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Experiments to measure a single physical quantity often produce several estimates based on the same data, and which are hence
correlated . We describe how to combine these correlated estimates in order to provide the best single answer, and also how to check
whether the correlated estimates are mutually consistent .

We discuss the properties of our technique, and illustrate its application by using it for a specific experiment which measured the
lifetime of charmed particles .

1 . Introduction

It is common for a single experiment which aims to
measure some physical quantity y to produce more
than one estimate of this quantity . This could arise, for
example, from using different techniques to analyse the
same data, from having several slightly different data
sets determined by various possible selection criteria
aimed at improving the quality of the data sample, etc.

It is clearly desirable to quote a single number at the
end of the paper, as the result of the experiment, rather
than to leave it as an exercise for the reader to decide
which if any of the several estimates he prefers . One
possibility is to select the result with the smallest frac-
tional error, but this is almost equivalent to ignoring the
other approaches. Another technique is to produce some
sort of average of the different answers in order to
obtain a better one. It is this approach that we discuss
in this paper.

The standard method for combining different expert-
ments consists in weighting each result y, ± a, by a
factor inversely proportional to that measurement's
variance, i.e .

The corresponding error a is given by
1/a2 = y(1/a,2 ).

This, however, applies only when the individual mea-
surement errors are uncorrelated . In the situation we
have described this is unlikely to be so, because the
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different estimates are based on much or all of the same
data . Thus if, for example, the common events result in
values of the parameter which are larger than average,
then all the methods will tend to produce results which
are too high ; this is the source of the correlation . We
here present an alternative to eqs. (1) and (2) for the
case where the errors on the different results are corre-
lated; this makes use of the complete error matrix E of
the estimates .

It is common for an experiment to claim that alter-
native methods of determining a parameter agree within
their errors, and hence are satisfactory . When the same
data is used for more than one determination, the errors
are not independent and so it is not clear how well we
should really expect the separate estimates to agree. We
provide a prescription for dealing with this problem as
well .

The plan of this paper is as follows. The rather
simple mathematics of the method is given in section 2,
while section 3 contains a discussion of some special
cases, in order to provide more insight into what this
approach achieves . In section 4 we outline a particular
high energy physics experiment which determined the
mean lifetime of charmed particles by 4 different meth-
ods, and for which the combination technique described
in this paper is applicable . Details of the way we use
our technique for the charmed particle lifetime are
given in section 5, together with an account of how we
use a Monte Carlo method to estimate the error matrix
E. Our conclusions appear in section 6.



2 . The method

We assume that our experiment has provided us with
several unbiassed estimates y, (i = 1 . . . n) of our
parameter, together with their error matrix E . The diag-
onal elements of E give the variances of the individual
estimates, while the off-diagonal elements describe the
correlations between pairs of estimates. The standard
procedure for combining different results (eqs . (1) and
(2)) applies when the off-diagonal elements are zero .
We employ a BLUE technique [1] (i.e ., Best Linear

Unbiassed Estimate) which consists in looking for an
estimate j which
(1) is a linear combination of the individual estimates ;
(2) provides an unbiassed estimate of y ; and
(3) has the minimum possible variance a2 .

The first condition is that

Y = Ya,Y,,

	

(3)

where the a, are constants, the weighting factors for the
various estimates y� and which we want to determine .

For eq . (3) to be unbiassed, we require

this follows from our assumption that the y, are them-
selves unbiassed .

From eq . (3), we deduce the variance of y as

a 2 =dEa
where a is the vector of the weighting factors a� and &
is its transpose . In terms of components

a2 = Y_ Y_ E,,
z J

The BLUE technique consists simply of finding the
n values of a, which minimise a2 , subject to the con-
straint (4) . This can be achieved by using eq . (4) to
eliminate one particular a, (e.g . a,) and then minimis-
ing a2 with respect to the remaining (n - 1) a's, re-
garded as independent . Alternatively, we can use the
method of Lagrangian multipliers to give

a = E-'U/(UE-'U),

	

(6)

where U is a vector whose n components are all unity,
and E- ' is the inverse error matrix .

