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e Introduction

* Theoretical presentation of of reaction channels in heavy ion collisions at the
around Coulomb barrier energies.

* Nature of hindrance in complete fusion of the massive nuclei in heavy ion
collisions. Problems of the synthesis of superheavy elements heavier Z=118.

* Application of the new mechanism of the incomplete fusion to describe the
measured data.

Conclusions.



Two different mechanisms of the complete fusion.

Fusion mechanism as confluence of liquid drops
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Two conceptions of the complete fusion

N.V. Antonenko, et al. PRC 51, (1995) 2635. (Dinuclear system model)

G.G. Adamian et al. NPA 678 (2000) 24.
G. Giardina et al. EPJA 8, (2000) 205.
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Main reaction channels of the heavy ion collisions
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Main reaction channels of the heavy ion collisions
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Association of the different mechanisms of the reaction channels with

potential energy surface of the dinuclear system formed at capture.
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Quasifission and fusion-fission in reactions with massive nuclei
Comparison of reactions leading to the Z =120 element
A.K. Nasirov, et al. Phys. Rev. C 79, 024606 (2009).
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Differences in the cross sections of the evaporation residues of the same superheavy elements, obtained
for cold and hot fusion reactions, shows the dependence of the fission barrier on neutron numbers.

Fission barrier of the superheavy elements
as a function of their neutron numbers.
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Differences in the cross sections of the evaporation residues of the same superheavy elements, obtained
for cold and hot fusion reactions, shows the dependence of the fission barrier on neutron numbers.

PHYSICAL REVIEW C 110, 014618 (2024)

A.K.N., A. R. Yusupov, and B. M. Kayumov. Small cross section of
the synthesis of darmstadtium in the 3Ca+232Th reaction.
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NASIROV, YUSUPOV, AND KAYUMOV

PHYSICAL REVIEW C 110, 014618 (2024)

E.\(MeV)
80 35 40 45 S0 55 60 65 70 7S5
101 3 48Ca+232Th R 3n
: ——  4n
- an
3n Exp.[14] |3

4n Exp.[14] |
4n Exp.[15] |]

5n Exp.[15]

E. .. (MeV)

Neutron number

145 150 155 160 165 170 175 180 185 190
Ds (Z=110) :
255 260 265 270 275 280 285 290 295 300

Mass number

12



Udr(MeV)
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Influence of the rotational energy of the dinuclear
system on the nucleon transfer process.
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Reasons causing a difference in the synthesis of the superheavy elements
in the cold and hot complete fusion channels.

g 10 -~ " ] Fission products
5 2 A Cold fusion Heated
'§ 102'_ = Hot fusion ) . compound
; . A Fusion nucleus ,
[ r _

S 10l . i ; I
8 | i g . 5
2 0 % o )
4 10 3 o 3
s " ¥ Qua5|f|55|on \
®10"E
o : 3
g | A : Evaporation residues

2 | |
L 10 1 i 1 § 1 § 1 1 n 1 i 1

106 108 110 112 114 116 118
Charge number of element, Z Bqf— Bfus Bfis—Bn
Pen~e  Tons Weury~e~ ToN
0—¢, e TTTTEsl Pcy (cold fusion) < Pcy(hot fusion)
O R (E ) = E O cap (EC m. 9 8)'\ PCN (E DNS f)‘ surv (ECN , €) Wsurv (cold fusion) > Wy, v (hot fusion)

-~ -
N e ——-—

Bs,s (cold fusion) > Bf, s (hot fusion)
N.V. Antonenko, et al. PRC 51, (1995) 2635.

G.G. Adamian et al. NPA 678 (2000) 24. B (cold fusion) > By (hot fusion)
G. Giardina et al. EPJA 8, (2000) 205. 14



Role of the potential en
of the fusion probability.

FIG. 3. The potential energy surface of the DNS formed in the
reaction **Ca+ *?Th calculated for collisions with the value of the
orbital angular momentum ¢ = 0 and the orientation angles a; = 30°
and a; = 135°. The arrow (a) shows the input capture channel;
the arrow (b) shows the directions of the complete fusion by the
nucleon transfer from a light nucleus to a heavy one; arrows (c) and
(d) show the directions of the DNS decay into mass-asymmetric and
symmetric quasifission channels, respectively.

/2

O'fus(Ec.ln.~ l) =
0

ergy surface in calculation

40:"'|"'|"'|"'|"'|'"|"'|"'|'"|"'|"'|"'|"'|"':
3B 480 4+292Th E

L ()| ]

25 Bys(Z) () E
0BTV, L e 55 | 3

1 E
EC 0 ---- 20 |
> d 0 |7
0 P S:-: Ef’ﬁ. __

-5 :"\ Y -h\ Al.?il . _:

R AN R T ]

-10 A ’I \II\;{J,.‘!' 'I g
-15 IL Y Y 'E"; T
-20 ll"' \ | I E
25 [ T N T I

8 12

N L

Lo o by Ly ey 1 M B A
16 20 24 28 32 36 40 44 48 52 b5
Atomic number of a fragment
FIG. 4. The driving potential calculated for the **Ca + **Th re-
action for the orientation angles ap = 30” and @y = 45" of the axial
symmetry of the nuclei of DNS formed with the angular momentum
L =0,20,35,45,55 h. B;(Z) is an internal nuclear barrier that

causes hindrance to complete fusion for the charge asymmetry state
Z =20 of the DNS.

