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➤ Precision isovector axial, tensor, scalar charges [PRD108 (2023)] 

➤ Quark and gluon momentum fractions,  [PLB714 (2012) + in preparation] 

➤ Renormalisation and mixing 

➤ Off-forward Compton amplitude [PRD105 (2022), PRD110 (2024)] 

➤ Reconstruction of generalised parton distribution functions 

➤ Transverse forces [PRL134 (2025)]

⟨x⟩q , ⟨x⟩g
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Precision isovector axial, tensor, scalar charges
[PRD108 (2023)]



➤ Current  

➤ Unconsidered systematic error in the 
experiments? or evidence of new physics? 

➤ Bottle counts how many neutrons left 

➤ Beam counts final state protons only 

➤ Evidence of some unknown decay in bottle?

τn
bottle − τn

beam ∼ 4σ
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Neutron Lifetime Puzzle

⌧beam � ⌧bottle ⇡ 4� discrepancy

Unconsidered systematic error in the experiments? or
Evidence of new physics?

Rose Smail
Constraining Beyond The Standard Model Nucleon Isovector Charges



➤ Nucleon isovector charges ( ) can have an impact on searches for New Physics 

➤ Neutron lifetime puzzle 

➤ Neutron -decay 

➤ CP-violation and neutron EDM

gu−d
A , gu−d

T , gu−d
S

β
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[QCDSF, PRD108 (2023)]
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D2. Project Description
PROJECT TITLE

Neutron lifetime — what’s the fuss over 10 seconds?

PROJECT AIMS AND BACKGROUND

Neutron lifetime puzzle:
Neutrons disappear from a storage

bottle faster than they are observed to
convert to protons in a beam.
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Figure 1: A nice caption.

The neutron lifetime puzzle is a longstanding issue in
the field of nuclear and particle physics, characterized by a
discrepancy in the measurement of the average lifetime of
a neutron. The neutron lifetime refers to the time it takes
for a neutron to decay into a proton, an electron, and an
electron antineutrino. Despite numerous experimental ef-
forts to determine the neutron lifetime, different methods
have produced conflicting results, with some yielding val-
ues that are significantly shorter or longer than others. The
resolution of this puzzle remains an important and ongoing
area of research.

Recently, advances in computational methods, partic-
ularly in lattice QCD (Quantum Chromodynamics), have
opened up the possibility of providing important theoreti-
cal guidance on the neutron lifetime puzzle. Lattice QCD
is a powerful tool for calculating the properties of strongly-
interacting particles, such as neutrons, from first principles.
By performing large-scale numerical simulations on high-
performance computing systems, it is now possible to compute the matrix elements that govern neutron
decay directly from QCD. These calculations have the potential to shed light on the neutron lifetime puzzle
and provide critical information for resolving the discrepancy in experimental measurements. They rep-
resent an exciting development in the effort to understand the behavior of neutrons and the fundamental
forces that govern their interactions.

However, achieving precision in these theoretical calculations requires good control of radiative correc-
tions, which arise from the emission and absorption of photons and other particles. These corrections can
have a significant impact on the neutron lifetime and must be carefully taken into account. This presents
a particular challenge for lattice QCD calculations, as radiative corrections are often difficult to model
in a controlled and systematic way. Nevertheless, recent progress in techniques for computing radiative
corrections in lattice QCD has opened up new avenues for attacking the neutron lifetime puzzle. By com-
bining accurate lattice QCD calculations with careful consideration of radiative corrections, it may now be
possible to provide a comprehensive and reliable theoretical prediction for the neutron lifetime, which can
help resolve the long-standing discrepancy in experimental measurements.

Aim 1: Perform a state-of-the-art calculation of the nucleon axial charge in lattice QCD.
Aim 2: Compute the low moments of the F3 structure function — to provide constraint on the

γW -box electroweak radiative corrections.
Aim 3: Perform a direct lattice calcution of the neutrino absorption rate, νn → pe−, including

QED — enabling a direct test of conventional techniques used in computing radiative
corrections.

Aim 4: Compute the lattice renormalisation of 4-point quark-quark-lepton-lepton operators.
Aim 5: Compute other forward nucleon matrix elements relevant for exotic (i.e. new physics)

decay channels of the neutron.
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➤ Importance of lattice input to these reflected in 
appearing in FLAG in 2021 

electron momentum — neutron 
polarisation correlation

electron — anti-neutrino 
momenta correlation 

FLAG ‘21

Motivation



➤ For a beam of polarised neutrons the differential decay rate is described by: 

 

➤ SM:  

➤ Added to account for the possible BSM scalar and tensor interactions

dW ∝
1
τn

F(En)[1 + a
⃗ke ⋅ ⃗kν

EeEν
+ b

me

Ee
+ A

⃗sn ⋅ ⃗ke

Ee
+ B

⃗sn ⋅ ⃗kν

Eν
]

b = 0
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Neutron �-decay observables

For a beam of polarized neutrons the di↵erential decay rate is
described by:

dW /
1

⌧n
F (Ee)

h
1 + a

pe .p⌫
EeE⌫

+ b
me

Ee
+ A

�n.pe
Ee

+ B
�n.p⌫
E⌫

i

⌧n lifetime

F (Ee) beta energy
spectrum

b- Fierz interference term

Rose Smail
Constraining Beyond The Standard Model Nucleon Isovector Charges

Fierz interference term

⟨p |V/A |n⟩

SM BSM

⟨p |T/S |n⟩

gV ≈ 1, gA = 1.2756(13) gS ≈ ?, gT ≈ ?



Extrapolations: 

➤ Continuum  

➤ Unavoidable 

➤ Improved actions (errors O(a2)) 

➤ Finer lattice spacings

Systematics of Lattice QCD

a ! 0



Extrapolations: 

➤ Continuum  

➤ Unavoidable 

➤ Improved actions (errors O(a2)) 

➤ Finer lattice spacings 

➤ Finite volume 

➤ Large volumes so effects are exponentially suppressed

a ! 0

L ! 1

Systematics of Lattice QCD



Extrapolations: 

➤ Continuum  

➤ Unavoidable 

➤ Improved actions (errors O(a2)) 

➤ Finer lattice spacings 

➤ Finite volume 

➤ Large volumes so effects are exponentially suppressed 

➤ Chiral 

➤ Simulate at physical quark masses  

➤ Chiral perturbation theory 

➤ Flavour-breaking expansion

a ! 0

L ! 1

m⇡ ! 140MeV
GOR =) m2

⇡ / mq

Systematics of Lattice QCD



Matrix elements on the lattice
J
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<latexit sha1_base64="80x66JJPaIS8kB7c0Ec+oEiGHg4=">AAACA3icdVDLSgNBEJyNrxhfq970MhhED7LMmoDxFlDBYwQTA9kQZiezyZDZBzO9QlgCXvwVLx4U8epPePNvnDwEFS1oKKq66e7yEyk0EPJh5ebmFxaX8suFldW19Q17c6uh41QxXmexjFXTp5pLEfE6CJC8mShOQ1/yG39wNvZvbrnSIo6uYZjwdkh7kQgEo2Ckjr0DR3Dg9XrYCxRlmTvKvHMugeKLUccuEqd0alDBxCkTQlwyI6SEXYdMUEQz1Dr2u9eNWRryCJikWrdckkA7owoEk3xU8FLNE8oGtMdbhkY05LqdTX4Y4X2jdHEQK1MR4In6fSKjodbD0DedIYW+/u2Nxb+8VgpBpZ2JKEmBR2y6KEglhhiPA8FdoTgDOTSEMiXMrZj1qQkDTGwFE8LXp/h/0jh2XOK4V+VitTKLI4920R46RC46QVV0iWqojhi6Qw/oCT1b99aj9WK9Tltz1mxmG/2A9fYJH4CXKQ==</latexit><latexit sha1_base64="80x66JJPaIS8kB7c0Ec+oEiGHg4=">AAACA3icdVDLSgNBEJyNrxhfq970MhhED7LMmoDxFlDBYwQTA9kQZiezyZDZBzO9QlgCXvwVLx4U8epPePNvnDwEFS1oKKq66e7yEyk0EPJh5ebmFxaX8suFldW19Q17c6uh41QxXmexjFXTp5pLEfE6CJC8mShOQ1/yG39wNvZvbrnSIo6uYZjwdkh7kQgEo2Ckjr0DR3Dg9XrYCxRlmTvKvHMugeKLUccuEqd0alDBxCkTQlwyI6SEXYdMUEQz1Dr2u9eNWRryCJikWrdckkA7owoEk3xU8FLNE8oGtMdbhkY05LqdTX4Y4X2jdHEQK1MR4In6fSKjodbD0DedIYW+/u2Nxb+8VgpBpZ2JKEmBR2y6KEglhhiPA8FdoTgDOTSEMiXMrZj1qQkDTGwFE8LXp/h/0jh2XOK4V+VitTKLI4920R46RC46QVV0iWqojhi6Qw/oCT1b99aj9WK9Tltz1mxmG/2A9fYJH4CXKQ==</latexit><latexit sha1_base64="80x66JJPaIS8kB7c0Ec+oEiGHg4=">AAACA3icdVDLSgNBEJyNrxhfq970MhhED7LMmoDxFlDBYwQTA9kQZiezyZDZBzO9QlgCXvwVLx4U8epPePNvnDwEFS1oKKq66e7yEyk0EPJh5ebmFxaX8suFldW19Q17c6uh41QxXmexjFXTp5pLEfE6CJC8mShOQ1/yG39wNvZvbrnSIo6uYZjwdkh7kQgEo2Ckjr0DR3Dg9XrYCxRlmTvKvHMugeKLUccuEqd0alDBxCkTQlwyI6SEXYdMUEQz1Dr2u9eNWRryCJikWrdckkA7owoEk3xU8FLNE8oGtMdbhkY05LqdTX4Y4X2jdHEQK1MR4In6fSKjodbD0DedIYW+/u2Nxb+8VgpBpZ2JKEmBR2y6KEglhhiPA8FdoTgDOTSEMiXMrZj1qQkDTGwFE8LXp/h/0jh2XOK4V+VitTKLI4920R46RC46QVV0iWqojhi6Qw/oCT1b99aj9WK9Tltz1mxmG/2A9fYJH4CXKQ==</latexit><latexit sha1_base64="80x66JJPaIS8kB7c0Ec+oEiGHg4=">AAACA3icdVDLSgNBEJyNrxhfq970MhhED7LMmoDxFlDBYwQTA9kQZiezyZDZBzO9QlgCXvwVLx4U8epPePNvnDwEFS1oKKq66e7yEyk0EPJh5ebmFxaX8suFldW19Q17c6uh41QxXmexjFXTp5pLEfE6CJC8mShOQ1/yG39wNvZvbrnSIo6uYZjwdkh7kQgEo2Ckjr0DR3Dg9XrYCxRlmTvKvHMugeKLUccuEqd0alDBxCkTQlwyI6SEXYdMUEQz1Dr2u9eNWRryCJikWrdckkA7owoEk3xU8FLNE8oGtMdbhkY05LqdTX4Y4X2jdHEQK1MR4In6fSKjodbD0DedIYW+/u2Nxb+8VgpBpZ2JKEmBR2y6KEglhhiPA8FdoTgDOTSEMiXMrZj1qQkDTGwFE8LXp/h/0jh2XOK4V+VitTKLI4920R46RC46QVV0iWqojhi6Qw/oCT1b99aj9WK9Tltz1mxmG/2A9fYJH4CXKQ==</latexit>

