

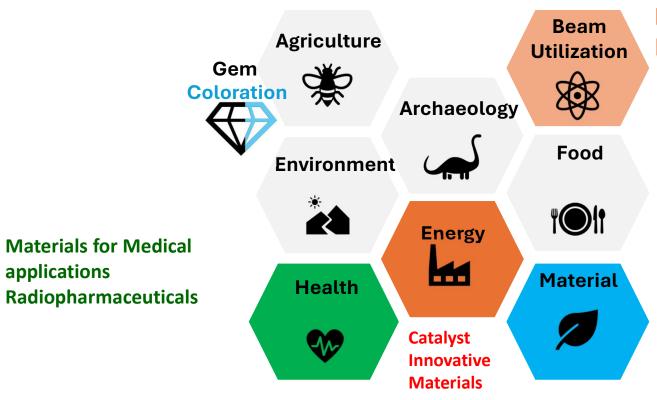
Update on Activities for Nuclear Science and Technology in Thailand

Somsak Dangtip

Nuclear Technology Research & Development Center
Thailand Institute of Nuclear Technology (Public Organization)

Email: somsakd@tint.or.th

Nuclear Science & Technology in Thailand

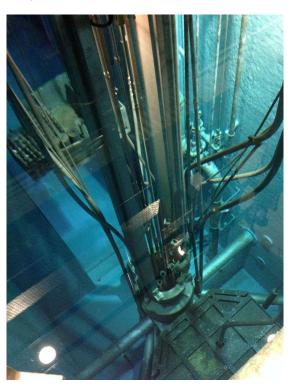


Human Resource Development

Somsak Dangtip, TINT, Jul 23, 2024, วพม.๑๐

Neutron imaging Ion beam analysis

Natural Polymers [Super water absorbent (SWA), Chitosan (plant growth promoter)],
Nanomaterials, Biomaterials


Thailand Institute of Nuclear Technology (Public Organization)

Nuclear Infrastructure: Research Reactor Facility

TRR-1/M1 Research Reactor, with a maximum steady state power of 1.3 MW, has been operated since 1977 for services and R&D purposes as follows.

- Neutron Activation Analysis (NAA) is performed to analyze composition of samples.
- Radioisotope production such as I-131and Sm-153 which are employed in medical utilization for diagnosis and therapy, and P-32 for agricultural application
- **Gemstone coloration** is carried out to increase value of gemstone. For example, the color change of topaz or tourmaline could increase its value by 5-30 times.
- **Non-Destructive Techniques (NDT):** neutron experiments, nuclear physics, reactor engineering studies and neutron radiography
- **Reactor operator training** is carried out to enhance the competency of reactor operator.
- **Operation Hours:** Monday to Wednesday 26 hr/week and Thursday to Friday reserve for research and experiments, total 78 hr/month

Nuclear Infrastructure: Tokamak Facility

HT-6M tokamak Donation ceremony from ASIPP to TINT with H.R.H Sirindhorn presided the ceremony.

TT-1 Building : Foundation Stone Laying ceremony

Thailand Team Onsite @ ASIPP

Feb-Jun 2023

Plasma Technology and Fusion Collaboration MOU signing ceremony between TINT and EGAT

TINT-ASIPP TT-1 Reconstruction of Supporting Ceremony Contract Signing Ceremony

TT-1 arrived TINT Ongkharak

TT-1 Installation @ TINT Ongkharak

Infrastructure: Infrastructure Development Plan

Electron Irradiation Facility 2023

Cyclotron Facility

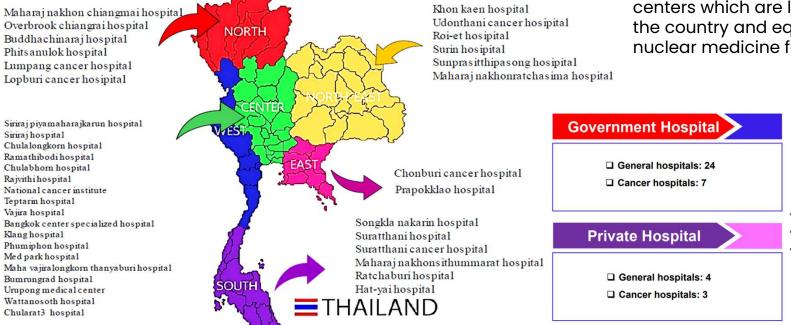
Positive Ion Mass Spectrometry (PIMS)

2027

2030

Regional Irradiation Facilities 2032

Thailand Tokamak II



Thailand Research Reactor

1. Medical applications:

<u>Nuclear medicine</u> in Thailand has been steadily developing over the years with advancements in technology and techniques for diagnosis and treatment.