Ucap(£c.m.~ C,ar)Pen(Ecm., €, ar) Sin HT(J'[}'T

30 35 40 45 50 55 60 65 70 75
L L L B B B | T T T T T
3L 4
0 [fcar R T
10%F ;
o g
E L
- 10 E
{=] 3 ]
5 i I e
& 100;' / e T T 3
7] E L
@ E
<IN /v
o 107'f /o, 4
E - - - - Quasifission
2L Complete fusion ]
10 2 Fast fission
10-3_.|....|....|....|....|....|....|....|....|....|-
190 196 200 205 210 215 220 225 230 235
E. .. (MeV)

FIG. 7. Cross sections of the quasifission (dashed curve), com-
plete fusion (solid curve), and fast fission (dot-dashed curve)
calculated in this work for the reaction **Ca + ***Th.

Cross sections (mb)

10 12 14

Egy (MeV)
16 18 20 22 24 26 28 30 32 34

102;
10 r
1o°:g
107 r
10'22-
10'3:r
10"‘:r
10'5:r
10’5;
10’7;
10’9;
100

64Ni+208pb

- - - CAPTURE
—— FUSION

305 310 315

320 325 330 335 340 345
E,(MeV)

15



Calculation of the competition between complete fusion and
quasifission: P (Epns L)

Zmax
PCN (E;NS 1) = ZYZ (EDNS 1) Pc(l\zl)(EDNs 0)

yA

sym

where
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Nasirov A.K. et al. Nuclear Physics A 759 (2005) 342—-369
Fazio G. et al, Modern Phys. Lett. A 20 (2005) p.391
Nasirov A.K. et al. Phys. Rev. C 110, 014618 (2024)
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Main characteristics of the entrance channel of the nuclear reactions

* Total mass and charge number of the colliding nuclei.
* Charge and mass asymmetry of the colliding nuclei (Z,<Z, or Z,~Z, ).
* Ratio of the mass and charge numbers A,/Z, and A,/Z, .

* Beam energy E,, and orbital angular momentum L = [1_5 X ﬁ].
* Orientation angles of the symmetry axis of the deformed nuclei.
* Microscopic shell structure of nuclei.



The difference in the evaporation residues (ER) of the 34S + 298Pb and 3°S + 29%Pp reactions formed in the 2n and 3n
channels has been explained by two reasons:

i) the capture cross section of the 3°S + 296Pb reaction is larger than the one of the 34S + 298Pb reaction since the
nucleus-nucleus potential is more attractive in the 3°S + 296Pp,

i) the intrinsic fusion barrier B*; . for the 34S *29Pb reaction is higher than the one obtained for the 3¢S + 2%°pb
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Role of the non-equilibrium stage of the entrance channel in formation
of the compound nucleus.

Eur. Phys. J. A (2019) 55: 29
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Comparison of the potential energy surfaces ruling complete fusion in
the of 34S+208Pb and 35S+2%°Pb reactions
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Reaction channels leading to yield of the binary products.
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Attempts to analyze the results of the mixed contributions of the fusion-
fission and quasifission products

Meenu Thakur et al., Eur. Phys. J. A (2017) 53: 133
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Fig. 7. (Color online) The results of the theoretical estima-
tions of the QF (red dashed curve) and FF (blue dashed curve)
products in the framework of the DNS model [50] for the
“Ti + *®*Pb reaction. The solid curve shows the sum of the
both yields. The solid circle represents the normalized experi-
mental mass yield.

K. ATREYA et al. PHYSICAL REVIEW C 108, 034615 (2023)
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Role of the orbital angular momentum in the reaction mechanism.
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A.K. Nasurov et al. Physics Letters B 842: 137976 (2023)
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The role of the orbital angular momentum
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Contact time (1 0* S)
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Solutions of the transport master equations for the evolution and
decay dinuclear system formed in reaction 1*0+'%°Ho
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Comparison of the results by dinuclear system model and PACE4 code.

Theoretical result of this work Avinash Agarwal, Phys.Rev.C103-034602 (2021)
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Comparison of the results by dinuclear system model and PACE4 code.

Theoretical result of this work Avinash Agarwal, Phys.Rev.C103-034602 (2021)]
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PHYSICAL REVIEW C 110, 044610 (2024)

Measurements of evaporation residue cross sections and evaporation-residue-gated y-ray fold

R. Sarival

R. SARIYAL et al.

distributions for the *2S 4+ **Sm system
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PHYSICAL REVIEW C 110, 044610 (2024)
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FIG. 16. The partial cross section of the incomplete fusion
[01cp(E.m . €)] calculated in this work for the 32§ + '"*Sm reaction

as a function of the collision energy E.n. and orbital angular mo-
mentum ¢£.

FIG. 17. Comparison of the theoretical (solid curve) and mea-
sured total cross sections of the evaporation residues formed in
the >S4+ "**Sm reactions. The filled diamonds and open squares
present the experimental data of this work and the ones obtained
from Ref. [14], respectively. The dashed and dot-dashed curves are

contributions of the complete and incomplete fusion mechanisms
estimated by the DNS model, respectively.
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Calculation of the evolution of the charge distribution between fragments of
the dinuclear system
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Nucleon transfer coefficients for evolution of the charge asymmetry of
dinuclear system
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Conclusion

1. The study of the different reaction channels in heavy ion collisions by the dinuclear system model

allows us to find a reason of the hindrance for complete fusion of the mass symmetric nuclei.
2. The hindrance to fusion increases by the increase of the angular momentum of collision.

3. Complete fusion occurs by multinucleon transfer through the neck connecting two fragments of

dinuclear system.
4. The incomplete fusion is a quasifssion in the region of the very asymmetric

masses. Projectile nucleus breaks down after capture, not before capture.
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