energy gap to 
lowest excitation

t
<latexit sha1_base64="7D/JXAsgDnnKU+dxIGdfz0DEZaU=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbB05K1Beut4MVjC/YD2qVk02wbm80uSVYoS3+BFw+KePUnefPfmLYrqOiDgcd7M8zMCxLBtcH4wymsrW9sbhW3Szu7e/sH5cOjjo5TRVmbxiJWvYBoJrhkbcONYL1EMRIFgnWD6fXC794zpXksb80sYX5ExpKHnBJjpZYZlivYrV5Z1BF2axhjD+cEV5Hn4iUqkKM5LL8PRjFNIyYNFUTrvocT42dEGU4Fm5cGqWYJoVMyZn1LJYmY9rPloXN0ZpURCmNlSxq0VL9PZCTSehYFtjMiZqJ/ewvxL6+fmrDuZ1wmqWGSrhaFqUAmRouv0YgrRo2YWUKo4vZWRCdEEWpsNiUbwten6H/SuXA97HqtWqXRyOMowgmcwjl4cAkNuIEmtIECgwd4gmfnznl0XpzXVWvByWeO4Qect082aI0x</latexit><latexit sha1_base64="7D/JXAsgDnnKU+dxIGdfz0DEZaU=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbB05K1Beut4MVjC/YD2qVk02wbm80uSVYoS3+BFw+KePUnefPfmLYrqOiDgcd7M8zMCxLBtcH4wymsrW9sbhW3Szu7e/sH5cOjjo5TRVmbxiJWvYBoJrhkbcONYL1EMRIFgnWD6fXC794zpXksb80sYX5ExpKHnBJjpZYZlivYrV5Z1BF2axhjD+cEV5Hn4iUqkKM5LL8PRjFNIyYNFUTrvocT42dEGU4Fm5cGqWYJoVMyZn1LJYmY9rPloXN0ZpURCmNlSxq0VL9PZCTSehYFtjMiZqJ/ewvxL6+fmrDuZ1wmqWGSrhaFqUAmRouv0YgrRo2YWUKo4vZWRCdEEWpsNiUbwten6H/SuXA97HqtWqXRyOMowgmcwjl4cAkNuIEmtIECgwd4gmfnznl0XpzXVWvByWeO4Qect082aI0x</latexit><latexit sha1_base64="7D/JXAsgDnnKU+dxIGdfz0DEZaU=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbB05K1Beut4MVjC/YD2qVk02wbm80uSVYoS3+BFw+KePUnefPfmLYrqOiDgcd7M8zMCxLBtcH4wymsrW9sbhW3Szu7e/sH5cOjjo5TRVmbxiJWvYBoJrhkbcONYL1EMRIFgnWD6fXC794zpXksb80sYX5ExpKHnBJjpZYZlivYrV5Z1BF2axhjD+cEV5Hn4iUqkKM5LL8PRjFNIyYNFUTrvocT42dEGU4Fm5cGqWYJoVMyZn1LJYmY9rPloXN0ZpURCmNlSxq0VL9PZCTSehYFtjMiZqJ/ewvxL6+fmrDuZ1wmqWGSrhaFqUAmRouv0YgrRo2YWUKo4vZWRCdEEWpsNiUbwten6H/SuXA97HqtWqXRyOMowgmcwjl4cAkNuIEmtIECgwd4gmfnznl0XpzXVWvByWeO4Qect082aI0x</latexit><latexit sha1_base64="7D/JXAsgDnnKU+dxIGdfz0DEZaU=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbB05K1Beut4MVjC/YD2qVk02wbm80uSVYoS3+BFw+KePUnefPfmLYrqOiDgcd7M8zMCxLBtcH4wymsrW9sbhW3Szu7e/sH5cOjjo5TRVmbxiJWvYBoJrhkbcONYL1EMRIFgnWD6fXC794zpXksb80sYX5ExpKHnBJjpZYZlivYrV5Z1BF2axhjD+cEV5Hn4iUqkKM5LL8PRjFNIyYNFUTrvocT42dEGU4Fm5cGqWYJoVMyZn1LJYmY9rPloXN0ZpURCmNlSxq0VL9PZCTSehYFtjMiZqJ/ewvxL6+fmrDuZ1wmqWGSrhaFqUAmRouv0YgrRo2YWUKo4vZWRCdEEWpsNiUbwten6H/SuXA97HqtWqXRyOMowgmcwjl4cAkNuIEmtIECgwd4gmfnznl0XpzXVWvByWeO4Qect082aI0x</latexit>
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Source

Feynman–Hellmann
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Feynman-Hellmann Theorem

Suppose we want:       

Modify action with external field: 

Measure hadron energy while changing  

Calculation of matrix elements  hadron spectroscopy

⟨H |𝒪 |H⟩

λ

≡

12

real parameter

local operator, e.g. q̄(x)γ3q(x)

@EH(�, ~p)

@�

����
�=0

=
1

2EH(~p)
hH(~p)|O(0)|H(~p)i

S → S + λ∫ d4x 𝒪(x)

G(λ; ⃗p; t) = ∫ dx e−i ⃗p⋅ ⃗x⟨χ′ (x)χ(0)⟩
large t

∝ e−EH(λ, ⃗p)t



➤ Can modify fermion action in 2 places: 

๏ quark propagators 

13

๏ fermion determinantConnected Disconnected

 [PLB714 (2012)]⟨x⟩g

(Requires new gauge configurations)

Δs [PRD92 (2015)]

gA, ΔΣ [PRD90 (2014)] 
NPR [PLB740 (2015)] 
GE,GM [PRD96 (2017)] 

 [PRL118 (2017), PRD102 (2020), PRD107 (2023)] 
GPDs [PRD105 (2022), PRD110 (2024)] 

 [PRD108 (2023)] 
gA, gT, gS [PRD108 (2023)] 

 [PRD111 (2025)] 

 [PRD111 (2025)]

F1,2(ω, Q2)

Σ → n

S1(Q2)
F3(ω = 0, Q2)

NPR [PLB740 (2015)]

Feynman-Hellmann Theorem



➤ Can modify fermion action in 2 places: 

๏ quark propagators 

13

๏ fermion determinantConnected Disconnected

 [PLB714 (2012)]⟨x⟩g

(Requires new gauge configurations)

Δs [PRD92 (2015)]

gA, ΔΣ [PRD90 (2014)] 
NPR [PLB740 (2015)] 
GE,GM [PRD96 (2017)] 

 [PRL118 (2017), PRD102 (2020), PRD107 (2023)] 
GPDs [PRD105 (2022), PRD110 (2024)] 

 [PRD108 (2023)] 
gA, gT, gS [PRD108 (2023)] 

 [PRD111 (2025)] 

 [PRD111 (2025)]

F1,2(ω, Q2)

Σ → n

S1(Q2)
F3(ω = 0, Q2)

NPR [PLB740 (2015)]

Feynman-Hellmann Theorem



Quark Axial Charges in the Nucleon (Connected)

L ! L+ �O @EH/@�|�=0
/

⌦
H(p)

��O(0)
��H(p)

↵

Want
⌦
Ns(p)

�� q̄(0)�µ�5q(0)
��Ns(p)

↵
= 2isµ�q q 2 (u, d)

Do L ! L+ �q̄(�i�3�5)q =)
@EN(�)

@�

����
�±

�=0

= ±�qconn.

m⇡ ⇡ 470 MeV 350 configurations 32
3
⇥ 64

Alexander Chambers Hadron Structure & Feynman-Hellmann Southampton July 25, 2016 10 / 22

➤ Want 

➤ Employ

14

hNs(~p)|q̄(0)�µ�5q(0)|Ns(~p)i = 2isµ�q q 2 (u, d)

L ! L+ �q̄(�i�3�5)q =) @EN (�)

@�

����
�±

�=0

= ±�qconn.

Energy shifts v λEnergy shifts v t

(Connected only, [PRD90 (2014)])Demonstration: Axial charges



15

Energy shifts: weighted average

Minimum time used in fit~0.5-0.55fm

Weights Combined result

gA

w̃f =
pf

σ2
f

(Non-normalised) weights:

fit p-value

result uncertainty

see also: Beane et al. NPLQCD/QCDSF, PRD(2021), 
Rinaldi et al., PRD(2019)

mπ ≈ 265 MeV, a = 0.068 fm, V = 483 × 96, λ = 5 × 10−4

gT

t = 10, 9, 8, 7, 6 for a = 0.052, 0.058, 0.068, 0.074, 0.082 fm

[PRD108 (2023)]



mπ ≈ 265 MeV
Comparison to 3-point functions

2-state fit Feynman-Hellmann

Excellent agreement between Feynman-Hellmann and standard 3-point function methods

16

2 4 6 8 10 12 14 16

ø for 3-pt, t for 2-pt

2

3

4

5

6

7

8

R
(t

se
p
,ø

;I
;°

u
n
p
ol
)

FH

2-exp fit

tsep = 11

tsep = 14

tsep = 17

gS
a=0.068fm, V=483x96 , #measurements= 534x2sources 



Quark mass trajectory

17
Bietenholz et al. [QCDSF-UKQCD], PRD(2011)

light quarks

st
ra

ng
e 

qu
ar

k

mℓ

ms ex
ac

t S
U(3)

 

sy
mmetr

y

“Typical” trajectory: 
fix strange quark mass to physical 
point and lower light quark mass

physical point

QCDSF trajectory: 
Tune to physical average quark mass. 
Approach physical point by breaking  
SU(3) symmetry. 

Hold “m-bar” constant: 
m = 1

3 (2mℓ + ms) = 1
3 (2mphys

ℓ + mphys
s )



Flavour-breaking expansion

18

Consider general flavour matrix elements of octet baryons: 

                              

In exact SU(3) limit, just 2 independent constants: 

➤ F- and D-type couplings 

At linear order in SU(3) breaking: 5 slope parameters (3 D’s & 2 F’s) 

➤ # of parameters (polynomials/operators) reduced by restricting to  line

⟨B′ |JF |B⟩ = AB′ FB

m̄ = constant

+

0−

0

Y

+1−1

Ξ

Σ Σ

p(uud)n(udd)

Ξ (uss)(dss)

(uds) (uus)

I
3

Λ
0(uds)

Σ
−
(dds)

7

Index Baryon (B) Meson (F ) Current (JF )
1 n K0 d̄�s
2 p K+ ū�s
3 ⌃� ⇡� d̄�u
4 ⌃0 ⇡0 1p

2

�
ū�u� d̄�d

�

5 ⇤0 ⌘ 1p
6

�
ū�u+ d̄�d� 2s̄�s

�

6 ⌃+ ⇡+ ū�d
7 ⌅� K� s̄�u
8 ⌅0 K̄0 s̄�d
0 ⌘0 1p

6

�
ū�u+ d̄�d+ s̄�s

�

TABLE IV. The conventions for the generalised currents. We
use the convention that current (i.e. operator) numbered by
i has the same e↵ect as absorbing a meson with the index i.
Here � represents an arbitrary Dirac matrix [37].

where J
F is the appropriate operator, or current, from

Table IV and F represents the flavour structure of the
operator. From Table III we can now read o↵ the expan-
sions of the various matrix elements, where the f and d

terms are independent of �ml and the coe�cients r1, r2,
r3 and s1, s2 are the leading order �ml terms. For exam-
ple if we look at the ⌃̄⇡⌃ term, we have to first order in
�ml:

h⌃+
| J

⇡
0

|⌃+
i = A⌃̄⇡⌃ = 2f + (�2s1 +

p
3s2)�ml.