These values of a, can then be substituted back into
eq. (3) to provide our best value y, and into eq. (5) to
obtain its variance .

This method is equivalent to constructing a weighted
sum of squares

S= ~(Y'-y,)(Y'-Y,)(E-'),�

	

(7)

which measures the extent to which the individual y,
are consistent with a single value y' . We then minimise
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S with respect to our one parameter y' in order to
obtain the best estimate y of our physical quantity y .

Thus the final step in the procedure is to use eq. (7)
to determine whether our individual estimates are self
consistent . We expect S��. to be distributed as X2 with
n - 1 degrees of freedom. This then is the procedure to
be adopted in judging how well the correlated results
from a single experiment agree with each other.
An essential ingredient of the BLUE technique is to

have knowledge of the error matrix E of the individual
estimates . In the discussion of applying this method for
a specific experiment in section 5, we describe in detail
how we use Monte Carlo simulation to obtain an esti-
mate of E . We are thus applying BLUE theory in an
approximate sense .

3 . Discussion of the method

The above procedure is guaranteed to provide us
with an estimate y whose variance is smaller than or
equal to the smallest variance of the individual esti-
mates y, . Since these separate estimates are all based on
more or less the same set of data, it is hard to avoid the
suspicion that we may be in danger of double counting,
and hence that the reduction in the variance of y is
invalid. We show that this is not so by considering two
specific examples for the simplest nontrivial case of two
measurements y, and Y2 .

Our first example is the case where the two individ-
ual methods happen to be identical . They thus provide
estimates which are guaranteed to be the same, and
hence the variances are equal and the errors are com-
pletely correlated . Thus

2
E '(

a

cov

Then from eq . (3), our best estimate

Y - aY1+(1 - a)Y2

=ay, +(1-a)Yl
° Yi'

with variance

__ai2 .

ca 2

	

)
_

( a2

	

aiz

	

)
.

a2=a2ai +2a(1-a) cov+ (1 _a)
2
a2

=alaii + 2a(1 - a) ai + (1 - a)tai

Thus, not surprisingly and completely satisfactorily, the
best value is equal to the individual estimate(s), and the
procedure does not produce a spurious improvement in
the error estimate .
We now consider the situation where again the iden-

tical data sample is used for the two methods, but in the
second case there is some additional source of noise



which makes the second estimate worse than the first.
Thus the variance for the first estimate is ai , while that
of the second is the somewhat larger a2 . Since the
covariance arises because of the identity of the data
samples for the two methods and is unaltered by the
noise affecting the second estimate, the covariance is
still ai . (This argument is confirmed numerically by the
Monte Carlo calculations described below.)

Thus for this case, our error matrix

(

2 2
E =

	

\al all
2 2al a2

with a2 > al . Then

a 2 = a2ai+2a(1-a)ai+(1-a)
2
a2

	

(9)

and this minimises for a = 1, with a2 =a1 . Hence our
best estimate is yj f al, and for this specific example
the lower accuracy measurement is completely ignored.
Again we see that including the extra information does
not result in an unphysical improvement in the final
answer.

After these two rather special examples, we now
investigate the properties of our technique for the gen-
eral case of two measurements . We write the error
matrix as

_ tE
a2

-
( rata2

where a2 >_ al , and r is the correlation coefficient which
must satisfy

We scale our measurements so that at =1 . As usual our
best estimate is

(
ytrue + r

a2
(yl - yruue )

t
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(10)

We choose a to minimise the variance on y.
In fig. la we plot ,(3 as a function of r for various

values of 02- Several features are apparent.
(1) For r = 0, the weight ,(3 is simply a1/(ai +a2),

as it should be according to eq . (1) for the uncorrelated
situation .

