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Introduction
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using parameters described above. The scale parameter g is found to be
constant over the wide energy range, therefore it is fixed in the present
analysis. Individual shower parameters E; and T, are obtained from a fit
to observed energy depositions in the ECAL cells of that shower. Fig. 7
shows the high quality of the description of electron showers over a wide
energy range by the model based on Eq. (1),

At a given shower depth, the transverse shower shape as a function of
the distance from the shower axis r is described by the sum of a narrow
core and a wide tail:
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Network structure

Hidden dim =32 (i.e. 32 neurons in each hidden layers)
Add layers into the default structure: “Extended 2”
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Definition of loss

Originally we add up loss_mask, loss_val and loss_gen; also calculate the loss_dis separately.
Now we removed the GAN part so we only use the sum of loss_mask and loss_val to train the regression model.
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Test result (image) @ irannEmRy

Besides the image itself, we have 2 histogram to study the model.
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Test result (hist: MC v GEN cell energy)
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Test result (hist: MC v GEN cell energy) 679 o1 3R 5 98 B, 0 8 9
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What do we learn from these plots &) = 2T R DB
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* We can see that the model is trying to
balance the MC-mimicking and the mask
range from the hist.

* Which is very clear if we overlay the hist.
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* We separated the GAN from the algorithm and now focusing on the training of
the regression.

* By checking the image and corresponding histogram, we can see the
improvement along the training.

* Now we are training with the same set of parameters with 300 epochs.
* Then we can consider to add weighting to the sum of losses.
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