(22)

B. Mass Dependence: ‘Fan Plots’

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the non-singlet polynomials in the quark mass.
In this sub-section quantities (Di, Fi) are constructed
which are equal at the symmetric point and di↵er in
the case where the quark masses are di↵erent. We can
then evaluate the the violation of SU(3) symmetry that
emerges from the di↵erence in ms �ml.

1. The d-fan

Following Ref. [37], we construct the following combi-
nations of matrix elements which have the same value,
2d, at the SU(3)d symmetric point:

D1 ⌘ �(AN̄⌘N +A⌅̄⌘⌅) = 2d� r1�ml,

D2 ⌘ A⌃̄⌘⌃ = 2d+ (r1 + 2
p
3r3)�ml,

D3 ⌘ �A⇤̄⌘⇤ = 2d� (r1 + 2r2)�ml,

D4 ⌘
1
p
3
(AN̄⇡N �A⌅̄⇡⌅) = 2d�

4
p
3
r3�ml,

D5 ⌘ A⌃̄⇡⇤ = 2d+ (r2 �
p
3r3)�ml,

D6 ⌘
1
p
6
(AN̄K⌃ +A⌃̄K⌅) = 2d+

2
p
3
r3�ml,

D7 ⌘ �(AN̄K⇤ +A⇤̄K⌅) = 2d� 2r2�ml.

(23)

By constructing these quantities the result is a ‘fan’ plot
with seven lines and three slope parameters (r1, r2 and
r3) constraining them. The slope parameters can be con-
strained by calculating octet baryon matrix elements on
a set of ensembles with varying quark masses at fixed lat-
tice spacing, such as those given in Table I, and construct-
ing the Dis. For the forward matrix elements considered
here, these Dis can also be written as linear combina-
tions of the di↵erent quark contributions to the baryon
charges. For example, using Table IV we see:

D1 = � (AN̄⌘N +A⌅̄⌘⌅)

= �

✓
1
p
6
(gu

p
+ g

d

p
) +

1
p
6
(gu⌅ � 2gs⌅)

◆
,

(24)

where we introduce the notation g
q

B
to denote the quark,

q, contribution to the overall charge in the baryon, B. In
this work we only consider the flavour diagonal matrix
terms, i.e. there are no transition terms. Therefore, only
the diagonal D terms, D1, D2 and D4, are used. An
‘average D’ can also be constructed from the diagonal
amplitudes:

XD =
1

6
(D1 + 2D2 + 3D4) = 2d+O(�m2

l
), (25)

which is constant in �ml up to terms O(�m2
l
). When con-

structing these fan plots it is useful to plot D̃i = Di/XD

to find the average fit to reduce statistical fluctuations.

2. The f-fan

Similarly another five quantities, Fi, can be con-
structed which all have the same value, 2f , at the SU(3)f
symmetric point:

F1 ⌘
1
p
3
(AN̄⌘N �A⌅̄⌘⌅) = 2f �

2
p
3
s2�ml,

F2 ⌘ (AN̄⇡N +A⌅̄⇡⌅) = 2f + 4s1�ml,

F3 ⌘ A⌃̄⇡⌃ = 2f + (�2s1 +
p
3s2)�ml,

F4 ⌘
1
p
2
(A⌃̄K⌅ �AN̄K⌃) = 2f � 2s1�ml,

F5 ⌘
1
p
3
(A⇤̄K⌅ �AN̄K⇤) = 2f +

2
p
3
(
p
3s1 � s2)�ml.

(26)
Again, an ‘average F’ can be calculated through:

XF =
1

6
(3F1 + F2 + 2F3) = 2f +O(�m2

l
). (27)

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show
up in the r1 coe�cient and r

discon
1 cancels in the case

g
u�d

T,A,S
= g

u

T,A,S
� g

d

T,A,S
. Unlike the d-fan, the f -fan to

linear order, has no error from dropping the quark-line
disconnected contributions, as none of the ri parameters
appear in the f -fan.
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TABLE IV. The conventions for the generalised currents. We
use the convention that current (i.e. operator) numbered by
i has the same e↵ect as absorbing a meson with the index i.
Here � represents an arbitrary Dirac matrix [37].

where J
F is the appropriate operator, or current, from

Table IV and F represents the flavour structure of the
operator. From Table III we can now read o↵ the expan-
sions of the various matrix elements, where the f and d

terms are independent of �ml and the coe�cients r1, r2,
r3 and s1, s2 are the leading order �ml terms. For exam-
ple if we look at the ⌃̄⇡⌃ term, we have to first order in
�ml:

h⌃+
| J

⇡
0

|⌃+
i = A⌃̄⇡⌃ = 2f + (�2s1 +

p
3s2)�ml.

(22)

B. Mass Dependence: ‘Fan Plots’

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the non-singlet polynomials in the quark mass.
In this sub-section quantities (Di, Fi) are constructed
which are equal at the symmetric point and di↵er in
the case where the quark masses are di↵erent. We can
then evaluate the the violation of SU(3) symmetry that
emerges from the di↵erence in ms �ml.

1. The d-fan

Following Ref. [37], we construct the following combi-
nations of matrix elements which have the same value,
2d, at the SU(3)d symmetric point:

D1 ⌘ �(AN̄⌘N +A⌅̄⌘⌅) = 2d� r1�ml,

D2 ⌘ A⌃̄⌘⌃ = 2d+ (r1 + 2
p
3r3)�ml,

D3 ⌘ �A⇤̄⌘⇤ = 2d� (r1 + 2r2)�ml,

D4 ⌘
1
p
3
(AN̄⇡N �A⌅̄⇡⌅) = 2d�

4
p
3
r3�ml,

D5 ⌘ A⌃̄⇡⇤ = 2d+ (r2 �
p
3r3)�ml,

D6 ⌘
1
p
6
(AN̄K⌃ +A⌃̄K⌅) = 2d+

2
p
3
r3�ml,

D7 ⌘ �(AN̄K⇤ +A⇤̄K⌅) = 2d� 2r2�ml.

(23)

By constructing these quantities the result is a ‘fan’ plot
with seven lines and three slope parameters (r1, r2 and
r3) constraining them. The slope parameters can be con-
strained by calculating octet baryon matrix elements on
a set of ensembles with varying quark masses at fixed lat-
tice spacing, such as those given in Table I, and construct-
ing the Dis. For the forward matrix elements considered
here, these Dis can also be written as linear combina-
tions of the di↵erent quark contributions to the baryon
charges. For example, using Table IV we see:

D1 = � (AN̄⌘N +A⌅̄⌘⌅)

= �
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,

(24)

where we introduce the notation g
q

B
to denote the quark,

q, contribution to the overall charge in the baryon, B. In
this work we only consider the flavour diagonal matrix
terms, i.e. there are no transition terms. Therefore, only
the diagonal D terms, D1, D2 and D4, are used. An
‘average D’ can also be constructed from the diagonal
amplitudes:

XD =
1

6
(D1 + 2D2 + 3D4) = 2d+O(�m2

l
), (25)

which is constant in �ml up to terms O(�m2
l
). When con-

structing these fan plots it is useful to plot D̃i = Di/XD

to find the average fit to reduce statistical fluctuations.

2. The f-fan

Similarly another five quantities, Fi, can be con-
structed which all have the same value, 2f , at the SU(3)f
symmetric point:

F1 ⌘
1
p
3
(AN̄⌘N �A⌅̄⌘⌅) = 2f �

2
p
3
s2�ml,

F2 ⌘ (AN̄⇡N +A⌅̄⇡⌅) = 2f + 4s1�ml,

F3 ⌘ A⌃̄⇡⌃ = 2f + (�2s1 +
p
3s2)�ml,

F4 ⌘
1
p
2
(A⌃̄K⌅ �AN̄K⌃) = 2f � 2s1�ml,

F5 ⌘
1
p
3
(A⇤̄K⌅ �AN̄K⇤) = 2f +

2
p
3
(
p
3s1 � s2)�ml.

(26)
Again, an ‘average F’ can be calculated through:

XF =
1

6
(3F1 + F2 + 2F3) = 2f +O(�m2

l
). (27)

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show
up in the r1 coe�cient and r

discon
1 cancels in the case

g
u�d

T,A,S
= g

u

T,A,S
� g

d

T,A,S
. Unlike the d-fan, the f -fan to

linear order, has no error from dropping the quark-line
disconnected contributions, as none of the ri parameters
appear in the f -fan.

All matrix elements identical 
in the SU(3) symmetric limit

Bickerton, Horsley et al. [QCDSF], PRD(2019)
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F fanCan form a “singlet” combination

XF = 1
6 (3F1 + F2 + 2F3) = 2f + 𝒪(δm2

ℓ)

General result: Singlet quantities only 
vary at 2nd-order in SU(3) breaking.

±4 %
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TABLE IV. The conventions for the generalised currents. We
use the convention that current (i.e. operator) numbered by
i has the same e↵ect as absorbing a meson with the index i.
Here � represents an arbitrary Dirac matrix [37].

where J
F is the appropriate operator, or current, from

Table IV and F represents the flavour structure of the
operator. From Table III we can now read o↵ the expan-
sions of the various matrix elements, where the f and d

terms are independent of �ml and the coe�cients r1, r2,
r3 and s1, s2 are the leading order �ml terms. For exam-
ple if we look at the ⌃̄⇡⌃ term, we have to first order in
�ml:

h⌃+
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⇡
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|⌃+
i = A⌃̄⇡⌃ = 2f + (�2s1 +

p
3s2)�ml.

(22)

B. Mass Dependence: ‘Fan Plots’

Since we hold the average quark mass, m̄, fixed, while
moving away from the symmetric point, we only need to
consider the non-singlet polynomials in the quark mass.
In this sub-section quantities (Di, Fi) are constructed
which are equal at the symmetric point and di↵er in
the case where the quark masses are di↵erent. We can
then evaluate the the violation of SU(3) symmetry that
emerges from the di↵erence in ms �ml.

1. The d-fan

Following Ref. [37], we construct the following combi-
nations of matrix elements which have the same value,
2d, at the SU(3)d symmetric point:

D1 ⌘ �(AN̄⌘N +A⌅̄⌘⌅) = 2d� r1�ml,

D2 ⌘ A⌃̄⌘⌃ = 2d+ (r1 + 2
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3r3)�ml,
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D7 ⌘ �(AN̄K⇤ +A⇤̄K⌅) = 2d� 2r2�ml.

