110 Nuclear Instruments and Methods in Physics Research A270 (1988) 110-117
North-Holland, Amsterdam

HOW TO COMBINE CORRELATED ESTIMATES OF A SINGLE PHYSICAL QUANTITY

Louis LYONS and Duncan GIBAUT
Nuclear Physics Laboratory, Keble Road, Oxford UK

Peter CLIFFORD
Mathematical Institute, St. Giles, Oxford, UK

Received 4 January 1988

Experiments to measure a single physical quantity often produce several estimates based on the same data, and which are hence
correlated. We describe how to combine these correlated estimates in order to provide the best single answer, and also how to check
whether the correlated estimates are mutually consistent.

We discuss the properties of our technique, and illustrate its application by using it for a specific experiment which measured the
lifetime of charmed particles.



Uncorrelated Errors

The standard method for combining different experi-
ments consists in weighting each result y, + 0, by a
factor inversely proportional to that measurement’s
variance, i.e.

p=X (nre2)[L(1/02). (1)
The corresponding error ¢ is given by
1/02=Y (1/07). (2)

This, however, applies only when the individual mea-
surement errors are uncorrelated. In the situation we



BLUE technique

(Best Linear Unbiassed Estimate)

We employ a BLUE technique [1] (i.e., Best Linear
Unbiassed Estimate) which consists in looking for an
estimate § which
(1) is a linear combination of the individual estimates;
(2) provides an unbiassed estimate of y; and
(3) has the minimum possible variance o2.

The first condition is that

P=Xay, (3)

where the a, are constants, the weighting factors for the
various estimates y,, and which we want to determine.
For eq. (3) to be unbiassed, we require

Ya=1; (4)

this follows from our assumption that the y, are them-
selves unbiassed.
From eq. (3), we deduce the variance of § as

The BLUE technique consists simply of finding the
n values of a, which minimise o2, subject to the con-
straint (4). This can be achieved by using eq. (4) to
eliminate one particular a, {(e.g. a;) and then minimis-
ing o2 with respect to the remaining (7 — 1) a’s, re-
garded as independent. Alternatively, we can use the
method of Lagrangian multipliers to give

a=E 'U/(UE"'U), (6)

o’=aEa (5)

where a is the vector of the weighting factors a,, and &
is its transpose. In terms of components

=¥

L

E,ea,. (5")

where U is a vector whose n components are all unity,
and E™! is the inverse error matrix.

These values of «, can then be substituted back into
eq. (3) to provide our best value $, and into eq. (5) to
obtain its variance.




An example: the lifetime of

D mesons

The results of the individual methods described in

the previous section are as follows [7]
n=(95"17)x107 B,
mn=(1192{3) x 107 5,
n=_(111713)x107 15,
1,=(8.97]5) x 107V s.

(14)

We are now going to combine these by the technique
described in section 2, in order to produce our best

estimate 7.

The results (14) contain the error estimates on the
individual measurements but not their correlations,
which arise from the fact that the same events contrib-
ute to the separate determinations. Thus if a particular
D * lives for much longer than the average, it tends to
raise each of the estimates to which it contributes. The
correlation is not complete, however, for the following

reasons:

(1) The data samples for the different determinations
are not identical, because of the different selection

criteria for the various methods.

(2) Different features of the D * are important for the
separate methods. Thus =, depends almost entirely
on the production characteristics of the D*, and =,

on its decay properties.

We have estimated the full error matrix by a Monte
Carlo method. We have created a series of 100 “experi-
ments”, in which the D¥ are generated in accordance
with the known production and decay properties, and
are subjected to the same selection criteria as were used
for the real data. We also ensured that the numbers of
events available for each of the 4 analyses and the
numbers which were common to each possible combina-
tion of methods were identical to those in the actual
data. We then analysed each of these “experiments” in
exactly the same way as described in section 4 for the
real data. In this way we obtained 100 sets of four
lifetime estimates 7,;,, where the subscript & denotes the
Monte Carlo experiment number and i refers to the
method used to determine 7 (i.e. f goes from 1 to 4, and
k from 1 to 100).

We then calculate the elements of the error matrix E
as
100

E,= I(T:k_"-':)("}k—@)’ (15)

L
77100 5

where 7, is the Monte Carlo average for the ith method,

_ 1
= 1_0'“_ Tik+ (16)



The above procedure provides us with the following
€ITor matrix

266 115 086 1.31
115 145 082 1.32

E=108 08 106 1.05] (17)
131 132 105 2.56

Our corrective procedure is thus simply to leave
unchanged the off-diagonal elements of E, but to in-
crease the diagonal elements to be equal to the square
of the errors as given in (1) above. We thus obtain

274 115 086 1.31

1115 167 082 1.32 ,

E= 08 082 212 1.05 (17°)
131 132 105 293

This error matrix determines the weights of the various

estimates as

o, =0.14,
a, =047,
ay=10.35,
a, =0.04. (18)

Together wit
best estimate

r=(1124+11)x Ps.

h the individual results (14), these give a

(19)