(2) The weight a becomes zero for a correlation
coefficient r = at/a2. The second case considered above
was a specific example of this situation . We can obtain
some insight into why the lower accuracy measurement
is ignored in this case by considering the situation in
which the distribution of results is a 2-dimensional
Gaussian in the measurements yj and y2 . The effect of
the correlation is that, for a given value of yt, the
distribution of y2 is centred on

rather than on the correct value ytrue (see fig . 2 and

(g) a'2=10

-1 .0

1 .0-

-1 .0

(r. . 2

Fig. 1 . Graphs showing the properties of the BLUE solution
(eq . (12) in the text) for an experiment producing two esti-
mates. (a) The fraction a of the second estimate, as a function
of the correlation coefficient r, for three different values of
a2(a2=1 .1 for the dotted curve, 2 for the solid curve, and 10
for the dashed one; the error a t on the first measurement is 1) .
(b) The variance 02 of the BLUE solution as a function of r,

for the same values of 02 as used in (a).

also, for example, p. 60 of ref. [4]). Thus for our specific
choice of r= at/a2, the lower accuracy measurement is
distributed about yl, and hence adds no new informa-
tion .

(3) For a correlation coefficient r larger than al/a2,
a is negative and a is greater than 1. This apparently
surprising situation can be explained as follows. When
the correlation between the two estimates of y becomes
large and positive, the individual measurements are
likely to be on the same side of the true value, with yj
being closer to it than y2 is (since at < a2). Thus our
best estimate y involves extrapolating from y2 past yj
(see fig. 2) ; this implies that a is larger than unity and

is negative . In contrast, a negative correlation always
implies interpolation, with both a and a positive and
less than 1.

Y = ayt +Ny2 > (12 )
with
,8 = 1 - a. (13)
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Fig . 2. The distribution of y2, assuming that the (yr, y2)
distribution is a 2-dimensional Gaussian centred on the origin
with a r =1 and a2 = 2, and that yr has been measured as 1
(see arrow). The different curves are for various values of the
correlation coefficient r, as labelled. For r = +0.5 (not shown),
the y2 distribution peaks at 1, and the information it provides
does not improve the estimate j obtained from yl alone. For
r > al/a2 (e.g. r = 0 .8 or 1 .0), the y2 distribution is centred
further away from the correct value than the measurement yr .
The BLUE approach then involves extrapolating from y2

beyond yl , and the fraction a is larger than unity .

Fig . lb shows the variance a2 on our best estimate
as a function of r, for the same set of a2 as were used in
fig . l a . The main points to note are :
(1) For r = 0, our value of a 2 agrees with that of eq.

(2) .
(2) For r = al/a2, a2 = 1 since we here have /3 = 0 (see

above), and the second measurement is ignored .

(3) For r close to -1 or very close to + 1, a 2 tends to
zero . This is because, if the two measurements are
completely anticorrelated or completely correlated
with known variances, we can reconstruct the true
value exactly from the two measurements yr and
y2 . The only exception to this is the case where
02=a, and r = + 1 (i .e . the first example consid-
ered above) in which we achieve no improvement as
compared with each single measurement .
We also note that, while /3 = 0 means that the lower

accuracy measurement is ignored, a negative weight
implies that this particular result does contribute to
lowering the variance on the final answer . Thus, for
example, for 02 = 5 and r = 0.8, the weight a = -1/6
results in a variance a 2 = 0.5 for the best estimate of y,
as compared with a2 = 1 if the second measurement is
completely ignored .

One point to beware of in practice is the situation in
which the individual weights become numerically very
large. As seen in fig . la, this happens when al/a2 is
close to + 1, and r2 even more so . If we have slightly
mis-estimated the elements of the error matrix, or if our
measurements are slightly biassed, the effect of the large
weights with different signs can be to drive our solution
y far away from the correct value . For the experiment
we describe later, the weights were all reasonable in
magnitude, and so this danger does not exist .

Having discussed the performance of the technique
for the case of two measurements, we now describe in
detail how we apply it to the case of a real experiment
involving four correlated measurements of the same
quantity .

