

Status report

2025/04/09 ZDC ML WAI YUEN CHAN

- Confirmed the effect of carbon fiber in G4 sim output
- Transferring the G4 sim output into common ML readable format
- Plot the ML input as histogram to show the energy distribution in ECAL

ZDC Sim: Material test

- Checking the effect of beam position and spread in the ZDC Sim
- Comparing samples with the following conditions:

Material	θ, φ	Shift [mm]
Carbon fiber	0,0	0
Carbon fiber	0,0	15
LYSO	0,0	0
Carbon fiber	20,180	0
Carbon fiber	20,180	15
LYSO	20,180	0

- 10k events within 0.01 GeV 1 GeV positron beam are generated per sample.
- Energy dump in ECAL and HCAL are separately plotted.

Results (ECal)

2025/04/09

ZDC ML

Results (HCal)

2025/04/09

ZDC ML

ML Sample preparation

• Need a larger sample which contain the following info:

Ecal hit related	Position X	Position Y	Position Z	Cell ID	Energy (Sum)
MC particle related	Momentum X	Momentum Y	Momentum Z		

- Fixed vertex (position fixed at [-902.408,-15.000,35488.907])
- *θ*, *φ*, shift = [20,180,15]
- Material at the center: Carbon fiber
- 50k events within 0.01 GeV 20 GeV positron beam are generated.
- First step: modify the input, link up the energy distribution and the Cell ID.

- We make use of the ROOT file structure (looping over entries), we can make a 20x20 2D array to store the energy per cell.
- A print out with energy per cell (amplified by 10000 times for visual purpose) in 1 example event has been shown as a 2D array:

[[0	0	0	0	0	0	0	0	0	0	10	3	12	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	7	37	4	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0]
[0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	5	0	0	14	2	0	0	0	0	0]
]	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	8	25	0	0	5	0	0	6	0	6]
]	0	0	0	0	0	0	0	0	0	0	12	13	33	14	4	3	18	0	0	0]
[0	0	0	0	0	0	0	0	5	1	47	163	141	39	36	12	3	0	0	0]
]	0	0	0	0	0	0	0	2	0	13	196	33	210	81	8	7	3	0	0	0]
]	0	0	0	0	0	0	0	2	0	13	60	196	217	47	22	0	0	0	0	0]
[0	0	0	0	0	0	0	0	5	2	12	34	29	6	9	7	0	0	0	0]
[0	0	0	0	0	0	0	0	0	4	0	89	28	51	6	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	1	11	0	5	50	0	0	0	0	0]
[0	0	0	0	0	0	0	0	1	0	0	3	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	0]
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0]]

ECAL Cell ID grid system

#Event count per cell

ZDC ML

2D Histogram

- We can transfer the array into 2D Histogram for each single event.
- Plotting positron events

 For each event we have also record the sum of energy and the number of cell which have energy >= 0.001 GeV

Entry	1063	30 2	2D ar	ray:																
[[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	з.	0.1	Θ.]						
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	0.1	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[0.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]
[Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.	Θ.]]
Total	sum	of	all (eleme	ents	: 3.	4													
Number	r of	ele	ement	s >=	0.0	01:	35													

1D, 3D Histogram

3D Histogram (Entry 10630) 4 3 2 1 0 0.0 0.0 2.5 2.5 5.0 5.0 7.5 7.5 10.0 12.5 10.0 12.5 ₁ 3^{1,5} ratis 15.0 15.0 17.5 17.5 20.0 20.0

 1D and 3D histogram will help us to identify any decay product hit the ECAL

2025/04/09

• 2D histogram for multiple events are also available.

ZDC ML

- In order to start the ML training, we need samples from other particles (classes) as well.
- Here we generated G4 sim samples with the following conditions:
 - Fixed vertex (position fixed at [-902.408,0.000,35488.907])
 - **θ**, **φ**, shift = [20, 180, 0]
 - Material at the center: Carbon fiber
 - 5k events within 10 GeV 15 GeV
 - Particles : e^+ , e^- , γ , p, n, Λ

2D Histogram with different particles

- For hadrons, we might better add HCAL info including HCAL cell ID as the input parameter.
- At the moment maybe we can use e^+ , γ , p to arrange our CNN structure.

Pending items

- We need to test the job submission pipeline
- In order to show the energy distribution in a 2D array, we need HCAL Cell ID info as well (As HCAL have a depth in z direction, we might eventually need a 3D array instead)

<u>Outlook</u>

- We don't need all type of particles at the moment, a binary classification is a good and simple starting point
- We can try to run the actually ML code:
 - 1. Check does it actually read samples as expected
 - 2. Adjust the CNN structure (for ECAL only)