BLUE weights:

measurements = [9.5, 11.9, 11.1, 8.9]
covariance_matrix = [

[2.74, 1.15, 8.86, 1.31],

[1.15, 1.67, ©.82, 1.32]

[0.86, ©.82, 2.12, 1.05],

[1.31, 1.32, 1.85, 2.93

x_hat, sigma_x_hat, weights = blue_combination{measurements, covariance_matrix)

print(f"Com mate: {x hat
print(f"BLU s: {weights}™)

} + {sigma x hat )

PS C:\Users\Wen-Chen Chang\SynologyDrive\python working> &
\
Combined estimate: 11.160 + 1.134

[0.145087476 ©.46957738 ©.34729705 0. 9386568]



The BLUE technique consists simply of finding the
n values of a, which minimise o2, subject to the con-
straint (4). This can be achieved by using eq. (4) to
eliminate one particular «, (e.g. ;) and then minimis-
ing o2 with respect to the remaining (n — 1) a’s, re-
garded as independent. Alternatively, we can use the
method of Lagrangian multipliers to give

a=E 'U/(CET'U), (6)

where U is a vector whose n components are all unity,
and E~! is the inverse error matrix.

These values of a, can then be substituted back into
eq. (3) to provide our best value §, and into eq. (5) to
obtain its variance.

1

import numpy as np

blue_combination(measurements, covariance matrix):

nnmn

Combine T urements using the BLUE method.

np.array(measurements)
np.array(covariance_matrix)
" inv = np.linalg.inv(V)

ones = np.ones(len(x))

denominator = ones @ V_inv @ ones
weights = (V_inv @ ones) / denominator

x_hat = weights @ x
sigma x_hat = np.sqrt(1.@ / denominator)

return x_hat, sigma x hat, weights



We employ a BLUE technique [1] (i.e., Best Linear
Unbiassed Estimate) which consists in looking for an
estimate $ which
(1) is a linear combination of the individual estimates;
(2) provides an unbiassed estimate of y; and
(3) has the minimum possible variance o2.

The first condition is that

P=2ay, (3)

where the «, are constants, the weighting factors for the
various estimates y,, and which we want to determine.
For eq. (3) to be unbiassed, we require

Za, =1; 4)

this follows from our assumption that the y, are them-
selves unbiassed.
From eq. (3), we deduce the variance of § as

o’=dEa (5)

where a is the vector of the weighting factors a,, and &
is its transpose. In terms of components

o’=Y Y E, aa,. (57)

L

The BLUE technique consists simply of finding the
n values of a, which minimise o2, subject to the con-
straint (4). This can be achieved by using eq. (4) to
eliminate one particular a, {(e.g. a;) and then minimis-
ing o2 with respect to the remaining (7 — 1) a’s, re-
garded as independent. Alternatively, we can use the
method of Lagrangian multipliers to give

a=E 'U/(UE"'U), (6)

where U is a vector whose n components are all unity,
and E™! is the inverse error matrix.

These values of «, can then be substituted back into
eq. (3) to provide our best value $, and into eq. (5) to
obtain its variance.

Given:
* Measurements ¥ = (1, Z9,...,ZN)
e Covariance matrix V'

* Weight vector 10, where

Then the combined estimate is:

And its variance (i.e. squared uncertainty) is:




Given:
import nu np
* Measurements Z = (1, T2, ..., ZN)

blue combination(measurements, covariance matrix):

e Covariance matrix V'

e Weight vector 0, where

Then the combined estimate is:

=1

81

np.array(measurements)
/ = np.array(covariance matrix)
V_inv = np.linalg.inv(V)

And its variance (i.e. squared uncertainty) is:
ones = np.ones(len(x))

o =i Vi

denominator = ones @ V_inv @ ones
weights = (V_inv @ ones) / denominator

(2 Alternative Expression (Without Explicit Weights)

x_hat = weights @ x

You can also directly compute the variance using: sigma x_hat = np.sqrt(1.e / denominator)

9 1

return x_hat, sigma x hat, weights

This is what we used earlier in code. It's mathematically equivalent to 'tI?TVtI'r,just more efficient in practice.



Let:

eV be the covariance matrix (NxN, symmetric and positive-definite),

« T be a column vector of ones (shape Nx1),

o V! be the inverse of the covariance matrix.

Expression 1:

Variance via the weight vector w:

ol =@ Vi
Expression 2:
Direct variance formula (used in code):
. 1
oi= o
1'v-11

Goal: Show that both are equal

Step 1: Write BLUE weights

. Vv
w= = =
1'v-11
Step 2: Plug weights into Expression 1
o VIt VT
0'_-2_ = 1w V'LU = r—— V = =
1'v-11 1'v-11

Step 3: Simplify

Let'sdenoted = 1 V11 Then:

Now use associativity:

2 __ 77 —1 -17
RS
Since V-1V = I
1 o e d 1
oi= o TVI= 5=
Conclusion:
1
w Vil= 5——
1"v-11

Hence, both expressions for the variance are mathematically equivalent — one is more intuitive (via

weights), the other is computationally compact.



