Works in the past week
(2025/2/27)

* Cross check of CEM calculations of Jpsi production
with 23T o

* CEM/NRQCD calculations of difference of
sigma(pi+)-sigma(pi-).

* Read papers about unbinned unfolding (PRL 133,
261803 (2024))

* Chi2 expression
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Figure 1: Left: The LM method provides sample points along a single curve Ly in the
multi-dimensional PDF parameter space, relevant ro the observable X. Right: For a given
tolerance ﬁXglomn the uncertainty in the calculated value of X is £AX. The solid points
correspond to the sample points on the curve Ly in the left plot.
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Simplest case: statistical and
uncorrelated systematic errors

The simplest x? function, used in most conventional PDF analyses, is

Ne 2
(D; - T3)
6=, Y ——m— (6)
expt. i=1 i

where D; is a data value, T; is the corresponding theory value (which depends on the PDF model
parameters {a}), and o, is the combined statistical and systematic errors (assumed uncorrelated
and usually added in quadrature) on the measurement D;. This effective x? function provides a
simple measure of goodness-of-fit, convenient for the search for candidate PDF sets by minimization.
However, it is not useful for estimating the uncertainties associated with those candidates because
it does not contain enough information to allow a meaningful statistical inference based on the

increase in y? away from the minimum.



Ref. 2 Real case: with correlated systematic error f;;

Expression of chi2 with Penalty
Terms

Most DIS experiments now provide more detailed information on measurement errors. For

each data point 7, we have the statistical error o;, uncorrelated systematic error u;, and several

(say, K) sources of|correlated systematic errors {31;, B2, - .-, Bki}-| The best fit to the data (i.e.,
9

the fit with least variance) comes from minimizing the x* function,*

Ne

K 2 K
x*({a}, {r}) = Z Z % (Di —T; — Z T‘kﬁkz‘) + Z r (7)
k=1 k=1

expt. i=1 !

where|a? = o7 + u?|is the combined uncorrelated error. The fitting parameters are (i) the PDF

model parameters {a}, on which T; depends, together with (ii) random parameters {r} associated
with the sources of correlated systematic error. The point of Eq. (7) is that D; has a fluctuation
> 1 TkBki due to systematics. The best estimate of this shift is obtained by minimizing y’? with

respect to the set {r;}. In practice, the total number of such parameters for all experiments
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Analytical Solution of
minimizing chi2 w.r.t. {r}

We pointed out in Ref. [12] that the minimization of the function x? with respect to {r} can

be carried out analytically. This simplifies the global analysis to its irreducible task of minimization

with respect to the PDF parameters {a} only. In addition, the analytic method provides explicit

formulas for the optimal values of {ry, k= 1..

. K} due to the systematic errors k = 1...

K that

are associated with the fit. These optimal shifts are obtained from the condition dx?/0r; = 0, and

the result is

Analytical solution of {r}

re({a}) =

K

> (A

k'=1

I

Bkr .

Here {B,} and {A.. } are given by

{a} Z ﬁkz D T)

and

Substituting the best estimates (8) back into x?, we obtain a simplified y* function,

=1

V({ah) =x"(a} fr(fah)}) = 3 Z(D — 1)

expt.

K

Z By (A", By

kk'=1

(8)



Ref. 2 Real case: with correlated systematic error f;;

Expression of chi2 with Penalty
Terms

, B Ng;L o K | 2 K )
X ({a}! {T}) — Z Z 052 Dz ’—Tz Z ka)ki + Z Tk (7)
i k=1

expt. 1=1 k=1

Egs. (7) and (10) as follows:

{N (AH_T)Q K ]
*=x*({a}) = x*({a}h {7h) = \-Z + Z’FEJ : (11)
expt. i=1 k=1
where {a} (like {#} above), are the PDF parameters {a} at the x? minimum, and
K
D;=D; - kaﬁm', (12)
k=1
K
7,’\'k ({a}) - Z (A_l)kkf By . (8)
k'=1
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Fig. 18 : (a) Histogram of A; in Eq. (13) for the ZEUS data. The curve is a Gaussian of width 1.
(b) A similar comparison but without the corrections for systematic errors on the data points.
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Expression of chi2 with the
covariance matrix