 Thailand has <u>38</u> hospitals or medical centers which are located throughout the country and equipped with nuclear medicine facilities

- 131 I: Thyroid gland Cancer
- ¹⁸⁸Re: Cancer
- ¹⁵³Sm: Bone Cancer

Radioisotope TINT produce

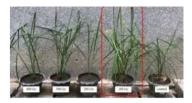
2. Agricultural applications: Mutation Breeding

Tulip Siam

- Thailand imports tulip every year as it cannot be grown in Thailand.
- Mutation breeding on tulip using radiation technology
- New variety of tulip with different color from its parents
- · The development of tulip bulb enables this new variety to grow in Thailand
- Enhance tourism

Under the **FNCA project on Mutation Breeding**, Rice Department has developed Glutinous Rice from irradiated Rice and improved Rice varieties to be resilient to climate conditions, acidic soils, and flood-prone areas.

Okra yellow vein mosaic virus disease resistant



Mulberry blast disease resistant

Papaya ringspot disease resistant

Rice acid soil resistant and high nutritional value

chili anthracnose disease resistant

2. Agricultural applications:

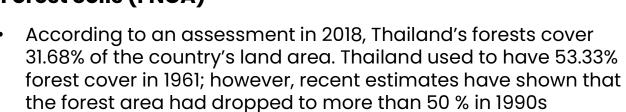
Application of <u>SIT</u> to control fruit-fly population and enhance fruit export

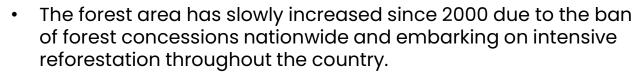
Chanthaburi Model for Producing and Exporting Fruit of High Quality is developed by Ministry of Agriculture and Cooperatives

- Trok Nong Model for Low Pest Prevalence for oriental fruit flies is developed by TINT, DOAE, DOA, Trok Nong Municipality
 - SIT is applied together with other methodologies to decrease fruit-fly population.
 - 5-10 million sterile male fly released bi-weekly
 - 4 monitor trap per sq. kilometer 1 mass trap per 0.16 hectare

 - Removal of fallen fruits

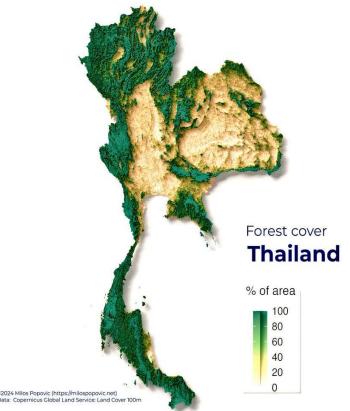
Mass rearing facility: 80-100 million fly per week





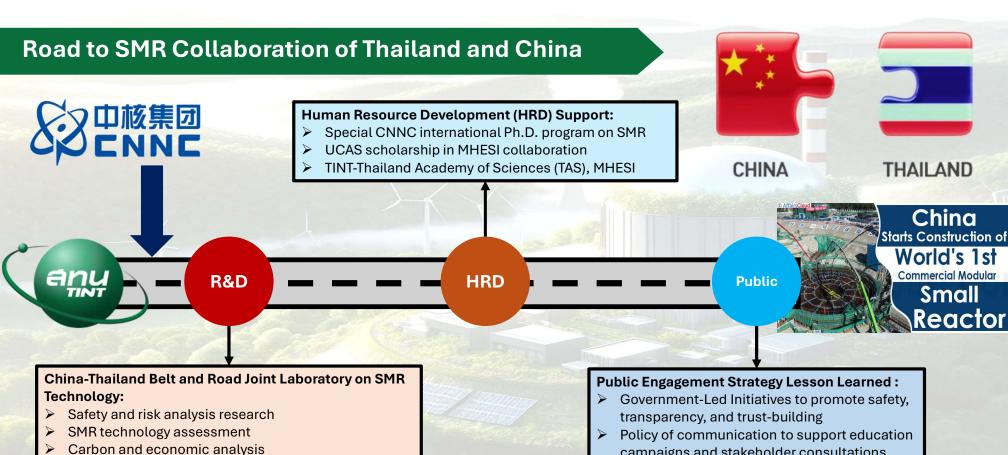
Irradiation facility: Co-60 and x-ray irradiator

3. Environmental applications:


Evaluating Carbon Emission from Forest Soils (FNCA)

primarily due to rapid social and economic development.

