The measurement of various efficiencies with Z $\rightarrow \mu\mu\gamma$

<u>Cheng-Han Wu</u>, Chia-Ming Kuo National Central University, Taiwan

TIDC HEP Meeting, 2021/01/22

- Efficiency measurement needs a high-purity sample.
- •Z $\rightarrow \mu\mu\gamma_{FSR}$ events provide us a high-purity (~97%) control sample, where γ_{FSR} is the photon coming from final state radiation (FSR).
- •We can use this control sample to perform the following efficiency measurements.
 - 1. Electron veto efficiency
 - 2. Trigger efficiency as the photon is involved
 - 3. Photon identification (ID) efficiency

Cheng-Han Wu (NCU, Taiwan)

FSR selection

µ track points to the cluster

FSR selection:

- 1. $\Delta R(\mu_1, \mathbf{y}) > 0.1$ and $\Delta R(\mu_2, \mathbf{y}) > 0.1$
- 2. $\Delta R(\mu_1, \mathbf{y}) < 0.8 \text{ or } \Delta R(\mu_2, \mathbf{y}) < 0.8$
- 3. $M_{\mu\mu} + M_{\mu\mu\gamma} < 180 \text{ GeV}$
- 4. Three body mass must be close to Z mass (91.18 GeV)

200

M_{IIY} [GeV]

To avoid the photon picking up the track from one of the muons.

Ζγ ΜC 180 $Z\gamma \rightarrow ee\gamma$ data 160 $Z\gamma \rightarrow \mu\mu\gamma$ data 140 120 **ISR** photon 100 80 FSR photon CMS, 36 pb 60 90 100 60 70 80 110 120 50 M_{11} [GeV]

[Physics Letters B 701 (2011) 535-555]

Electron veto efficiency

t in the photon identification

• The rejection of electron is important in the photon identification in CMS. There are two commonly used methods - Conversionsafe and Pixel-seed electron veto.

Conversion-safe veto:

The photon candidate will be rejected when the **innermost hit** in the pixel detector is **NOT** matched to the **reconstructed conversion vertex**.

Pixel-seed veto:

The photon candidate will be rejected when there are at least **TWO** hits in the pixel detector points to the ECAL cluster.

59.83 fb⁻¹ (13 TeV. 2018)

Cheng-Han Wu (NCU, Taiwan)

CMS Preliminary

Mu17Pho30 trigger efficiency

- The strategy of measuring the trigger efficiency is the tag-andprobe method.
- To see if the probe μ & γ_{FSR} can fire the corresponding μ & γ_{FSR} filters in the Mu17Pho30 trigger.

They are required to pass the FSR selection (s3) to ensure that they come from $Z \rightarrow \mu\mu\gamma_{FSR}$.

Cheng-Han Wu (NCU, Taiwan)

Summary

- Control samples with FSR photons enable us to perform efficiency measurements.
- This method has been widely used to measure the efficiencies of the different electron vetos and triggers involving photons
- This technique and results of electron veto were included in the CMS EGM-17-001 paper, which was submitted to JINST [arXiv:2012.06888].

CMS detector

Cheng-Han Wu (NCU, Taiwan)