A.1 Definitions of \? with the covariance matrix

We can define the x? for a specific experiment with Ny data points by

N pt

X2 =Y (T — Di)(cov™);;(T; — D), (7)

i,

and use it as a figure of merit to judge the agreement between theory and data. The
covariance matrix (cov);; used in this definition may be written as

N,
() (e) (L) (L)
(cov);j = &;js7 + Zg‘ {i 0o+ Z m} ia | DiDj, (8)
a=1 a=1
where 7 and j run over the experimental points (i,7 = 1,..., Npt), D; are the measured

central values, and T; the corresponding theoretical predictions computed with a given set
of PDFs. This covariance matrix depends on uncorrelated uncertainties s;, constructed

by adding the statistical and uncorrelated systematic uncertainties in quadrature; Np

multiplicative normalization uncertainties, r:r,E “_J: and N, other correlated systematic un-

certainties, expressed for convenience in the above equation in terms of their relative values
(e} . L. . AT AT .

o, .- The total number of correlated uncertainties is thus Ny = Ny + N.. Asymmetric

systematic uncertainties provided by the experiments must be symmetrized to use this

¢ ] (e),+ (c),—
o = (o1 )

expression. We symmetrize them by averaging, o; , = 5(0; ), +0; 4, ).
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Expression of chi2 with Penalty
Terms

A.2 Definitions of y? with shift parameters

An alternative, yet numerically equivalent, representation for the x? function has been used
in the jet benchmarking exercise of Sec. 5, following the method traditionally adopted in
the CTEQ and MSTW PDF fits for jet and some other data sets. In this representation,
the y? figure of merit for goodness-of-fit to an experiment with correlated systematic
uncertainties is expressed as [77]

*({a}, {\}) =xp + x4 (11)
where
Npt 1 N, 2
2 ) P
Xb=)_ = (Dk ~Tp— Y .dk._a/\a) ; (12)
1 °k P Uncorrelated contributions
and

Ny,
3 =Y"A2,  Penalty terms (13)
a=1

using the same notation as in the previous section, where the [, , are the absolute corre-
lated uncertainties. Systematic uncertainties associated with V), sources may now induce
correlated variations (shifts) in the experimental data points. Their effect is approximated
by including a sum »_ k. oAe dependent on the correlation matrix Sy, (k = 1, ..., Npi:
a = 1,...,N)) and stochastic nuisance parameters \,, with one nuisance parameter as-
signed to every source of the systematic uncertainty. By a common assumption, each
Ao follows the standard normal distribution. Its deviation from A, = 0 incurs a penalty
contribution A2 to x2. Under this assumption the minimum of x? with respect to A\, can

be found algebraically, since the dependence on A, is quadratic [77]. 10
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Matching of two chi2
expressions

We can solve for the best-fit values Ay, of the nuisance parameters to find

—'I\IY[.'JL A'r/\ Fi
D; - T; 1 Bis
/\(]a — E s; E :Aaé s; ’ (14)
i=1 =1
with
Not 5 3
- Pk.alPk.3
af a3 g_l Si ( ))

When these Ago values are substituted into Eq. (13), one obtains the usual expression
Eq. (7) for the x?, with

- JI\':\ - p
Ois B; 1 B
N ij MPia -1 M3,8
(cov);; = i g 2 A | - (16)
“t a,f=1 " “J
the inverse of
N
92 -
(cov)ij = s70i; + E Bi.aBja- (17)
a=1

N, Ne 3
- P e £) (L) , Bia = 0i.aD;, 18
(("()\')’.,I‘ = O’I.IISI) 0 (Z O.I(Ana('fu + Z U:.(z)ﬂ,;.(l> DID/ (b) b el t ( )
o x