4 . Charm particle lifetime experiment

Data on the production and decay of charmed par-
ticles were obtained by exposing the European Hybrid
Spectrometer [2] (EHS) to beams of high energy or - and
of protons at the CERN Super Proton Synchrotron
(SPS) . The essential features of the detector are a bub-
ble chamber which provides a picture of the charm
particle production and decay, and a downstream spec-
trometer from which the momenta of most of the
charged and some of the neutral particles can be de-
termined . Some information on the nature of the charged
particles (i .e . whether they are electrons, pions, kaons or
protons) is also available.

This experiment [3] studied both neutral and charged
charmed particles, D ° and D t respectively. The essen-
tials of the analysis are very similar for these two types
of charmed particles, and for the purposes of this paper
we shall restrict our attention to the D t. Fig. 3a is a
symbolic picture of the information available for a
typical D t event.
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Fig. 3 . (a) Schematic diagram showing an event in which a
charm particle is produced at P, and decays into three charged
particles at D, after travelling a distance d. (b) Part of (a),
showing the definition of the transverse length 1T . (c) Part of
(a), showing the definition of the impact parameter y for one

of the three decay tracks .

We now describe the four different approaches that
were used to extract the Dt lifetime from such events .
Further details can be found in ref. [3] .

4.1 . Fully identified decays

In order to determine the lifetime T, we would
ideally like to know the individual lifetimes t, of a large
set of events ; in the absence of visibility and efficiency
cuts, the required lifetime is just the average of the
individual t, . From the bubble chamber pictures, we
can measure the distance d, that the ith Dt travels
before it decays. In order to convert this to a time t� we
need to know the D :1 momentum, or equivalently the
vector sum of the momenta of its decay products . For a
subsample of our events, all the decay products are
measured in our apparatus, and we can check that there
are no other missing neutral particles. For these events
we can then use the direct method outlined above. In
practice, because of the various cuts we impose on our
data, we determine T by a likelihood method, rather
than simply as the average of the t, . We denote this
directly determined lifetime as Tl .

Since the majority of the events are such that we do

not know the D t momentum, we resort to indirect
methods for extracting T for a larger sample of Dt

particles. We now outline these other three approaches .

4.2. Transverse length method

The transverse length 1T is defined as the distance
from the D t decay position to the continuation of the
incident beam direction (see fig . 3b). For a Dt pro-
duced at a given angle, the longer it lives for the larger
will be 1T . The average value of 1T thus provides
information on 'r . The relationship between them re-
quires knowledge of (PT), the mean transverse
momentum of the Dt mesons ; PT is defined as the
component of the D t momentum perpendicular to the
beam direction. It is an experimental observation that,
for a given type of particle, (PT) varies little from one
experiment to another. We use a value of (PT) ob-
tained from our experiment, and which is consistent
with other similar experiments .

In practice, we determined T by a likelihood fit to
the lT distribution. We denote this estimate by T2 .

4.3 . Impact parameter method

The impact parameter y of a decay track is defined
as the distance of the point at which the Dt was
produced from the backwards extrapolation of that
decay track's line of flight (see fig. 3c). The longer the
D t lives before it decays, the larger will be the impact
parameters of its decay tracks . The expected rela-
tionship between T and the mean value of y depends on
the branching ratios for the various decay modes of the
D t, but to a good approximation it is independent of
the momentum distribution of the Dt ; it is determined
by a Monte Carlo programme. The experimental value
of (y) then provides us with our estimate T3 of the
lifetime .