(23)

By constructing these quantities the result is a ‘fan’ plot
with seven lines and three slope parameters (r1, r2 and
r3) constraining them. The slope parameters can be con-
strained by calculating octet baryon matrix elements on
a set of ensembles with varying quark masses at fixed lat-
tice spacing, such as those given in Table I, and construct-
ing the Dis. For the forward matrix elements considered
here, these Dis can also be written as linear combina-
tions of the di↵erent quark contributions to the baryon
charges. For example, using Table IV we see:

D1 = � (AN̄⌘N +A⌅̄⌘⌅)
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where we introduce the notation g
q

B
to denote the quark,

q, contribution to the overall charge in the baryon, B. In
this work we only consider the flavour diagonal matrix
terms, i.e. there are no transition terms. Therefore, only
the diagonal D terms, D1, D2 and D4, are used. An
‘average D’ can also be constructed from the diagonal
amplitudes:

XD =
1

6
(D1 + 2D2 + 3D4) = 2d+O(�m2

l
), (25)

which is constant in �ml up to terms O(�m2
l
). When con-

structing these fan plots it is useful to plot D̃i = Di/XD

to find the average fit to reduce statistical fluctuations.

2. The f-fan

Similarly another five quantities, Fi, can be con-
structed which all have the same value, 2f , at the SU(3)f
symmetric point:

F1 ⌘
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F4 ⌘
1
p
2
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Again, an ‘average F’ can be calculated through:

XF =
1

6
(3F1 + F2 + 2F3) = 2f +O(�m2

l
). (27)

In this work, only the connected quark-line terms are
computed. Quark-line disconnected terms only show
up in the r1 coe�cient and r

discon
1 cancels in the case

g
u�d

T,A,S
= g

u

T,A,S
� g

d

T,A,S
. Unlike the d-fan, the f -fan to

linear order, has no error from dropping the quark-line
disconnected contributions, as none of the ri parameters
appear in the f -fan.

a=0.068fm
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2

where ✏T and ✏S are the new-physics e↵ective couplings
and gT and gS are the tensor and scalar nucleon isovector
charges. Here b

BSM
v

is a correction term to the neutrino
asymmetry correlation coe�cient, B, and b

BSM is an
addition to the Fierz interference term b in Eq. 1. Data
taken at the Large Hadron Collider (LHC) is currently
looking at probing scalar and tensor interactions at the
. 10�3 level [7]. However to fully assess the discovery
potential of experiments at the 10�3 level it is crucial
to identify existing constraints on new scalar and tensor
operators.

Another quantity of interest is the neutron electric
dipole moment (EDM), which is a measure for CP viola-
tion. In extensions of the Standard Model quarks acquire
an EDM through the interaction of the photon with the
tensor current [8]. The contribution of the quark EDMs,
dq, to the EDM of the neutron, dn, is related to the quark
tensor charges, gq

T
, by [9–11]:

dn = dug
d

T
+ ddg

u

T
+ dsg

s

T
. (4)

Here du, dd, ds, are the new e↵ective couplings which
contain new CP violating interactions at the TeV scale.
The current experimental data gives an upper limit on
the neutron EDM of |dn| < 1.8 ⇥ 10�13

e.cm [12]. In
calculating the tensor charges and knowing a bound on
dn, we are able to constrain the couplings, dq, and hence
BSM theories.

In recent years there has been an increase in interest
from lattice QCD collaborations in calculating the axial,
scalar and tensor isovector charges due to their impor-
tance in interpreting the results of many experiments and
phenomena mediated by weak interactions [13–19]. The
QCDSF/UKQCD/CSSM collaborations have an ongoing
program investigating various hadronic properties using
the Feynman-Hellmann theorem [20–27]. Here we extend
this work to a dedicated study of the nucleon tensor,
scalar and axial charges. We discuss a flavour symmetry
breaking method to systematically approach the phys-
ical quark mass. We then extend this existing flavour
breaking expansion to also account for lattice spacing and
finite volume e↵ects to quantify systemic uncertainties.
Finally, we look at the potential impact of our results
on measurements of the Fierz interference term and the
neutron EDM.

II. SIMULATION DETAILS

For this work we use gauge field configurations that
have been generated with Nf = 2 + 1 flavours of dy-
namical fermions, using the tree-level Symanzik improved
gluon action and non-perturbatively O(a) improved Wil-
son fermions [28]. In our simulations, we have kept the
bare quark mass, m̄ = (mu + md + ms)/3, held fixed
approximately at its physical value, while systematically

varying the quark masses around the SU(3) flavour sym-
metric point, mu = md = ms, to extrapolate results to
the physical point [29]. We also have degenerate u and
d quark masses, mu = md ⌘ ml. The coverage of lattice
spacings and pion masses is represented graphically in
Fig. 1.

FIG. 1. Lattice ensembles that are used in this work charac-
terised by pion mass, m⇡, and lattice spacing, a. The hori-
zontal lines represent the physical pion and kaon masses and
the continuum limit occurs as a ! 0.

� a(fm) Volume (light,strange) m⇡ mK(MeV)
5.40 0.082 323 ⇥ 64 ( 0.119930 , 0.119930 ) 408 408

( 0.119989 , 0.119812 ) 366 424
( 0.120048 , 0.119695 ) 320 440
( 0.120084 , 0.119623 ) 290 450

5.50 0.074 323 ⇥ 64 ( 0.120900 , 0.120900 ) 468 468 *
( 0.121040 , 0.120620 ) 357 505 *
( 0.121095 , 0.120512 ) 315 526 *

5.50 0.074 323 ⇥ 64 ( 0.120950 , 0.120950 ) 403 403
( 0.121040 , 0.120770 ) 331 435
( 0.121099 , 0.120653 ) 270 454

5.65 0.068 483 ⇥ 96 ( 0.122005 , 0.122005 ) 412 412
( 0.122078 , 0.121859 ) 355 441
( 0.122130 , 0.121756 ) 302 457
( 0.122167 , 0.121682 ) 265 474

643 ⇥ 96 ( 0.122197 , 0.121623 ) 220 485
5.80 0.059 483 ⇥ 96 ( 0.122810 , 0.122810 ) 427 427

( 0.122880 , 0.122670 ) 357 456
( 0.122940 , 0.122551 ) 280 477

5.95 0.052 483 ⇥ 96 ( 0.123460 , 0.123460 ) 468 395
( 0.123411 , 0.123558 ) 418 418
( 0.123523 , 0.123334 ) 347 451

TABLE I. Details of lattice ensembles used in this work. *
indicates ensembles with a di↵erent value of m̄, further from
the physical m̄. The uncertainty on the pseudoscalar masses
is between 1-3MeV.

Further information about these ensembles is pre-
sented in Table I. We have five lattice spacings,
a = 0.082, 0.074, 0.068, 0.059, 0.052 fm [30], enabling
an extrapolation to the continuum limit as well as three
lattice volumes, 323⇥64, 483⇥96 and 643⇥96, allowing
an extension to the flavour-breaking expansion, which
describes the quark mass-dependence of the matrix

5 lattice spacings

pion masses

220 ↔ 500 MeV

0.052 ↔ 0.082 fm

3 volumes
2+1 flavour, NP-improved Wilson fermions
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Fit XD �2/dof XF �2/dof gT �2/dof D-Fan �2/dof F-Fan
1. �m2

l 0.5126(44) 1.81 0.5971(59) 1.68 1.022(12) 1.28 1.89
2. a, �m2

l 0.5307(79) 1.54 0.62(1) 1.43 1.004(27) 0.67 1.10
3. a2, �m2

l 0.5228(58) 1.55 0.6077(74) 1.36 1.012(18) 0.71 1.13
4. a, �m2

l , m⇡L 0.5339(85) 1.63 0.6198(99) 1.42 1.009(67) 0.67 1.10
5. a2, �m2

l , m⇡L 0.5232(58) 1.64 0.608(74) 1.44 1.013(18) 0.71 1.13
6. �m2

l , m⇡L 0.5126(44) 1.91 0.5992(58) 1.78 1.027(13) 1.28 1.89
Fit XD �2/dof XF �2/dof gA �2/dof D-Fan �2/dof F-Fan
1. �m2

l 0.583(21) 1.38 0.652(22) 0.74 1.249(64) 0.81 1.54
2. a, �m2

l 0.57(4) 1.45 0.655(44) 0.78 1.24(16) 0.79 1.56
3. a2, �m2

l 0.575(27) 1.44 0.653(29) 0.78 1.239(95) 0.79 1.56
4. a, �m2

l , m⇡L 0.566(39) 1.53 0.650(39) 0.83 1.24(18) 0.79 1.56
5. a2, �m2

l , m⇡L 0.570(30) 1.53 0.648(30) 0.83 1.238(92) 0.79 1.56
6. �m2

l , m⇡L 0.588(24) 1.46 0.659(23) 0.78 1.248(69) 0.81 1.54
Fit XD �2/dof XF �2/dof gS �2/dof D-Fan �2/dof F-Fan
1. �m2

l �0.599(51) 1.58 2.47(12) 2.0 1.07(19) 1.41 4.00
2. a, �m2

l �0.62(98) 1.66 2.63(18) 2.03 0.88(49) 1.46 4.21
3. a2, �m2

l �0.609(68) 1.67 2.56(13) 2.00 0.97(3) 1.46 4.21
4. a, �m2

l , m⇡L �0.67(10) 1.63 2.53(19) 2.06 0.79(51) 1.46 4.21
5. a2, �m2

l , m⇡L �0.623(69) 1.63 2.54(13) 2.05 0.95(31) 1.46 4.21
6. �m2

l , m⇡L �0.585(54) 1.61 2.51(12) 1.94 1.10(19) 1.41 4.00

TABLE V. Table of results for each fit and the corresponding �2/dof . The notation in the first column shows which corrections
are included in Eq. 32, 34 and 35. For example Fit 4 includes all corrections a, �m2

l and m⇡L, while Fit 1 only includes an
added �m2

l term, i.e. c1 = c2 = bi = ei = 0.

(a) (b)

(c) (d)

FIG. 8. As an example of some fits we have for the tensor: (a) XF results for each ensemble using Eq. 32 where c1 = c2 = 0

(Fit 1), plotted against
m2

⇡�X2
⇡

X2
⇡

. (b) The three fits F1, F2 and F3 using Eq. 35 with ei = 0 (Fit 1). (c) XF results using all

corrections in Eq. 32 (Fit 4), plotted against
m2

⇡�X2
⇡

X2
⇡

. The black line is a fit to Eq. 32 in the limit a ! 0 and m⇡L ! 1. (d)

The three fits F1, F2 and F3 using Eq. 35, where once again the data points are shifted in the limit a ! 0. The black stars
represent the physical point.

