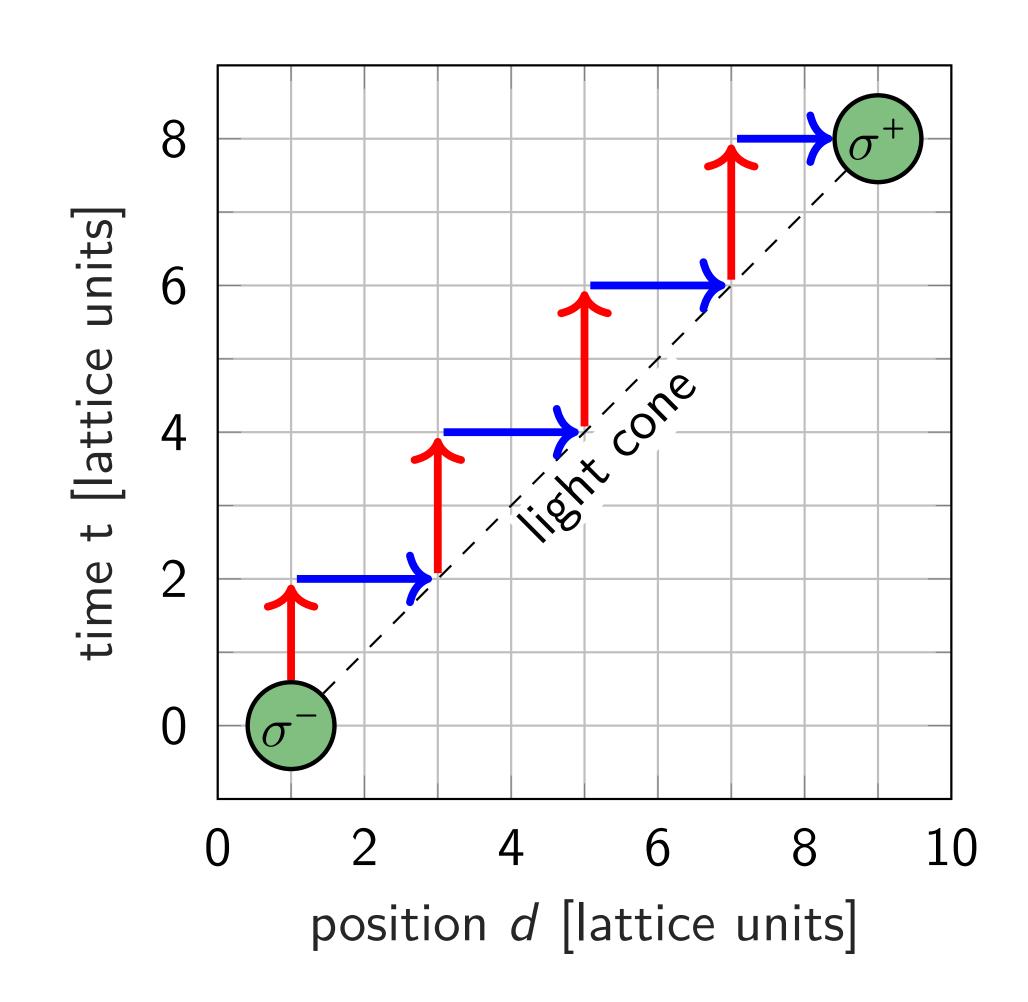
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



