

Status report

2025/05/15 ZDC Internal WAI YUEN CHAN Overview

• Focus on improving the performance of GAN-CNN

Introduction

2025/05/15

ZDC Internal

3

Recap: Training result

Recap: Training result

2025/05/15

 Learning rate scheduler: a function which dynamically adjusts the learning rate over the training. The learning rate cycles through these bounds in a triangular or exponential pattern, which helps the model escape local minima and converge faster.

• Here we use "CyclicLR"

• We have tried different combination of hypermeters, in order to stabilise the loss function.

CyclicLR: default

cyclic_base_lr = 1e-6
cyclic_max_lr = 1e-4
cyclic_step_size_up = 40
cyclic_step_size_down = 160
cyclic_mode = 'exp_range'
cyclic_gamma = 0.999925

CyclicLR: reduced

cyclic_base_lr = 1e-6
cyclic_max_lr = 5e-5
cyclic_step_size_up = 80
cyclic_step_size_down = 80
cyclic_mode = 'exp_range'
cyclic_gamma = 0.999

Name	CNN	Label ratio	Training ratio	CyclicLR setting	epochs
Default	default	0.73:0.27	1:1	default	100
Test 1	simplified	0.73:0.27	1:1	default	100
Test 2	simplified	0.8:0.2	1:1	default	150
Test 3	simplified	0.8:0.2	1:1	deduced	150
Test 4	simplified	0.7:0.3	1:1	asymmetry	150
Test 5	simplified	0.65:0.35	1:3	asymmetry	150
Test 6	simplified	0.6:0.4	1:3	asymmetry	150

CyclicLR: asymmetry

cyclic_base_lr = 1e-6 cyclic_max_lr_GEN = 1e-4 #GEN cyclic_max_lr_DIS = 7e-5 #DIS cyclic_step_size_up = 100 cyclic_step_size_down = 100 cyclic_mode = 'exp_range' cyclic_gamma = 0.995

• We have tried different combination of hypermeters, in order to stabilise the loss function.

CNN: default (example)

```
self.proj_head = nn.Sequential(
        Conv2dBlockH5W5(hidden_dim, hidden_dim),
        Conv2dBlockH5W5(hidden_dim, hidden_dim),
        PixelUnshuffle2D(2, 2), # (10, 10)
        Conv2dBlockH5W5(hidden_dim*4, hidden_dim*2),
        Conv2dBlockH5W5(hidden_dim*2, hidden_dim),
        PixelUnshuffle2D(2, 2), # (5, 5)
        Conv2dBlockH3W3(hidden_dim*4, hidden_dim*2),
        Conv2dBlockH3W3(hidden_dim*2, hidden_dim),
        nn.Conv2d(hidden_dim, hidden_dim,
                  kernel_size = (3, 3), stride = (1, 1),
                  padding = (0, 0)), \# (3, 3)
        nn.Flatten(start_dim = 1, end_dim = 3), \# 9 = 3 x 3
        LinearBlock(hidden_dim*9, hidden_dim*4, 4),
        LinearBlock(hidden_dim*4, hidden_dim*4, 4),
        nn.Linear(hidden_dim*4, 1),
        nn.Sigmoid()
```

CNN: simplified (example)

lf.proj_head = nn.Sequential(
Conv2dBlockH5W5(hidden_dim, hidden_dim),
<pre>#Conv2dBlockH5W5(hidden_dim, hidden_dim),</pre>
PixelUnshuffle2D(2, 2), # (10, 10)
Conv2dBlockH5W5(hidden_dim∗4, hidden_dim),
#Conv2dBlockH5W5(hidden_dim∗2, hidden_dim),
PixelUnshuffle2D(2, 2), # (5, 5)
Conv2dBlockH3W3(hidden_dim∗4, hidden_dim),
#Conv2dBlockH3W3(hidden_dim∗2, hidden_dim),
nn.Conv2d(hidden_dim, hidden_dim,
kernel_size = (3, 3), stride = (1, 1),
padding = (0, 0)), # (3, 3)
nn.Flatten(start_dim = 1, end_dim = 3), $\#$ 9 = 3 x 3
LinearBlock(hidden_dim∗9, hidden_dim∗4, 4),
#LinearBlock(hidden_dim∗4, hidden_dim∗4, 4),
nn.Linear(hidden_dim∗4, 1),
nn.Sigmoid()

se

lossGEN

lossDIS

ZDC Internal

Test 4

ZDC Internal

Test result from Test 9 model

On-going items

- We can see that the model learn more from the background noise rather than the MC samples. We have to improve the masking by changing the weighting and bias.
- Also, as the training is optimizing the sum of lossMASK, lossVAL and lossGEN, we have to add weighting into lossMASK and lossVAL to affect the combination (in order to change the learning dynamics).
- Balancing the GAN (Generator vs Discriminator):
 - Training ratio back to 1:1
 - Add dropout layers in the CNN
 - Label ratio back to 0.7:0.3

```
###Add dropout
self.encoder = nn.Sequential(
    nn.Linear(1, hidden_dim*4),
    LinearBlock(hidden_dim*4, hidden_dim*9, 4),
    nn.Dropout(0.1), # Add dropout
    nn.Unflatten(1, (hidden_dim, 3, 3)),
    nn.ConvTranspose2d(hidden_dim, hidden_dim,
        kernel_size=(3, 3), stride=(1, 1), padding=(0, 0)),
    Conv2dBlockH3W3(hidden_dim, hidden_dim*4),
    nn.Dropout(0.1),
    PixelShuffle2D(2, 2),
    Conv2dBlockH5W5(hidden_dim, hidden_dim*4),
    nn.Dropout(0.1),
    PixelShuffle2D(2, 2),
    Conv2dBlockH5W5(hidden_dim, hidden_dim*4),
    nn.Dropout(0.1),
    PixelShuffle2D(2, 2),
    Conv2dBlockH5W5(hidden_dim, hidden_dim)
    ``
```


- We improved the GAN dynamics, but the model didn't generate a MC-like images.
- We have to improve the structure of CNN to affect the learning dynamics, in order to train a model which can learn the MC-like events rather than background noise.