Different model parameterisations

weighted average among 
models (as above)

FLAG result, ~2.2%

Our result, (stat+sys)~5.5%

gu−d
A = 1.253(63)stat(41)a(03)FV



Results - isovector charges Nf = 2 + 1

23

MS, μ = 2 GeV

FLAG 2+1: ~6% 
FLAG 2+1+1: ~3% 
Our result: ~2%

FLAG 2+1: ~12% 
Our result: ~19%
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Fig. 45 Lattice results and FLAG averages for the isovector tensor charge gu−dT for N f = 2, 2+1, and 2+1+1 flavour calculations. Also shown
are phenomenological results using measures of transversity [986–990] (circles)

uncertainty due to the various extrapolations is small. Also shown for comparison in Fig. 45 are phenomenological results
using measures of transversity [986–990].

As in FLAG 19, for 2+1+1 flavours, only PNDME 18 [98], which supersedes PNDME 16 [881], PNDME 15 [879] and
PNDME 13 [878], meets all the criteria for inclusion in the average. The details for this calculation are the same as those for
gu−dS described in the previous section (Sect. 10.3.2), except that three-state fits were used to remove excited-state effects.
The details of the 2+1+1 flavour calculation by ETM 19, which does not meet the criteria for averaging, are also the same as
those described in the previous section for gu−dS .

For 2+1-flavour calculations, only Mainz 19 [102] meets all criteria for inclusion in the averages. Details of this calculation
are the same as for gu−dS , described in the previous section.

Details for the 2+1-flavour NME 21, RBC/UKQCD 19, LHPC 19, Mainz 18, JLQCD 18, and LHPC 12A, calculations
are identical to those presented previously in Sect. 10.3.2. The earlier RBC/UKQCD 10 calculation was performed using
domain-wall fermions on the Iwasaki gauge action, with two volumes and several pion masses. The lowest pion mass used
was Mπ ∼ 330 MeV and does not meet the criteria for chiral extrapolation. In addition, the single lattice spacing and single
source-sink separation do not meet the criteria for continuum extrapolation and excited states.

Two-flavour calculations include RQCD 14, with details identical to those described in Sect. 10.3.2. There are two calcu-
lations, ETM 15D [873] and ETM 17 [877], which employed twisted-mass fermions on the Iwasaki gauge action. The earlier
work utilized three ensembles, with three volumes and two pion masses down to the physical point. The more recent work
used only the physical pion mass ensemble. Both works used only a single lattice spacing a ∼ 0.09 fm, and therefore do not
meet the criteria for continuum extrapolation. The early work by RBC 08 with domain-wall fermions used three heavy values
for the pion mass, and a single value for the lattice spacing, volume, and source-sink separation, and therefore do not meet
many of the criteria.

The final FLAG value for gu−dT is

N f = 2 + 1 + 1 : gu−dT = 0.989(34) Ref. [98], (437)

N f = 2 + 1 : gu−dT = 0.965(61) Ref. [102]. (438)

10.4 Flavour diagonal charges

Three examples of interactions for which matrix elements of flavour-diagonal operators (q"q where " defines the Lorentz
structure of the bilinear quark operator) are needed are the neutral current interactions of neutrinos, elastic scattering of
electrons off nuclei, and the scattering of dark matter off nuclei. In addition, these matrix elements also probe intrinsic properties
of nucleons (the spin, the nucleon sigma term and strangeness content, and the contribution of the electric dipole moment
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Table 70 Overview of results for gu−dS
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gu−dS

ETM 19 [971] 2+1+1 A ! ◦ ! ! ◦ 1.35(17)

PNDME 18 [98] 2+1+1 A !‡ ! ! ! ◦ 1.022(80)(60)

PNDME 16 [881] 2+1+1 A ◦‡ ! ! ! ◦ 0.97(12)(6)

PNDME 13 [878] 2+1+1 A !‡ ! ! ! ◦ 0.72(32)

NME 21 [972] 2+1 P ◦‡ ! ! ! ◦ 1.06(10)(6)

χQCD 21A [978] 2+1 P ! ! ! ! ◦ 0.94(10)(6)

RBC/UKQCD 19 [977] 2+1 A ! ◦ ! ! ! 0.9(3)

Mainz 19 [102] 2+1 A ! ◦ ! ! ◦ 1.13(11)(7
6)

LHPC 19 [851] 2+1 A !‡ ! ! ! ◦ 0.927(303)

JLQCD 18 [890] 2+1 A ! ◦ ◦ ! ◦ 0.88(8)(3)(7)

LHPC 12 [979] 2+1 A !‡ ! ! ! ◦ 1.08(28)(16)

ETM 17 [877] 2 A ! ◦ ◦ ! ◦ 0.930(252)(48)(204)

RQCD 14 [869] 2 A ◦ ! ! ! ! 1.02(18)(30)

‡The rating takes into account that the action is not fully O(a) improved by requiring an additional lattice spacing

Fig. 44 Lattice results and FLAG averages for the isovector scalar charge gu−dS for N f = 2, 2+ 1, and 2+ 1+ 1 flavour calculations. Also shown
is a phenomenological result obtained using the conserved vector current (CVC) relation [966] (circle)

10.3.2 Results for gu−dS

Calculations of the isovector scalar charge have, in general, larger errors than the isovector axial charge as can be seen from
the compilation given in Table 70 and plotted in Fig. 44. The isovector scalar charge can also be determined indirectly via the
conserved vector current (CVC) relation from results for the neutron-proton mass difference [147,172,221,980–985] and the
down and up quark mass difference (see Sect. 3.1.6). For comparison, Fig. 44 also shows an indirect determination obtained
using lattice and phenomenological input [966].

123

gu−d
T = 1.010(21)stat(12)a(01)FV

gu−d
S = 1.08(21)stat(03)a(01)FV



Quark and gluon momentum frac8ons, 
⟨x⟩q , ⟨x⟩g

[PLB714 (2012) + in preparation]



➤ Long-standing question re: nucleon momentum: 

How is the nucleon’s momentum distributed amongst its constituents? 

➤ Addressed experimentally @ JLab (now), EIC (future) 

➤ Must satisfy the momentum rule 

 

where 

fraction of nucleon momentum carried by parton f=q,g 

➤ Experimentally :  

➤ Received much interest from Lattice QCD, but with challenges,  

➤ e.g. statistical noise in  due disconnected nature

∑
q

⟨x⟩q + ⟨x⟩g = 1

⟨x⟩f =

⟨x⟩g ∼
1
2

⟨x⟩g 25

Motivation



Renormalisation: Mixing between  and  

           i.e.   

does not necessarily mean 

                or    

e.g.  

➤               

Recent progress in NP determination of  

Mixing due to  often ignored or computed perturbatively

⟨x⟩q ⟨x⟩g

∑
q

⟨x⟩R
q + ⟨x⟩R

g = 1 = Zq ∑
q

⟨x⟩lat
q + Zg⟨x⟩lat

g

⟨x⟩R
q = Zq⟨x⟩lat

q ⟨x⟩R
g = Zg⟨x⟩lat

g

Zg = Zgg + Zqg Zq = Zgq + Zqq

Zgg

Zqg, Zqg

26
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Motivation

Overview Gluon Momentum Fraction Renormalisation Factor Summary References

Feynman–Hellmann method

Extract 3–point function from gluon propagator:

@

@�
D(p,�)

����
�=0

= hA(p)| O
(b)

|A(p)i =

gg

, (9)

=) �gg = D
�1
(p, 0)

✓
@

@�
D(p,�)

◆ ����
�=0

D
�1
(p, 0) (10)
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Determining ⟨x⟩q,g

Require matrix elements 

 

which can be computed at  (for ) 

Typically obtained via 3-point functions 

This work: Feynman-Hellmann theorem 

Compute 2-point functions in the presence of a modification to the action      

Matrix elements determined from energy shifts   

⟨N( ⃗p) |𝒪(b)
f |N( ⃗p)⟩ = 2(m2

N +
4
3

⃗p2)⟨x⟩f

⃗p = 0 𝒪(b)

S → S(λ) = S + λ∑
z

𝒪(z)

∂Eλ

∂λ
λ=0

=
1

2E ⟨N :
∂Sλ

∂λ
: N⟩

λ=0
27

𝒪(b) = 𝒪44 −
1
3

𝒪ii

𝒪(g)
μν = − TrcFμαFνα , 𝒪(b)

g =
2
3

Trc(−ℰ2 + ℬ2)

𝒪(q)
μν = q̄γμ

↔
D νq , 𝒪(b)

q = q̄γ4
↔
D4q −

1
3

q̄γi
↔
Diq

𝒪(τ) = ∫ d3x𝒪(τ, ⃗x)

[following QCDSF(2012)]



The modified action

Wilson gluonic action:      

Modify with gluon operator  :       

              

Similary modify Wilson/Clover action with  : 

Sg =
1
3

β ∑
x μ<ν

Re Trc[1 − U□
μν] = ∑

τ

1
2

Trc[ℰ2(τ) + ℬ2(τ)]
𝒪(b)

g

Sg(λg) =
1
3

β(1 + λg)∑
x,i

Re Trc(1 − U□
i4 (x)) +

1
3

β(1 − λg) ∑
x,i<j

Re Trc(1 − U□
ij (x))

𝒪(b)
q

SW
q (λ) = ∑

x

q̄(x)q(x) − κ[∑
x

q̄(x)(1 − (1 + λq)γ4) U4(x) q(x + 4̂) + ∑
x

q̄(x + 4̂)(1 + (1 + λq)γ4) U†
4 (x) q(x) +

∑
x,i

q̄(x)(1 − (1 −
1
3

λq)γi) Ui(x) q(x + ̂i) + ∑
x,i

q̄(x + ̂i)(1 + (1 −
1
3

λq)γi) U†
i (x) q(x)]
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anisotropic action

modified hopping term

U□
μν =



Simulation details
Quenched QCD 

Volume:  

Wilson glue,  

5 values of  

NP-clover action for valence quarks 

             

5 values of 

243 × 48

β = 6.0 ⟹ a = 0.1fm

λg

κ = 0.1320, 0.1333, 0.1342 mπ ≈ 1080, 820, 600 MeV

λq = − 0.0666, − 0.0333, 0, + 0.0333, + 0.0666

29

no disconnected quarks and Zqg = 0
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mπ ≈ 1065 MeVEnergy shifts: Quark operator

Figure 4: (Left) E�ective mass of the ratio of the perturbed and unperturbed pion propagators, perturbing a
single quark at amfi = 0.540.

(Right) Shift in the pion ground state energy vs. ⁄q with quadratic fit.

Table 2: Shift in ground state energy �E
H

0 as a function of the fermionic Feynman–Hellmann parameter ⁄q.