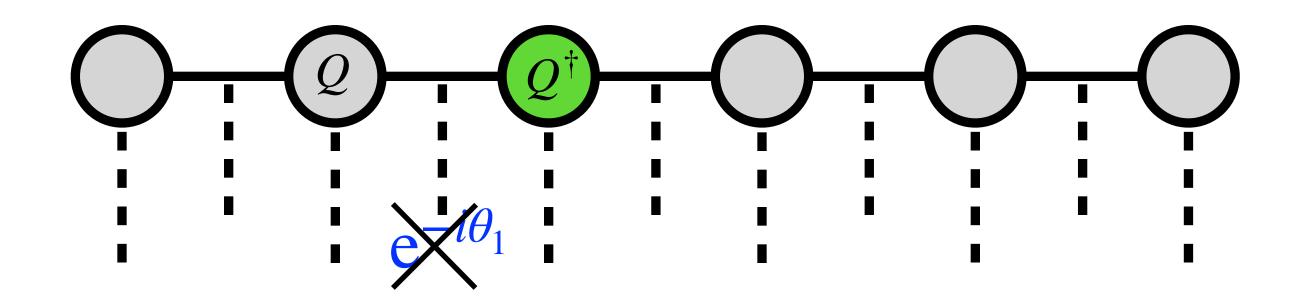


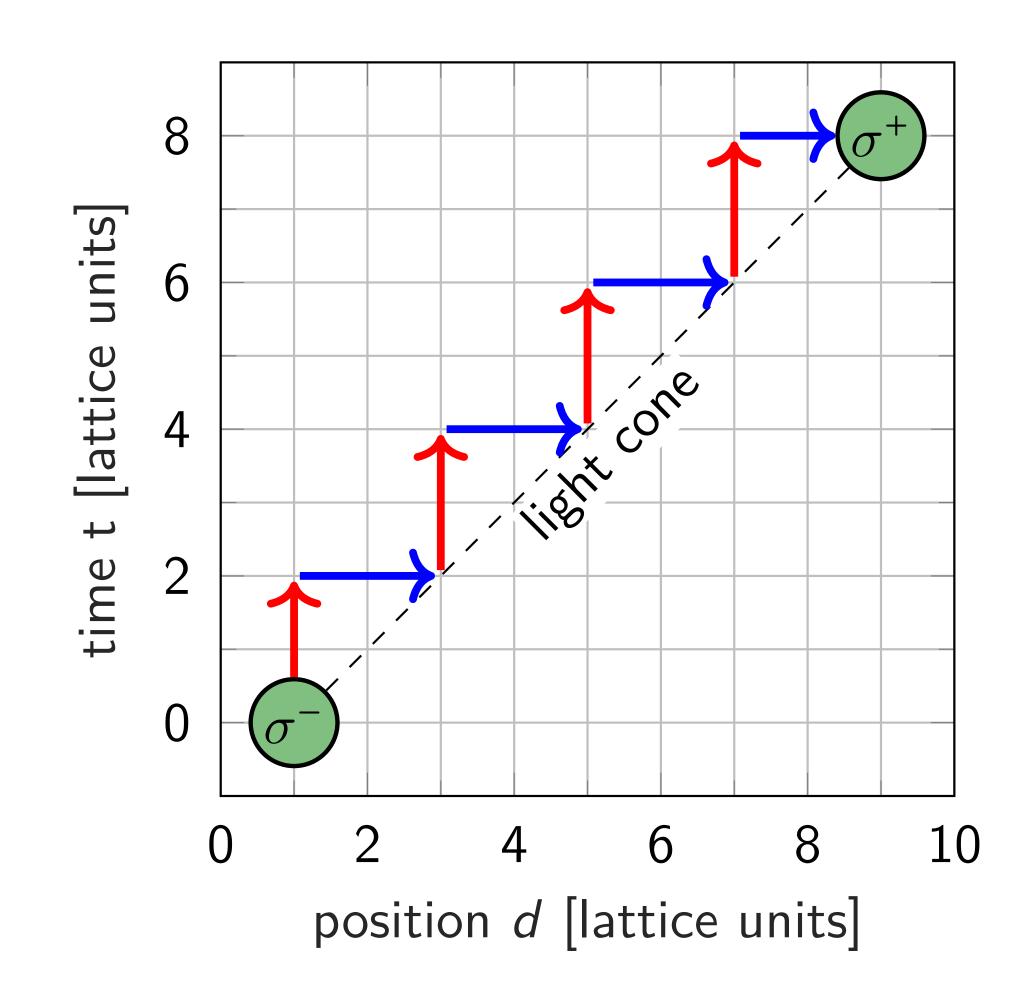
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



