Light Dark Matter Searches with the CDEX experiment at the Jinping CJPL Underground Laboratory

> Li, Hau-Bin 李浩斌 Academia Sinica 中央研究院

TEXONO

國聖

<u>OUTLINE</u>

- CDEX experiments: overview.
- DM searches: time-integrated, annual modulation, Migdal effect.

• Summary.

CDEX: China Dark matter EXperiment

Established in 2009

- •Tsinghua University (THU)
- •Sichuan University (SCU)
- •Nankai University (NKU)
- •China Institute of Atomic Energy (CIAE)
- •Beijing Normal University (BNU)
- Yalong River Company

- •Academia Sinica, Taiwan
- •Banaras Hindu University, India
- •Dokuz Eylül University, Turkey (as members of TEXONO

Taiwan EXperiment On NeutronO)

detectors setting at early phase, simulation, PCGe data/physics analysis, etc.

Jinping Hydroelectric Power Plants Jinping-II 4 hydraulic **Power Plant** tunnels 4800MW Φ13m×16.6km (WM006×8) Depth, meters of standard rock moun intensity m²/Yr 1000 2000 Kamioka 松林坪沟 **DUSEL 4850** 大奔流沟 CJPL 最峰桥 印坝子沟

Jinping-I Power Plant 3600MW (6×600MW)

FEEEst

CDEX at CJPL-I

tunnel entrance

CDEX stages

- Light WIMP mass searches on Ge
- <u>CDEX-1</u>: Development of pPC-HPGe detector, its background understanding, <u>results published</u>.
- <u>CDEX-10</u>: Performances of HPGe array detector system, <u>results published</u>.
- <u>CDEX-10X</u>: Fabrication of HPGe and Ge crystal growth by CDEX.
- <u>CDEX-100</u>: Ultra-low cosmogenic background and large LN₂ cooling and shielding system.
- <u>CDEX-1T</u>: Multi-purpose experiment for dark matter and double beta decay.

<u>CDEX plan for DM & 0vββ</u>

CJPL-I

CDEX-1 experiment

- 1. HPGe technology
 - Designed the first one single module 1kg-scale p-type point-contact Ge detector (1kg-PPCGe) "prototype" CDEX-1A
 - ✓ Improved 1kg-PPCGe CDEX-1B
- 2. Active shielding technology: NaI(TI) used as anti-Compton detector
 - ✓ CDEX-1A 1kg-PPCGe run
 - ✓ CDEX-1A 1kg-PPCGe + Nal(Tl) run (th~475 eV)
 - ✓ CDEX-1B 1kg-PPCGe + Nal(Tl) run (th~160 eV)

CDEX-1A 1kg PCGe

CDEX-1B 1kg PCGe

20cm OFHC Copper +20cm Lead

<u>bulk/surface:</u> largest sources of uncertainties

a curse : contaminate low energy spectrum

and

Astropart. Phys. 56, p1-8 (2014) : based on understanding of energy spectrum NIMA 886, p13-23 (2018) : comparing rise-time of different sources

most contributions are done by Taiwan team

The layout of CJPL-II

• 4 main halls : 14m(H)×14m(W)×130m(L);

Auxiliary Gate No.2

- 1号门 No.1 Gatewa

Total Volume: 300K m³;

2号辅助隧道

 Two expanded spaces: C1--φ18m×32m(H)→CDEX-1T B2--27m(L)×14m(W)×30m(H)

	CJPL-I	CJPL-II
Rock Work	4100 m ³	210000+151000m ³
Electric Power	70x2 kVA	10x2 MVA
Fresh Air	2400 m³/h	15000x3 m³/h
د CDEX-1T		CDEX-1T
No.2 Gateway		

<u>CDEX-1T at CJPL-II</u> for 0vββ

Modularized HPGe-PEN-sAr Veto System

a promising detectors design for CDEX100 – CDEX-1T PEN: holding, light-guide. sAr: active veto.

<u>summary</u>

- best modulation (χN) results < 6 GeV.
- best Migdal effect results at < 1 GeV.
- unique stable low threshold (250 eVee) Ge data with long time-span ~ 3.2 years.
- other results: axion PRD101, 052003, 2020
 & dark photon PRL124, 111301, 2020
- on the way to CDEX-100 and CDEX-1T.
- cooperate with LEGEND.