Ÿ amfi ⁄q = ≠0.0666 ⁄q = ≠0.0333 ⁄q = +0.0333 ⁄q = +0.0666
0.1320 0.540 2.7913(75)e-02 1.3272(38)e-02 -1.1985(38)e-02 -2.2762(75)e-02

Nucleon u 0.1333 0.412 2.3260(98)e-02 1.0931(49)e-02 -9.620(50)e-03 -0.01801(10)
0.1342 0.300 0.01967(23) 0.00925(11) -0.00805(12) -0.01521(60)
0.1320 0.540 1.3118(43)e-02 6.198(22)e-03 -5.517(22)e-03 -1.0392(45)e-02

Nucleon d 0.1333 0.412 1.0679(55)e-02 4.954(28)e-03 -4.225(29)e-03 -7.763(58)e-03
0.1342 0.300 0.00881(16) 4.015(61)e-03 -0.00338(14) -0.00641(75)
0.1320 0.540 1.16876(99)e-02 5.4700(50)e-03 -4.7638(51)e-03 -8.861(10)e-03

Pion 0.1333 0.412 9.097(11)e-03 4.1356(57)e-03 -3.3533(59)e-03 -5.967(12)e-03
0.1342 0.300 0.00744(60) 3.014(39)e-03 -0.00199(25) -0.00314(47)

ified ensembles, so long as such software has an imple-
mentation of bare gauge anisotropies. It is important
to note however, the resultant gauge configurations are
treated as though they are actually isotropic with cou-
pling —, but with the modification to the action given
by eq. (8).

As this perturbation embeds the operator 3
4 O

g

v2,b
,

the resultant matrix element must also be rescaled by
the same factor of 3

4 . As a result, we obtain a similar
expression as eq. (12), given by

ÈxÍ
g

= ≠
4

3MH

ˆE
H

0 (⁄g)
ˆ⁄g

----
⁄g=0

. (23)

4.2.2 Results

To embed the background field in the gauge configu-
rations, 4 additional gauge ensembles of 1000 config-
urations each were generated for various values of ⁄g,
in addition to the ensemble used previously for a to-
tal of 5000 configurations. The parameters of the 5
ensembles used are shown in table 3.

As before, propagators were calculated for nucleons
and pions with degenerate quark masses, with identical
parameters to previous. The same 3 hopping param-
eters were used, Ÿ = 0.1320, 0.1333 and Ÿ = 0.1342,
giving amfi = 0.540, 0.412 and 0.300.

Table 3: Lattice parameters of 5 quenched ensembles
generated under the modification to the action

outlined in section 4.2.1.

Ns Nt — ⁄g —input ›input Ncfg

24 48 6.0 ≠0.0666 5.9867 0.9354 1000
24 48 6.0 ≠0.0333 5.9967 0.9672 1000
24 48 6.0 0 6.0 1 1000
24 48 6.0 +0.0333 5.9967 1.0340 1000
24 48 6.0 +0.0666 5.9867 1.0689 1000

The gluon momentum fraction was extracted by fit-
ting a quadratic ansatz to the ground state energy of
the hadron as a function of the Feynman–Hellmann
parameter ⁄g, with the linear coe�cient taken as the
gradient at ⁄g = 0, and entered into eq. (23).

The values obtained for the ground state energy of
the hadrons as a function of the Feynman–Hellmann
parameter ⁄g are given in table 5. The results of fitting
a quadratic ansatz to the nucleon and pion ground state
energies at amfi = 0.540 are shown in figs. 5 and 6 with
the other mass results shown in figs. 19 to 22.
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ting a quadratic ansatz to the ground state energy of
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parameter ⁄g, with the linear coe�cient taken as the
gradient at ⁄g = 0, and entered into eq. (23).

The values obtained for the ground state energy of
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mπ ≈ 1065 MeVQuark operator - comparison to 3-point functions

2-state fit Feynman-Hellmann

Excellent agreement between Feynman-Hellmann and standard 3-point function methods
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mπ ≈ 1065 MeV

32

Figure 5: (Left) E�ective mass of the gauge perturbed nucleon propagators, at amfi = 0.540.
(Right) Shift in the nucleon ground state energy vs. ⁄g with quadratic fit.

Figure 6: (Left) E�ective mass of the gauge perturbed pion propagators, at amfi = 0.540.
(Right) Shift in the pion ground state energy vs. ⁄g with quadratic fit.

Table 4: Gluon momentum fractions ÈxÍ
g

calculated
through the Feynman–Hellmann method.

amfi Nucleon ÈxÍ
g

Pion ÈxÍ
g

0.540 0.753(27) 0.7706(71)
0.412 0.778(47) 0.8516(99)
0.300 0.851(63) 0.905(45)

5 Renormalisation

In order to directly compare the previously calculated
momentum fractions, to test validity in the demon-
strated method, it would be ideal to apply the relevant
sum rule between these quantities. However, as these
momentum fractions were calculated at finite lattice
spacing, they must first be renormalised. This prop-
erly must account for both the overall scaling of these
quantities between renormalisation schemes, but also
mixing between the quark and gluon components.

5.1 Renormalisation Matrix

The renormalisation of the components of the EMT are
described by the following matrix equation:

3
Oq

Og

4R

=
3

Zqq Zqg

Zgq Zgg

4 3
Oq

Og

4Lat
. (24)

This expression for the renormalisation matrix does not
consider the di�erence in renormalisation in the con-
nected and disconnected fermionic components, as this
initial work considers only the quenched case. Proper
consideration of this di�erence is required for the case
of dynamical quarks.

A non–perturbative scheme such as an RI–MOM
scheme is typically implemented to obtain the diag-
onal components of this renormalisation matrix. Such
a scheme is defined in terms of the amputated vertex
function of an operator acting on a propagator, given

6

pion

proton

Data points are entirely uncorrelated, from separate ensembles.  

Good agreement with quadratic fit, no significant cubic term. 

Energies: Gluon operator



Recall quark-glue mixing under renormalisation 

But  in quenched QCD 

for  with  

and 

 

with  depending only on coupling g and 

         and         

We will employ RI’-MOM, e.g.  and 

Zqg = 0

nf = 0 mu = md

(⟨x⟩g + ⟨x⟩u + ⟨x⟩d)R = Zg⟨x⟩lat
g + Zq (⟨x⟩u + ⟨x⟩u)lat = 1

Zg, Zq

Zg = Zgg Zq = ZMS
gq + ZMS

qq

1
12

Tr(ΓR[ΓTree]−1) = 1, ΓR = Z𝒪Z−1
ψ Γlat Γlat =
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Extract 3-point functions from perturbed quark/gluon propagators 

Generate propagators on same modified gauge fields as above 

Gluon:      

with    

To avoid mixing with non-physical operators in the EMT [Collins&Scalise(1994),Shanahan&Detmold(2019)] 

take combination   

when  and  

∂Dλg
(p)

∂λg λg=0

= − ⟨A(p)O(0)A(−p)⟩lat =

⟨A(p)Og(0)A(−p)⟩R = ZAZ𝒪g
⟨A(p)Og(0)A(−p)⟩lat

⟨Aρ(p)T̄g
44Aτ(−p)⟩ − ⟨Aρ(p′ )T̄g

44Aτ(−p′ )⟩ = 2p2
4

ρ ≠ 4, p4 ≠ 0, p′ 4 = 0, pρ = p′ ρ = 0 p2 = p′ 
2

Zg(μ) = 2p2
4 p2 Dlat

0 (p)[
∂(Dlatt

λg
(p))jj

∂λg λg=0

−
∂(Dlatt

λg
(p′ ))jj

∂λg λg=0
]−1

pj=p′ j=0

p2 = p′ 2 = μ2

Renormalisation - FH
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Overview Gluon Momentum Fraction Renormalisation Factor Summary References

Feynman–Hellmann method

Extract 3–point function from gluon propagator:

@

@�
D(p,�)

����
�=0

= hA(p)| O
(b)

|A(p)i =

gg

, (9)

=) �gg = D
�1
(p, 0)

✓
@

@�
D(p,�)

◆ ����
�=0

D
�1
(p, 0) (10)

12/22

D(p)R = ZAD(p)lat

T̄g
44 =

3
4

𝒪(b)
g

Similar to: QCDSF(2015)
[PLB740 (2015)]
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Data points at different  are entirely uncorrelated, from separate ensembles.  

Appear linear in , quadratic terms small, no significant cubic term.  

Good signal for 

λg

λg

Zg



Need to account for quark-glue mixing 

 can be obtained via usual RI’-MOM (e.g. QCDSF(2005)) 

To account for mixing, generate quark propagators on same modified gauge fields 

and invoke  with  and  

          

then isolate mixing term  

Zqq

𝒪R
q + 𝒪R

g = Zq𝒪lat
q + Zg𝒪lat

g Zq = Zqq + Zgq Zg = Zqg + Zgg

Z−1
q (μ) =

1
12

Tr{Γlat
qq(p)[Zψ(p)ΓBorn

qq (p) − Zg(p)([Slat
0 (p)]−1

∂Sλg
(p)

∂λg λg=0
[Slat

0 (p)]−1)]−1}
p2=μ2

Zgq = Zq − Zqq

Renormalisation - quark
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∂Sλg
(p)

∂λg λg=0

= − ⟨q̄(p)O(0)q(p)⟩ =

nf = 0 : Zqg = 0

use standard quark 3-point methods
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Zqq

Zq

Zgq = Zq − Zqq
use standard 
RI’-MOM 
with quark 3-
point methods

Renormalisation - quark
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Off-forward Compton amplitude

[PRD105 (2022), PRD110 (2024)]



Tμν = ∫ d4ze
i
2 (q+q′ )⋅z⟨N(p′ ) |TJμ(z)Jν(0) |N(p)⟩

Off-forward Compton
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Background The Feynman-Hellmann method Results Conclusions and Outlook

Why the Compton amplitude?

• 3-pt moments and quasi leading-order
• In DVCS expt., hard scale isn’t huge:

Q2 ≤ 12 GeV2 ⇒ corrections
• Unknown subtraction function, S1

Calculate OFCA on lattice more parallels
to experiment

• Q2 dependence [Latt. 2021 PoS 324]
• higher-order terms [Latt. 2019 PoS 278]
• subtraction function [Latt. 2021 PoS 028]

For the forward (P = P ′) Compton
amplitude, we have calculated these
properties with Feynman-Hellmann.

Alec Hannaford Gunn
GPDs from lattice QCD 5 / 17

power 
corrections

subtraction 
“constant”

S1(t, Q2)

Tμν(P, q, q′ ) =
18

∑
i=1

𝒜i(ω, θ, t, Q2)Lμν
i

18 tensor structures P =
1
2

(P + P′ ), q =
1
2

(q + q′ ), Δ = P′ − P

t = Δ2, Q2 = − q2,

ω =
2P ⋅ q

Q2
, θ = −

Δ ⋅ q
Q2

[PRD105 (2022), PRD110 (2024)]
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 vanish at leading twist𝒦

3
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1
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0
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(4)

where we have introduced the Dirac bilinears

h
µ = ū

0
�
µ
u, e

µ = ū
0 i�

µ↵�↵

2mN

u,

h̃
µ = ū

0
�
µ
�5u, ẽ

µ =
�µ

2mN

ū
0
�5u.

(5)

In Eq. (4), there are nine K, five unpolarised (H and E)
and four polarised (H̃ and Ẽ) amplitudes, which gives
18 in total.

The basis in Eq. (4) is chosen to match onto the high-
energy limit, which we will derive in section IV. While
this does introduce kinematic singularities into our ba-
sis, these are not relevant to the leading-twist contribu-
tion or our numerical calculation.