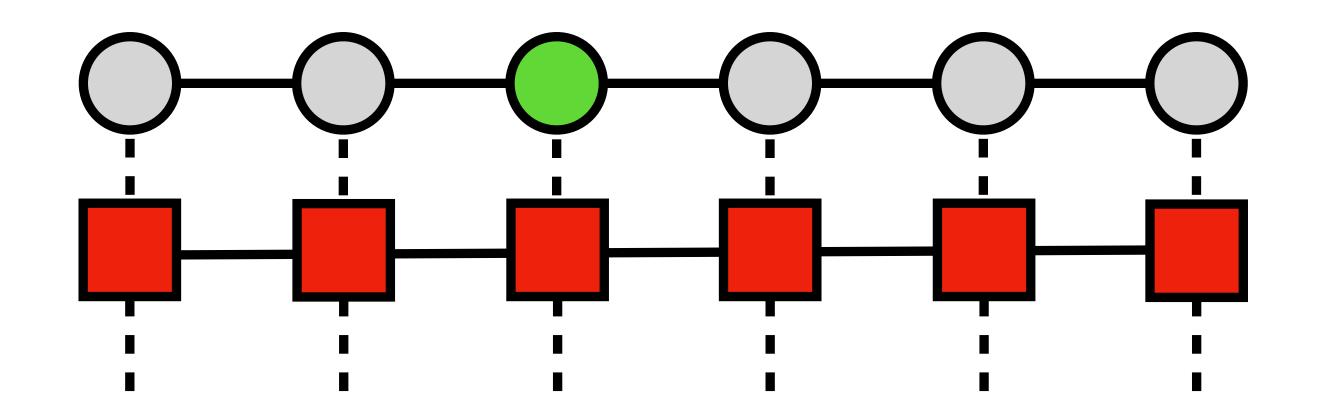


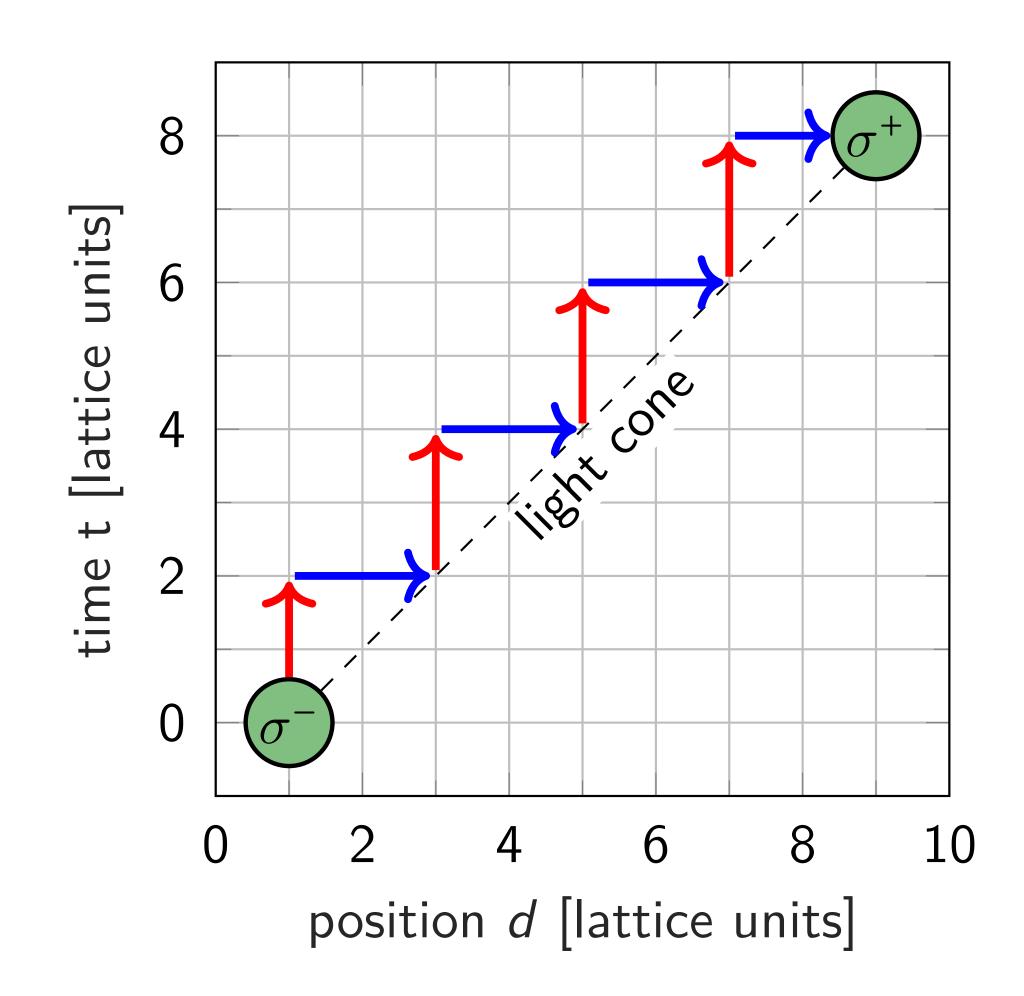
- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)