- Main Plan for Forestry in Thailand is to increase Research and Development to strengthen forest development at all levels and to better understand C cycling and carbon (C) sequestration.
- As outlined in the Thailand's Main Plan for Forestry, TINT, has participated in the FNCA project. Nuclear and related techniques are used to achieve the objectives, including a combined stable isotope (δ 180′ δ 2H, δ 13C) techniques.


TINT Fission Mission on SMR: Go Clean Go Green Together

Thailand Institute of Nuclear Technology (TINT)

campaigns and stakeholder consultations

Approach for waste and spent fuel management

Nuclear Science & Technology in Thailand

Somsak Dangtip, TINT, Jul 23, 2024, วพม.๑๐

SUT-BNCT Integrated Action Plan (IAP)

PHASE 1 Pre-project

2014

- Justification of the research reactor and considerations
- Inception of the project.
- Site survey

PHASE 2 Project Formulation

2015 - 2025

- Design of Research reactor
- Design of Building And Utility
- Research reactor construction.
- Reactor building construction.

PHASE 3 Implementation

2026 - 2030

- Install the research reactor and prepare for testing.
- Research reactor cold commissioning test.
- Research reactor hot commissioning test.

- Fuel license

Operations

2031 - 2051

- Operation
- Decommissioning
 - BNCT
 - · Neutron radiography
 - * PGNAA / NAA
 - Neutron Shielding Rubber

- Operational license

Research, development, and testing of medical products and advanced materials for medical equipment.

Neutron Radiography, PGNAA / NAA, Neutron Shielding Rubber

Design

System & Instrument Installation

Treatment Planning Using Boron Compounds

✓ Site License

- Boron delivery technique - In-vitro exp. (Cell)

In-vivo exp. (Animal)

In-vivo exp. (Man)

Operation test

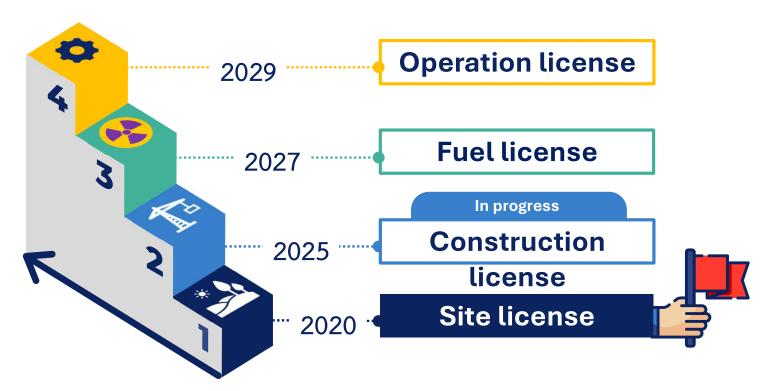
Recruitment for operation

- Pharmacist (Researcher)

Radiotherapists (radiation oncologists) BNCT technic training

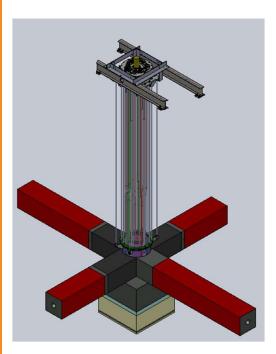
Submission to Clinical and Laboratory Standardization/ Medical Devices

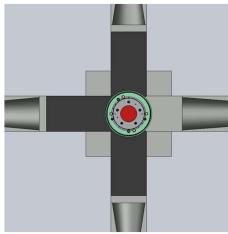
(Researcher)



CRC

Otolaryngologist Plastic Surgeon Neurosurgeon


licenses in accordance with the specifications of the regulatory body.