The amplitudes of Eq. (4) also reduce in the forward
(t ! 0) limit to the more well-known functions of the
forward Compton amplitude:

H1
t!0�! F1, H2 + H3

t!0�! F2,

H̃1
t!0�! g̃1, H̃2

t!0�! g̃2,

where F1,2 are the Compton structure functions [58]
and Img̃1,2 = 2⇡g1,2, for g1,2 the spin-dependent, deep
inelastic structure functions [65]. On the other hand,
the K amplitudes vanish in the forward limit.

Dispersion Relation

As in the forward case, we can use the analytic fea-
tures of the amplitudes in Eq. (4) to write out a disper-
sion relation. For instance, following Refs. [47, 66], H1

and E1 satisfy subtracted dispersion relations:

H1(!̄,#, t, Q̄
2) = S1(#, t, Q̄

2) + H1(!̄,#, t, Q̄
2),

E1(!̄,#, t, Q̄
2) = �S1(#, t, Q̄

2) + E1(!̄,#, t, Q̄
2),

(6)

where we have introduced

H1(!̄,#, t, Q̄
2) =

2!̄2

⇡

Z 1

0
dx

xImH1(!̄,#, t, Q̄
2)

1 � x2!̄2 � i✏
,

and similarly for H1 ! E1.
The subtraction function in Eq. (6) is a generalisation

of the forward Compton amplitude subtraction function

[67]: S1(#, t, Q̄
2)

t!0�! S1(Q2), which has been studied
elsewhere [50, 51]. The amplitudes H2,3 and E2 require
no subtraction in their dispersion relations [47, 66].

The forward limit of H1 is

H1(!̄,#, t, Q̄
2)

t!0�! 4!2

Z 1

0
dx

xF1(x, Q
2)

1 � x2!2 � i✏
,

where F1 is the deep inelastic scattering structure func-
tion [47]. However, unlike the forward case, there is no
optical theorem to relate ImH1,2 to an inclusive cross
section. Instead, these amplitudes can be measured di-
rectly by exclusive processes such as DVCS.

Generalised Parton Distributions

At high energies (Q̄2 � ⇤2
QCD

), the amplitudes of
Eq. (4) are dominated by convolutions of GPDs [2, 68]:

A '
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dxG(x,#/!̄, t)


!̄

1 + x!̄ � i✏
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1 � x!̄ � i✏

�
,

where G is a GPD. Or, in the Euclidean region, |!̄| < 1,

A '
X

n

!̄
n

Z
dxx

n�1
G(x,#/!̄, t).

Formally, GPDs are defined by the off-forward matrix
element of a light-cone operator. For a light-like vector
n
µ such that n · P̄ = 1 (and hence ⇠ = �n · �/2) and

taking light-cone gauge n · U = 0, we have [2, 69]
Z
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+ E
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nµ�⌫

2mN

u(P ),

(7)

where H
q and E

q are the unpolarised twist-two GPDs
for a quark of flavour q. It is not possible to directly
calculate the quantity in Eq. (7) on the lattice, due to
the Euclidean signature of spacetime.

Instead, we can relate GPDs to a basis of leading-
twist local operators. These local operators are

O(n)µ1...µn
q

=  ̄q�
{µ1i

$
D
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...i

$
D

µn}
 q � traces, (8)
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Diehl, EPJC(2001) 
Belitsky, Müller, Kirchner, NPB(2002) 
Belitsky, Müller, Ji, NPB(2014)

simple mapping to forward limit

hμ = ū′ γμu, eμ = ū′ 

iσμαΔα

2mN
u

h̄μ = ū′ γμγ5u, ēμ =
Δμ

2mN
ū′ γ5u

Tkk = −
1

2P ⋅ q̄ (h ⋅ q̄ ℋ1 + e ⋅ q̄ℰ1)

4

Table I. Details of the gauge ensembles used in this work.

Nf cSW ω εl, εs N
3
L → NT a mω ZV Ncfg

[fm] [MeV]
2 + 1 2.48 5.65 0.122005 483 → 96 0.068 412 0.871 537

Table II. Current insertion momenta, q1,2, and derived kine-
matics for the four sets of correlators.

L
2ωq1,
L
2ωq2

L
2ω!

L
2ω q̄ t

[GeV2]
Q̄

2

[GeV2]
Nmeas

(5, 3, 0) — — 0 4.86 1605

(4, 3, 3)
(3, 4, 3)

(1, ↑1, 0) ( 7
2 ,

7
2 , 3) ↑0.29 4.79 1031

(5, 3, 1)
(5, 3, ↑1)

(0, 0, 2) (5, 3, 0) ↑0.57 4.86 1072

(4, 2, 4)
(2, 4, 4)

(2, ↑2, 0) (3, 3, 4) ↑1.14 4.86 1031

The key kinematic choice made in this work in con-
trast to Ref. [40] is to keep êk → q1 ↑ q2 ↓ !, where
êk picks the current direction in Eq. (11). Note that
êk is always chosen to be a purely spatial vector. This
means our vector current, jµ, is collinear with the soft
momentum transfer, !µ.

As shown in Appendix A, the choice êk → ! elimi-
nates all structure functions except H1 and E1 from the
µ = ω = k OFCA:

Tkk = ↑ 1

2P̄ · q̄

(
h · q̄H1 + e · q̄E1

)
, (20)

where hµ and eµ are the bilinears defined in Eq. (5);
recall that k is always a spatial direction (i.e. it has no
temporal component). This is a major improvement on
our previous work [40], where only a linear combination
of the H1,2,3 and E1,2 was accessible, and we were re-
quired to make leading-twist approximations to isolate
these.

Inserting Eq. (20) into the ratio of spin-parity traces
given in Eq. (15), we obtain

R!
kk = N

H

! H1 + N
E

! E1, (21)

where the N factors are from the bilinear coe!cients of
Eq. (20) inserted into the traces of Eq. (15).

Therefore, by using the two spin-parity projectors of
Eq. (16), we determine H1 and E1 from the matrix equa-
tion:

(
Runpol

kk

Rpol
kk

)
=

(
N

H

unpol N
E

unpol
N

H

pol N
E

pol

)(
H1

E1

)
. (22)

Figure 2. Top: the ratio defined in Eq. (15) for unpolarised
and y-direction polarised spin-parity projectors with the ϑ̄ =
0 term subtracted. Bottom: The resulting subtracted o!-
forward structure functions, H1 and E1. All results are for
t = ↑0.57 GeV2 and uu ↑ dd quarks.

The matrix of N factors has a determinant ↔ 1 for
all our kinematics, making the inversion practical in all
cases.

Calculation details

We perform our calculation of the o"-forward Comp-
ton amplitude on a single set of gauge fields generated
by QCDSF/UKQCD [61] with 2 + 1 quark flavours at
the SU(3) flavour symmetric point, which yields an un-
physical pion mass of mω = 412 MeV. See Table I for
further details. In calculating the two-point correlator,
Eq. (12), we use the nucleon operator,

εε(x) = ϑabcu
a
ε(x)

[
u
b(x)Cϖ5d

c(x)
]
, (23)

➤ Kinematics chosen carefully 

➤ With current chosen   reduces tôek ∝ ⃗Δ = ⃗q1 − ⃗q2 Tμν
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➤ Expand subtracted  in moments, e.g. ℋ, ℰ

ℋ1(ω̄, t, Q2) = 2∑
n

ω̄nMn(t, Q2)

Tkk = −
1

2P ⋅ q̄ (h ⋅ q̄ ℋ1 + e ⋅ q̄ℰ1)
➤ 2 x spin projectors 

isolate ℋ1, ℰ1 6

0.0

0.5

1.0

1.5

H
u
u

1
(�̄

,t
)

t = 0

0.0

0.5

1.0

1.5
t = �0.29 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

�̄

0.0

0.5

1.0

1.5

H
u
u

1
(�̄

,t
)

t = �0.57 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

�̄

0.0

0.5

1.0

1.5

t = �1.14 GeV2
wide

medium

thin

moment

lattice results

Figure 3. The subtracted Compton structure function H1(ω̄, t) for all t values; uu results only. Note that our fits only use
points for which |p→| < 1 GeV; the shaded points are those with a sink momentum greater than this. Curves correspond to
all the fits performed in this work: the model-independent fit, Eq. (28) (‘moment’); and the model-dependent fits, Eq. (40),
using the three sets of priors in Tab. IV (‘wide’, ‘medium’ and ‘thin’). Note: the upper limit on the y-axis is held fixed
between the panels to demonstrate the change in magnitude with →t.

We use the Bayesian Markov chain Monte Carlo
(MCMC) package PyMC [64, 65] to perform this fit. This
allows us to sample the model parameters from prior
distributions that reflect physical constraints.

For the t = 0 kinematics our results are simply the
forward Compton structure function, F1, which is pos-
itive definite and hence has monotonically decreasing
Mellin moments [29]:

0 → An+1,0(t = 0) → An,0(t = 0), (30)

where in this section we suppress the Q̄
2 argument of

the moments for convenience.
Hence for the n

th moment, we use a uniform prior
distribution in the range An,0(0) ↑ [0, An→2,0(0)]. We
choose A2,0(0) ↑ [0, 1] for the prior on the leading mo-
ment.

For the o!-forward results, we no longer have mono-
tonicity, so we use positivity constraints on the GPDs
[66], which at ω = 0 are:

|H(x, t)| → q(x), |E(x, t)| → 2mN↓
↔t

q(x), (31)

where q(x) is the leading-twist parton distribution func-
tion. From these, it is simple to determine the bounds

on the moments at ω = 0:
∣∣A2n,0(t)

∣∣ → a2n,
∣∣B2n,0(t)

∣∣ → 2mN↓
↔t

a2n, (32)

where an is the n
th parton distribution function mo-

ment.
Although Eq. (32) is derived for leading-twist GPDs

we use it nonetheless, noting that we are at a reasonably
large Q̄

2 and that these bounds are not overly strict. As
such, we adapt Eq. (32) to the prior:
∣∣A2n,0(t)

∣∣ → A2n,0(0),
∣∣B2n,0(t)

∣∣ → 2mN↓
↔t

A2n,0(0).

(33)

For the An,0(0) bounds we use the mean plus one stan-
dard deviation of the moments calculated from the t = 0
results.

This fit is performed individually for each t value
across the ε̄ values given in Tab. VI of Appendix C.
Note that in our fit we only use ε̄ values for which the
sink momentum is

|p↑| < 1 GeV, (34)

as these are the points for which (1) we can better insure
ground state isolation, and (2) O(apµ) discretisation
artefacts are expected to be negligible for these points.
We discuss these systematics further in the next section.
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Results

As we can see in Fig. 3, the moment fit (labelled
‘moment’) describes the ω̄-dependence of H1 data well,
with most points being consistent within a standard
deviation of the fits. Moreover, the fits are even con-
sistent with some of the |p→| → 1 GeV points that
were not included in the fits. We note that for points
with |p→| < 1 GeV, the t = 0, ↑0.29, ↑0.57 GeV2 re-
sults do not have ω̄ points greater than ω̄ ↓ 0.8, while
for t = ↑1.14 GeV2, there are no such points beyond
ω̄ ↓ 0.6. This limits our ability to constrain the higher
moments in the present work. Moreover, since the
t = ↑0.29 GeV2 results require us to fit the ω̄ = 0
subtraction function, instead of determining it directly,
these fits are generally of a poorer quality. Note in Fig. 3
for the t = ↑0.29 GeV2 we subtract o! the fitted ω̄ = 0
point.