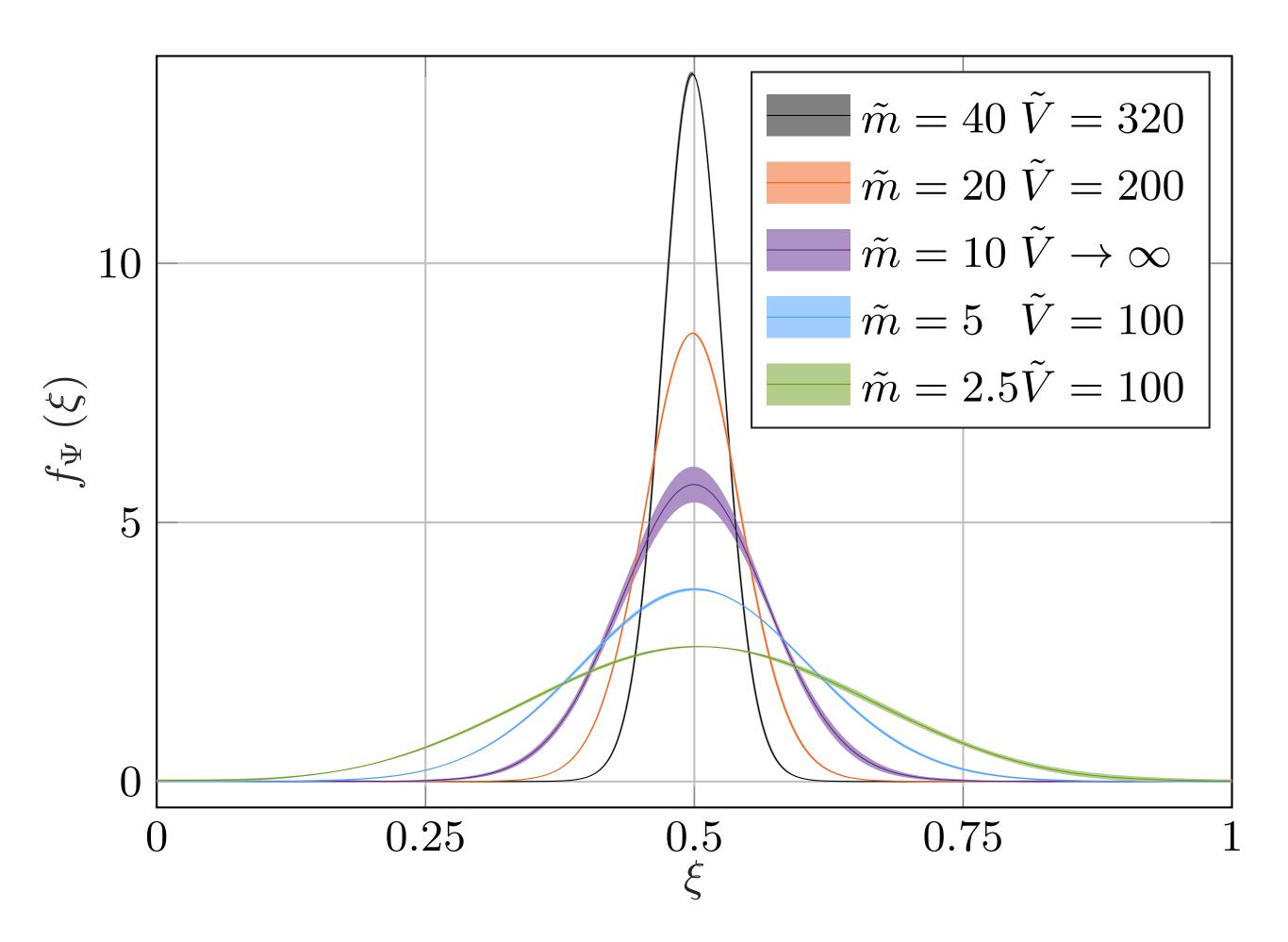


- Temporal direction: $A_0 = 0$, Heisenberg pic
 - ⇒ Time evolution of the hadronic state
- Spatial direction: $e^{iA_1(na)} = e^{i\theta_n}$ changing **E**
 - ⇒ Moving static charge (Gauss' law constraint)