4.4. Momentum estimator method

If all the decay particles of the Dt were measured
and identified, the D t momentum would be known,
and we could also calculate its mass, which within
experimental errors should agree with the known mass
M D . With missing particles, however, the observed mass
and momentum m, and q, will both be below their
correct values. We then use the observed m, in order to
scale up q, in order to provide an estimate of the true
momentum p, . Again a Monte Carlo technique is used
to help deduce the nature of this procedure. Finally the
p, provide estimates t, for the individual events as in
the method described in section 4.1, and the lifetime Ta

is deduced by a maximum likelihood method.
Our experiment thus provides us with four estimates

of T. The subsamples of events that we use for the



5. Application to charm particle lifetime experiment
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various determinations overlap (and hence the estimates
certainly are not independent) . They are not identical,
however, because of the more stringent requirements on
the available information for some methods as com-
pared with others . In particular, the numbers of events
available for the indirect methods are larger than for the
direct procedure of section 4.1 . It is for this reason that
we wish to combine the various estimates, since if the
same events were involved in each method, the direct
determination T1 would be preferable to any of the
other estimates (compare the second example in section
3) .
We note in passing that correlations can arise even

for completely independent data samples, because of
common effects in the analysis techniques . Thus for the
methods we have described, any uncertainty in the D t

decay properties would induce correlated errors in the
impact parameter and the momentum estimator tech-
niques, because both make use of the D t 's decay
tracks, whereas the other two methods would be almost
unaffected . In simpler situations, the error matrix could
be deduced directly ; for more complicated cases, Monte
Carlo techniques could again be used. In the discussion
below, we ignore these effects and concentrate on the
correlations which arise from the common events in the
various analysis samples .

The results of the individual methods described in
the previous section are as follows [7]

T1 = (9 .5+1-7) X 10-13 s,

T2 = (11 .9±i'3) X 10 -13 s,

T3 = (11 .1±1.2) X 10 -13 S ,

T4= (8 .9+1-6) X 10-13 s .1 .2

	

(14)

We are now going to combine these by the technique
described in section 2, in order to produce our best
estimate T .

The results (14) contain the error estimates on the
individual measurements but not their correlations,
which arise from the fact that the same events contrib-
ute to the separate determinations. Thus if a particular
D t lives for much longer than the average, it tends to
raise each of the estimates to which it contributes. The
correlation is not complete, however, for the following
reasons :
(1) The data samples for the different determinations

are not identical, because of the different selection
criteria for the various methods.

(2) Different features of the D t are important for the
separate methods . Thus T2 depends almost entirely
on the production characteristics of the D+, and T3
on its decay properties .

We have estimated the full error matrix by a Monte
Carlo method . We have created a series of 100 "experi-
ments", in which the D t are generated in accordance
with the known production and decay properties, and
are subjected to the same selection criteria as were used
for the real data . We also ensured that the numbers of
events available for each of the 4 analyses and the
numbers which were common to each possible combina-
tion of methods were identical to those in the actual
data. We then analysed each of these "experiments" in
exactly the same way as described in section 4 for the
real data. In this way we obtained 100 sets of four
lifetime estimates T,k, where the subscript k denotes the
Monte Carlo experiment number and i refers to the
method used to determine 'r (i .e . i goes from 1 to 4, and
k from 1 to 100).
We then calculate the elements of the error matrix E

as
1 loo

E,,

	

100

	

= (T,k-T,)(Tik- T,)>

	

(15)
k1

where z, is the Monte Carlo average for the ith method,
i .e .

1 loo
T,

	

100

	

E T'kk=1

The above procedure provides us with the following
error matrix

E=

(16)

where each element is expressed in units of 10-26 s2 .

Before we use this as described in section 2, we need to
take into account the fact that the diagonal elements of
E as given in eq. (17) are not identical with the squares
of the errors of the estimates based on the real data
(eqs . (14)). The reasons for this, and the corrective
action we take, are as follows :-

(1) Lifetime determinations Tf e are such that the
fractional error e/T is inversely proportional to the
square root of the number of events used. Thus, for a
given number of events, if our estimate of T by one
technique is low, then so will be the corresponding error
e . We do not want to give this particular method a
larger weight because of this statistical fluctuation . The
relative weights are there to do justice to a method with
a genuinely higher accuracy and not because the esti-
mates of T and e happen to be too low.

