Search for $B^0 \to p \bar{\Lambda}^0 \pi^-$ and $B^0 \to p \bar{\Sigma}^0 \pi^$ at Belle experiment

Chuan-Yu Chang, Min-Zu Wang

National Taiwan University

2021/01/22

TW HEP meeting

Motivation :

1. Theoretic Prediction :

Discover more $b \to s$ physics information by studying the baryonic decay like $B^0 \to p\bar{\Lambda}^0\pi^-$ and $B^0 \to p\bar{\Sigma}^0\pi^-$ with full Belle dataset and compare with theoretic prediction.

2. Angular distribution confirm

J.-T. Wei, M.-Z. Wang, et al. https://doi.org/10.1016/j.physletb.2007.11.063

3. Threshold enhancement check

Phys.Rev.D 76 (2007) 052004

Strategy of study:

- 0. Generate Signal and Background MC
- 1. Candidate Reconstruction
- 2. Event Selection
- 3. Background Suppression with MVA
- 4. PDF(Probability Distribution Function) Modeling
- 5. Using control sample to obtain possible systematic error
- 6. Measuring Belle data with 2D fitting

Candidate Reconstruction :

Because the energy of photon is very low(It's hard to collect), we decide to reconstruct our signal only with $p\bar{\Lambda}^0\pi^-$, and measure $B^0 \to p\bar{\Lambda}^0\pi^-$ simultaneously.

Continuum Suppression :

Our dominated background is continuum background ($e^+e^- \rightarrow q\bar{q}$) We hired the package Neurobayes to do the suppression

MC Distribution:

We will measure $B^0 \to p \bar{\Sigma}^0 \pi^-$ (Signal) and $B^0 \to p \bar{\Lambda}^0 \pi^-$ simultaneously also make sure the precision of signal yield with $B^0 \to p \bar{\Lambda}^0 \pi^-$

PDF Modeling :

Data sample : MC simulation

Background : Continuum $q\bar{q}$ + Generic BB

Summary :

1. The partial reconstruction method is promising .

2. The performance of two modes under the MVA training are same

3. More systematic error studies in progress

Back Up

Event Selection:

Proton : $\mathscr{L}_{p/K} > 0.6$, $\mathscr{L}_{p/\pi} > 0.6$, $|\Delta r| < 0.3$ (cm), $|\Delta z| < 2$ (cm) π^- : $\mathscr{L}_{K/\pi} < 0.4$, $|\Delta r| < 0.3$ (cm), $|\Delta z| < 4$ (cm) Λ^0 : 1.11 < $M_{\Lambda^0} < 1.121$ (GeV/c²), good $\Lambda > 0$ e : $\mathscr{L}_e < 0.95$

 μ : $\mathscr{L}_{\mu} < 0.95$

 E_{γ} :