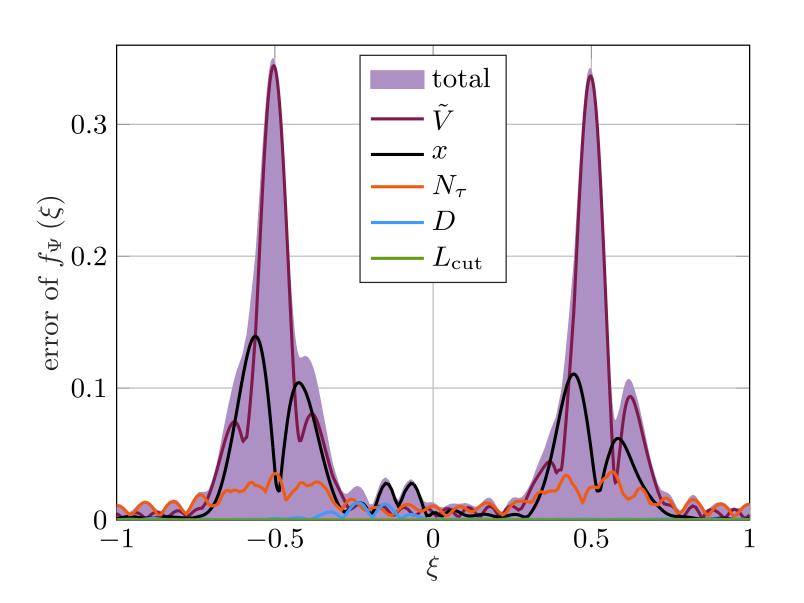




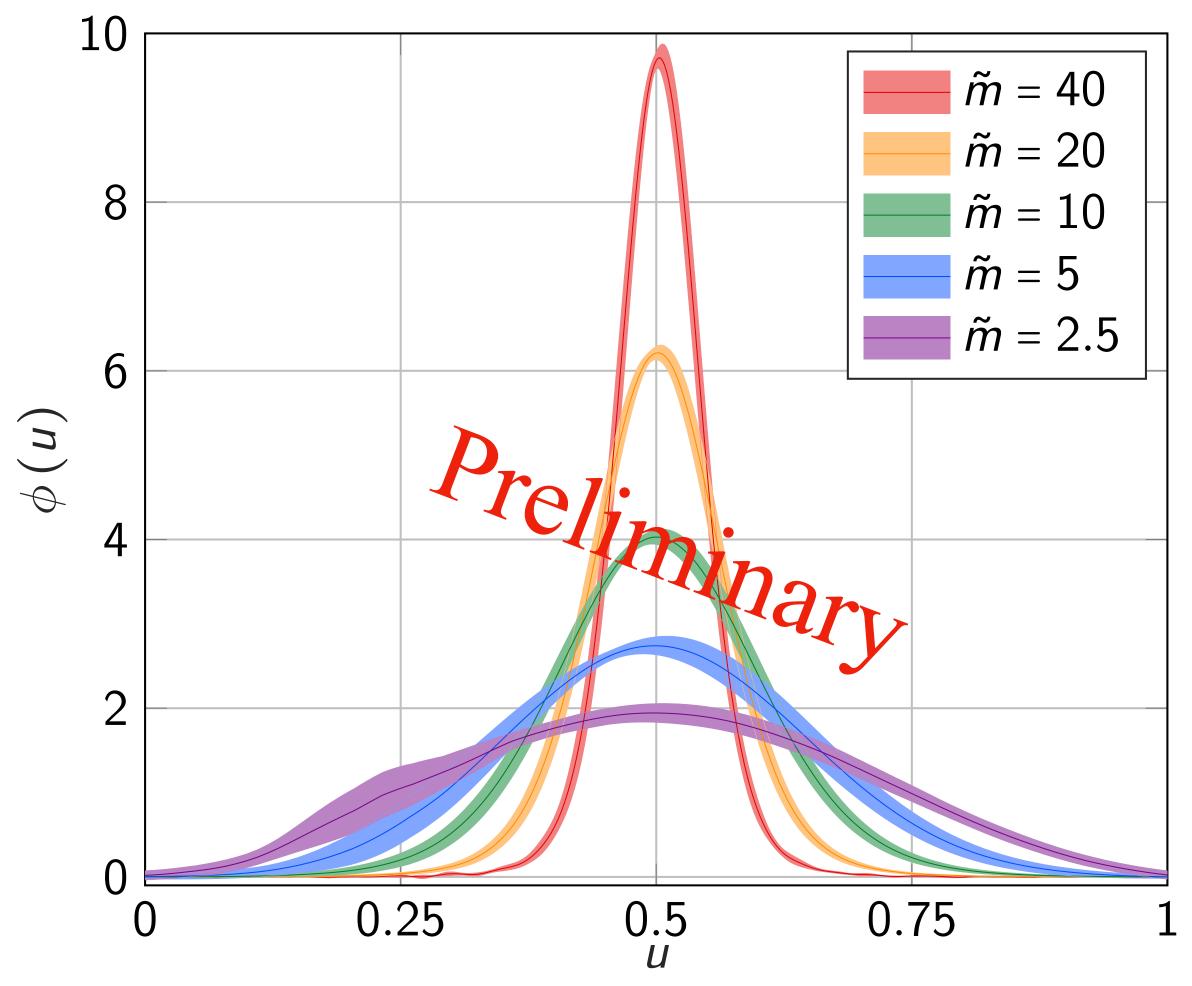
Vector meson PDF



- \bullet Results obtained at $a \to 0$
- All systematic errors under control



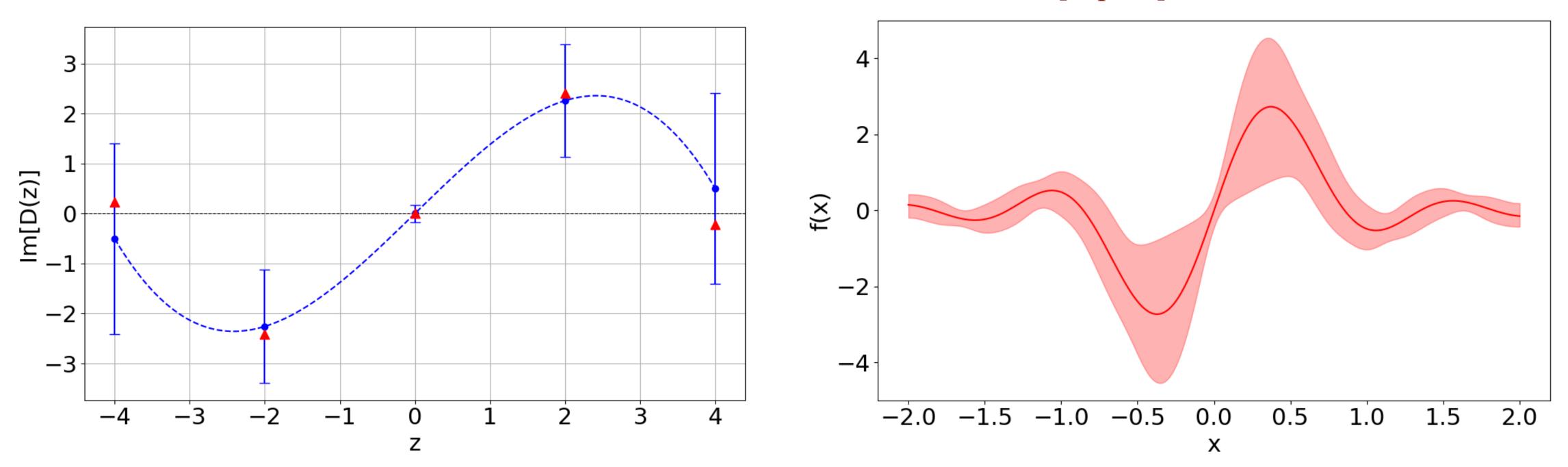
Meson LCDA



• Results obtained at $a \to 0$, $N \to \infty$

Implementation of our method on a quantum computer

Our approach is applicable for quantum simulations



But the error is still large (~100%!), as expected

Concluding remarks

• A small but active lattice-PDF community in Taiwan

• We have our own original ideas and will implement these ideas

Projects highly relevant to the EIC era