Thanks

supplemental material

Annual Modulation of WIMPs

- velocity (earth ref.) of WIMP: max. at Jun, min. at Dec.
- look at Jun-Dec spec. diff.
- need stable run > 1 years
- decouple unexplained excess count

time-integrated vs. annual modulation

time-integrated	annual modulation
search for excess count (large)	search for different of count (small)
energy spectrum modeling (a lot of simulation \rightarrow uncertainties)	time variation modeling (assume it is constant)
best sensitivities always at lowest energy (large uncertainties)	best sensitivities occur at higher energy (noise-free)

both are dark matter model dependent, both are needed for positive/negative results

TEXONO-CDEX Collaboration

<u>TEXONO</u> Taiwan **EX**periment On NeutrinO (since 1997)

Neutrino Physics at Kuo-Sheng Reactor Neutrino Laboratory (

- Taiwan (AS, NTHU, INER, KSNPS)
- Turkey (METU)
- India (BHU)

<u>CDEX</u> China Dark Matter Experiment (birth 2009)

Dark Matter Searches at China Jin-Ping Underground Laboratory (CJPL)

• China (<u>THU</u>, CIAE, NKU, SCU,EHDC)

TEXONO Collaboration

Texono Taiwan EXperiment On NeutrinO (since 1997)

Neutrino Physics at Kuo-Sheng Reactor Neutrino Laboratory (KSNL)

- Taiwan (AS, INER, KSNPS)
- Turkey (METU, DEU)
- India (BHU)

Partner : CDEX Collaboration

<u>CDEX</u> China Dark Matter Experiment (birth 2009)

- Dark Matter Searches at China Jin-Ping Underground Laboratory (CJPL)
- China (<u>THU</u>, CIAE, NKU, SCU,YLJHD)
- Ge as primary detector.
- same detector technique, i. e. bulk/surface seperation phys/noise seperation.

Compare with CDEX-1A:

<u>CDEX-1B experiment</u>

- 1 kg-scale-mass HPGe detector, cooled by cold finger.
- A NaI(TI) detector is used as active shielding to veto the gamma-ray induced background events.
- The detector has been under stable data taking conditions since March 27th, 2014.
- Threshold ~ 160 eVee. For modulation analysis, threshold ~ 250 eVee.
- Largest analysis uncertainties: bulk/surface separation at low energy.

sample from typical DM/v events (TEXONO), cosmic-vetoed + anti-Compton-vetoed

<u>most probable rise-time</u> <u>distributions</u>

- all the events samples share same bulk/surface rise-time distributions.
- unknown rise-time functions \rightarrow bin-by-bin fitted.
- treat each month as individual sources.

<u>CDEX-1B data < 0.85 keV</u>

- run-1 to run-2: change of shielding.
- 0.25 0.85 keV:

most important region for low mass WIMP

 χ2 test, (mean, RMS) consistent with null profile.

<u>Model dependent/independent</u> <u>modulation analysis</u>

fit the data to flat-bkg + cos (after K/L subtraction)

- i, j, k: energy-bin, time-bin, number of run
 - nijk : count rates
 - *P_{ijk}* : contributions from K/L-shells
 - Bik : time-independent background level, to be fitted

A_{ik} of Halo-model -

Aik : modulation amplitudes, to be fitted.

Model independent: modulation amplitudes of each χ^2_{ik} Model dependent: astrophysics dependent A_{ik} , sum over χ^2_{ik}

Model independent modulation

modulation amplitudes consistent with null-results by χ^2 test and (mean, RMS)

at < 20 GeV, best fitted phase is off by ~100 days, however $\Delta \phi > 0.5$ years (any ϕ is within 1- σ) data consistent with null-hypothesis at any ϕ

the results consistent with null-results at any phase (within 2- σ) up to 100 GeV

Migdal effect

nuclear recoil \rightarrow electrons cloud move, except one e- \rightarrow ionization

best annual modulation sensitivities < 6 GeV PHYSICAL REVIEW LETTERS 123, 161301 (2019)

Migdal effect

• probing m_{χ} to < 1 GeV,

PHYSICAL REVIEW LETTERS 123, 161301 (2019)

- best time-integrated results < 0.1 GeV
- best annual modulation results < 1 GeV