Since we are assuming that all the techniques are
measuring the identical parameter, we adjust the errors
on the actual data to the values they would have had if
the estimates T, had all been identical . This value, which
does not sensitively affect our answer, we take to be
11 X 10-13 s .

2.66 1 .15 0.86 1 .31)
1 .15 1 .45 0.82 1 .32
0.86 0 .82 1.06 1 .05 (17)

1 .31 1 .32 1.05 2.56



Since the upper and lower errors are not equal, we
simply take their geometric mean at this stage. The
errors are then 1 .7, 1 .3, 1 .5 and 1.7 x 10 -13 s respec-
tively . Other possibilities are described in (3) below .

(2) The errors on the actual data include contribu-
tions for possible systematic effects, which differ from
method to method . Thus for example, the transverse
length estimate T2 is sensitive to the mean transverse
momentum (PT) as deduced from other data . On the
other hand the impact parameter estimate T3 depends
somewhat on the branching ratios for the various decay
modes of the D f. To a good approximation these types
of contributions to the errors are independent of each
other and hence the error matrix for these possible
systematic effects is essentially diagonal . The overall
error matrix is the sum of those for the Monte Carlo
estimated random errors and the diagonal systematic
ones.

Our corrective procedure is thus simply to leave
unchanged the off-diagonal elements of E, but to in-
crease the diagonal elements to be equal to the square
of the errors as given in (1) above . We thus obtain

E=

This error matrix determines the weights of the various
estimates as

a 1 = 0.14,

a 2 = 0.47,

a 3 = 0.35,

a 4 = 0.04 .

	

(18)

Together with the individual results (14), these give a
best estimate
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T = (11 .2 t 1 .1) x -13 s .

	

(19)

The weighted sum of squares (7) is 6 .0 for 3 degrees of
freedom ; the X 2 probability for exceeding such a value
is about 12% . This implies that the consistency of the
measurements is satisfactory.

(3) Another feature of lifetime determinations is that
the errors, as estimated for example by finding when the
likelihood is reduced by a factor of 0.6 from its maxi-
mum, tend to be asymmetric - the upper error is larger
than the lower one (compare our actual data in eqs .
(14) ; or see ref. [5]). Our method of determining the
error matrix necessarily neglects any such asymmetry .

We allow for this by calculating the sum of squares
(7) for a series of values of the lifetime T. As T changes,
we alter the elements of the error matrix such that the
errors on individual determinations vary smoothly from
01 at T - a1 to 02 at T + a2 ; the off-diagonal elements
are such as to maintain the correlation coefficients as in

the matrix (17') . Where the sum of squares (7) increases
from its minimum by 1 determines the asymmetric
errors as + 1 .3 and -1.0 x 10 -13 s .
We regard this as a rather unsatisfactory "patch up",

which is not a general procedure . As an alternative,
when the goal is to obtain a single overall maximum
likelihood estimate, it may be possible to use the method
of Dingle and Gratton [6], which involves more compu-
tation .

Finally we would like to emphasise that the compli-
cations caused by the asymmetric errors are not specific
to our problem of combining correlated estimates, but
also need to be addressed in the standard situation of
combining uncorrelated results by eqs . (1) and (2) .

6 . Conclusions

We have described a simple method for combining
different correlated measurements . The properties of
our technique were discussed for the simple-to-under-
stand case of two correlated measurements .
We have applied our method to a real experiment

which produced 4 estimates of the lifetime of the
charmed meson D±. This involves using the full 4 x 4
error matrix for our estimates . We have described how
we obtained this error matrix by a Monte Carlo calcula-
tion .

With the individual results (in units of 10 -13 s) of

9.5-1 z, 11 .9±i :3> 11 .1±i :2 and 8.9±1 2

our technique provided us with a best estimate of

11 .2+ 1 .310

and with a satisfactory X 2 probability that the individ-
ual estimates are consistent .
We believe that such a technique can have widespread

application in providing the best single number for
experiments which produce several different but not
independent estimates of a single physical quantity, and
for checking their consistency .
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