

Status report

2025/03/13 ZDC Internal WAI YUEN CHAN

- Check the energy dump with different settings in the ZDC Sim
- Check the distribution of parameters in the ZDC Sim output

ZDC Sim: Material test

- Checking the effect of beam position and spread in the ZDC Sim
- Comparing samples with the following conditions:

Material	θ, φ	Shift [mm]					
Carbon fiber	0,0	0					
Carbon fiber	0,0	15					
LYSO	0,0	0					
Carbon fiber	20,180	0					
Carbon fiber	20,180	15					
LYSO	20,180	0					

- 10k events within 0.01 GeV 1 GeV positron beam are generated per sample.
- Energy dump in ECal and HCal are separately plotted.

Results (ECal)

2025/03/13

ZDC Internal

Results (HCal)

2025/03/13

ZDC Internal

6

ZDC Sim: ML input sample

• Need a larger sample which contain the following info:

Ecal hit related	Position X	Position Y	Position Z	Cell ID	Energy (Sum)
MC particle related	Momentum X	Momentum Y	Momentum Z		

- Fixed vertex (position fixed at [-902.408,-15.000,35488.907])
- *θ*, *φ*, shift = [20,180,15]
- Material at the center: Carbon fiber
- 50k events within 0.01 GeV 20 GeV positron beam are generated.
- First step: modify the input, link up the energy distribution and the Cell ID.

Consistency check

#Event count per cell

2025/03/13

ZDC Internal

Consistency check

2025/03/13

ZDC Internal

10

Consistency check

ZDC Internal

- We make use of the ROOT file structure (looping over entries), we can make a 20x20 2D array to store the energy per cell.
- A print out with energy per cell (amplified by 10000 times for visual purpose) in 1 example event has been shown as a 2D array:

]]	ø	0	0	0	0	0	0	0	0	0	10	3	12	0	0	0	0	0	0	0]
[0	0	Ø	0	0	0	0	0	0	0	7	37	4	0	0	0	0	0	0	0]
[0	0	Ø	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0]
I	0	0	Ø	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0]
]	0	0	0	0	0	0	0	0	0	0	5	0	0	14	2	0	0	0	0	0]
]	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0]
]	0	0	0	0	0	0	0	0	0	0	8	25	0	0	5	0	0	6	0	6]
]	0	0	0	0	0	0	0	0	0	0	12	13	33	14	4	3	18	0	0	0]
]	0	0	0	0	0	0	0	0	5	1	47	163	141	39	36	12	3	0	0	0]
]	0	0	0	0	0	0	0	2	0	13	196	33	210	81	8	7	3	0	0	0]
]	0	0	Ø	0	0	0	0	2	0	13	60	196	217	47	22	0	0	0	0	0]
]	0	0	Ø	0	0	0	0	0	5	2	12	34	29	6	9	7	0	0	0	0]
]	0	0	Ø	0	0	0	0	0	0	4	0	89	28	51	6	0	0	0	0	0]
]	0	0	Ø	0	0	0	0	0	0	0	1	11	0	5	50	0	0	0	0	0]
]	0	0	Ø	0	0	0	0	0	1	0	0	3	0	0	0	0	0	0	0	0]
]	0	0	Ø	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
]	0	0	Ø	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0]
]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]]

Outlook

- We can make 2D histograms (#Event per cell) per energy range and do a 2D profile to get the $\sum \frac{\sum E}{N}$, as a cross check
- In the ML code, each event contain their own 2D array.
- We will use the momentum from MC particle to set the training target (truth).