Suranaree University of Technology Research Reactor (SUT-RR)

- ☐ Reactor type: Tank in pool
- ☐ Fuel meat: UO₂ (Low enriched Uranium)
- ☐ Reactor power:
- ☐ ~ 45 kW for usage of Epithermal neutron
- ☐ ~ 30 kW for normal usage
- ☐ Operating: 2.5 hours a day, 4 days a week
- ☐ One vertical neutron beam port
- ☐ Four horizon neutron beam ports

Transportation of the Suranaree University of Technology Research Reactor (SUT-RR) to Suraphat Building 3

November 11-16, 2024

January 13, 2025

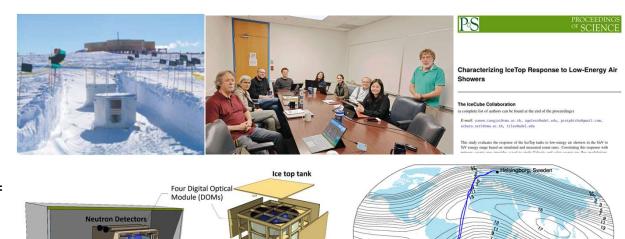
Containers are inspected before transport by the executives. The container was officially opened by the Rector.

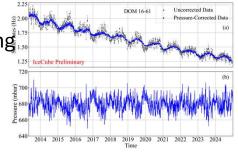
Boron Neutron Capture Therapy Research Center Suranaree University of Technology

Nuclear Science & Technology in Thailand

Human Resource Development

Somsak Dangtip, TINT, Jul 23, 2024, วพม.๑๐



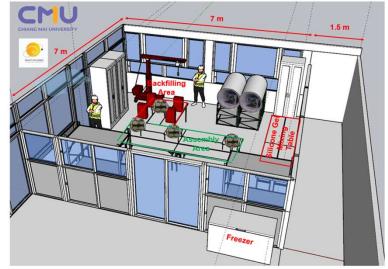

Probing the Universe through Neutrino and Nuclear Physics with IceCube

- IceCube detects high-energy neutrinos interacting with nuclei in Antarctic ice → direct connection to nuclear interaction modeling
- Studies of hadronic interactions in air showers (via IceTop) bridge cosmic-ray physics and nuclear reaction cross-sections at extreme energies
- Nuclear physics plays a key role in:
 - Modeling neutrino-nucleon cross-sections
 - Interpreting secondary particle production in cascades
 - Validating hadronic models used in CORSIKA and GENIE
- Thailand's IceCube team contributes via surface detector studies and simulations enhancing understanding of these nuclear-scale processes

CMU Contributions in 2024–2025

- IceTop analyses on cosmic-ray spectrum, latitude survey, and realtime monitoring — foundations for IceCube Gen2 surface array
- Publications:
 - Yanee Tangjai (Ph.D.): Spectral variations from IceTop tanks → published in PoS (ICRC2025)
 - Ongoing: Yield-function study of semi-leaded neutron monitors (2023–24 latitude survey)
- Collaboration with UDelaware, UW– Madison, and IceCube members
- South Pole field participation (Asst. Prof. Chana Sinsabvarodom – drilling season 3)
- Annual ThaisCube Workshops on multimessenger + neutrino physics

Zirconium Tank



Detector R&D and Nuclear Physics Applications

- Long Optical Module (LOM) assembly facilities initiated in Thailand with Hana Microelectronics partnership
- Electronics + PMT integration and testing enabling local fabrication and calibration
- Monte Carlo-based response modeling for photon and charged-particle interactions in optical modules
- Cross-validation of MIP response from scintillator calibration with nuclear energy deposition simulations
- Strengthening Thailand's role in nuclear detector development for IceCube Gen and SND@LHC CERN

Outlook and Impact (2025–2028)

- Continue IceTop + Gen2 surface-array analyses → advance nuclear interaction modeling of air showers
- Develop scintillator and radio hybrid systems to distinguish proton vs. iron primaries
- Produce calibrated LOM prototypes for photon detection → nuclear-level calibration for neutrino detection systems
- Integrate nuclear-physics training into Thai student programs (e.g., Wassachon Kammeemoon, Ph.D.)
- **Vision:** Strengthen Southeast Asia's contribution to IceCube Gen2 through research, detector physics, and engineering capacity
- Goal: Establish CMU as a regional hub connecting nuclear physics and neutrino astrophysics

Nuclear Science & Technology in Thailand

CERN summer student programme

โครงการจัดส่งนักเรียนระดับมัธยมศึกษา ตอนปลายไปศึกษาดูงานที่เชิร์น

โครงการครูวิทยาศาสตร์ภาคฤดูร้อนเซิร์น

THANK YOU

Somsak Dangtip
Thailand Institute of Nuclear Technology
somsakd@tint.or.th
www.tint.or.th