See Appendix E for the posterior distributions from
the Bayesian Markov chain Monte Carlo fits. Note that
while using the fit function in Eq. (28), it is necessary to
choose the number of moments to fit, Nmax. To make
this choice, we compare the e!ect of varying this pa-
rameter in Fig. 13. For Nmax → 3 the order of trunca-
tion has negligible impact on the leading moments, and
therefore we take Nmax = 7.

In addition to determining our OFCA moments, we
also determine the generalised form factors An,0 and
Bn,0 for n = 1, 2 using the local twist-two operators on
the same set of gauge configurations. The matrix ele-
ments of these local operators are computed using stan-
dard three-point function methods[14]—see Appendix F
for the details. As per Eq. (27), the o!-forward struc-
ture function moments A2n,0 and B2n,0 correspond to
the GFFs A2n,0 and B2n,0, respectively, up to higher-
twist, power-corrections and the Wilson coe"cient. As
such, the A2,0 and B2,0 GFFs determined from local
operators are a useful point of comparison.

Finally, we fit n = 2 moments as a function of t, using
the dipole parametrisation:

G(t) =
G(0)

(
1 ↑ t/m

2
dip

)2 . (35)

Given the large uncertainties on our points, we only use
this simple parametrisation and do not test the e!ects
of di!erent parametrisations for form factor fits. See
Tab. III for the parameters of our dipole fits for uu↑dd

quarks.
In Fig. 4 we plot the OFCA moments A2,0 and B2,0

as functions of the soft momentum transfer t, includ-
ing a comparison to A2,0 and B2,0 GFFs. We observe
good agreement between the helicity-conserving mo-
ments A2,0 and the GFF A2,0 across the range of t val-
ues. Similarly, there is reasonable agreement between
the helicity-flipping moments B2,0 and B2,0.

0.0

0.1

0.2

0.3 A2,0(t, Q̄2)

A2,0(t)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

�t [GeV2]

0.0

0.2

0.4

0.6
B2,0(t, Q̄2)

B2,0(t)

Figure 4. The n = 2 o!-forward Compton amplitude mo-
ments A2n,0 (top) and B2n,0 (bottom) determined from a
moment fit. These are the moments of H1 and E1 as in
Eq. (26). The Compton amplitude results are for the uu→dd

quarks. We compare this to A2,0 and B2,0 GFFs for u → d

quark combination, calculated from the local twist-two lat-
tice operators on the same set of gauge configurations. Note
the twist-two operators are renormalised using RI→/MOM.,
while the OFCA amplitude moments contain all power-
corrections and higher-twist contributions.

Table III. Summary of parameters from dipole fit. All results
for uu → dd quarks.

G(0) mdip

A2,0 0.226(59) 1.8(1.1)
B2,0 0.50(26) 1.8(1.3)

However, we emphasise that, even with complete con-
trol of lattice systematics, our structure function mo-
ments should be distinct from the leading-twist GFFs,
and as such we do not attempt a strong comparison
between these results. Nor do we attempt a separa-
tion of the leading-twist contributions and the power-
corrections; such a determination has been performed
on our forward Compton amplitude results where more
Q

2 values are available [31]. An equivalent study of the
Q̄

2 dependence of the o!-forward Compton amplitude
could provide useful information on the non-leading-
twist contributions to these moments. It is, however,
encouraging that there is reasonable agreement between
the t dependence of the Compton amplitude moments
and that of the local twist-two operators.

Finally, we note that the parameters from our dipole

Off-forward Compton
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Moments match onto Mellin moments of GPDs

Mn(t, θ, Q2) Q2→∞⟶ ∫
1

−1
dx xn−1H1(x, ξ, t)

=
n−1

∑
j=0,2,4,…

(−2ξ) jAn,j(t) + (−2ξ)n Cn(t)
n even

ξ =
θ
ω̄

contain all power 
corrections & 
higher twist

3-point functions using 
twist-2 operators



6

0.0

0.5

1.0

1.5

H
u
u

1
(�̄

,t
)

t = 0

0.0

0.5

1.0

1.5
t = �0.29 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

�̄

0.0

0.5

1.0

1.5

H
u
u

1
(�̄

,t
)

t = �0.57 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

�̄

0.0

0.5

1.0

1.5

t = �1.14 GeV2
wide

medium

thin

moment

lattice results

Figure 3. The subtracted Compton structure function H1(ω̄, t) for all t values; uu results only. Note that our fits only use
points for which |p→| < 1 GeV; the shaded points are those with a sink momentum greater than this. Curves correspond to
all the fits performed in this work: the model-independent fit, Eq. (28) (‘moment’); and the model-dependent fits, Eq. (40),
using the three sets of priors in Tab. IV (‘wide’, ‘medium’ and ‘thin’). Note: the upper limit on the y-axis is held fixed
between the panels to demonstrate the change in magnitude with →t.

We use the Bayesian Markov chain Monte Carlo
(MCMC) package PyMC [64, 65] to perform this fit. This
allows us to sample the model parameters from prior
distributions that reflect physical constraints.

For the t = 0 kinematics our results are simply the
forward Compton structure function, F1, which is pos-
itive definite and hence has monotonically decreasing
Mellin moments [29]:

0 → An+1,0(t = 0) → An,0(t = 0), (30)

where in this section we suppress the Q̄
2 argument of

the moments for convenience.
Hence for the n

th moment, we use a uniform prior
distribution in the range An,0(0) ↑ [0, An→2,0(0)]. We
choose A2,0(0) ↑ [0, 1] for the prior on the leading mo-
ment.

For the o!-forward results, we no longer have mono-
tonicity, so we use positivity constraints on the GPDs
[66], which at ω = 0 are:

|H(x, t)| → q(x), |E(x, t)| → 2mN↓
↔t

q(x), (31)

where q(x) is the leading-twist parton distribution func-
tion. From these, it is simple to determine the bounds

on the moments at ω = 0:
∣∣A2n,0(t)

∣∣ → a2n,
∣∣B2n,0(t)

∣∣ → 2mN↓
↔t

a2n, (32)

where an is the n
th parton distribution function mo-

ment.
Although Eq. (32) is derived for leading-twist GPDs

we use it nonetheless, noting that we are at a reasonably
large Q̄

2 and that these bounds are not overly strict. As
such, we adapt Eq. (32) to the prior:
∣∣A2n,0(t)

∣∣ → A2n,0(0),
∣∣B2n,0(t)

∣∣ → 2mN↓
↔t

A2n,0(0).

(33)

For the An,0(0) bounds we use the mean plus one stan-
dard deviation of the moments calculated from the t = 0
results.

This fit is performed individually for each t value
across the ε̄ values given in Tab. VI of Appendix C.
Note that in our fit we only use ε̄ values for which the
sink momentum is

|p↑| < 1 GeV, (34)

as these are the points for which (1) we can better insure
ground state isolation, and (2) O(apµ) discretisation
artefacts are expected to be negligible for these points.
We discuss these systematics further in the next section.

Off-forward Compton
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GPD reconstruction

➤ Employ model-dependent ansatz

H(x, t) = Cx−α(t)(1 − x)β

α(t) = α0 + α′ t

➤ Perform Bayesian fit with 3 priors of differing widths 

➤ Drawing on positivity constraint of leading-twist GPDs 

(dispersion relation)

ℋ1(ω̄, t) = 2C
∞

∑
n=1

ω̄2n Γ(2n − α(t))Γ(β + 1)
Γ(1 + 2n − α(t) + β)

8

fits broadly agree with other fits to generalised form fac-
tors calculated from local twist-two operators at simi-
lar pion masses [17]. Moreover, we determine the u → d

quark angular momentum from the Ji sum rule [2]:

↑J3
u→d↓ ↔ 1

2
[Auu→dd

2,0 (0, Q̄
2) + Buu→dd

2,0 (0, Q̄
2)] = 0.36(16),

(36)

neglecting the non-leading-twist corrections to our mo-
ments. Again, this agrees with determinations from lo-
cal twist-two operators at similar pion masses [17], al-
though our errors are very large mostly owing to the
statistical uncertainties on the B2,0(0, Q̄

2) dipole fit.
Despite the size of these uncertainties, this calcula-

tion provides an alternative means of determining the Ji
sum rule. Moreover, determinations of the OFCA with
multiple Q̄

2 values would allow us to analyse the hard
scale dependence of this quantity, which is not achiev-
able from other methods.

V. MODEL FIT

In the previous section, we determined the Mellin mo-
ments of the real-time o!-forward structure functions
from our Euclidean OFCA. While this determination is
largely model-independent, it is di"cult to reconstruct
the complete real-time structure functions (and hence
GPDs) from a limited set of Mellin moments.

As such, for our second fit strategy we use the phe-
nomenological parametrisation of a GPD (or o!-forward
structure function),

H(x, t) = Cx
→ω(t)(1 → x)ε , (37)

with ω(t) = ω0 + ω
↑
t, where ω

↑ is the Regge slope pa-
rameter.

Note that this parametrisation is normalised by the
factor

C = A

∫ 1

0
dxx

→ω0(1 → x)ε = A
!(3 → ω0 + ε)

!(2 → ω0)!(ε + 1)
,

(38)

which ensures that A2,0(t = 0, Q̄
2) = A. This gives us a

total of four parameters in our model: A, ω0, ω
↑ and ε.

We then perform a global fit with this parametrisation
to our Compton amplitude results for all t values.

The model in Eq. (37) and similar Regge-inspired
parametrisations of GPDs have been used widely to de-
termine GPD properties from various experimental pro-
cesses [49–59], as well as in fits to other lattice results
[9, 10].

Inserting the ansatz in Eq. (37) into our dispersion
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0 5
�

0
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Figure 5. Posterior distributions of our three model param-
eters for u quarks; note that ω0 is not a model parameter
but its posterior can be reconstructed with Eq. (43).

relation, Eq. (8), we obtain

H1(ϑ̄, t) = 2Cϑ̄
2 !(2 → ω(t))!(ε + 1)

!(3 + ε → ω(t))

↗ 3F 2

[
1, (2 → ω(t))/2, (3 → ω(t))/2

(3 + ε → ω(t))/2, (4 + ε → ω(t))/2
; ϑ̄2

]
,

(39)

where 3F 2 is a generalised hypergeometric function.
Equation (39) can be expressed as the sum of mo-

ments:

H1(ϑ̄, t) = 2C
↓∑

n=1

ϑ̄
2n!(2n → ω(t))!(ε + 1)

!(1 + 2n → ω(t) + ε)
, (40)

with the n
th moment as

An,0(t) = C
!(n → ω(t))!(ε + 1)

!(1 + n → ω(t) + ε)
, (41)

which is similar to Regge-inspired models of elastic form
factors [67].

To simplify the implementation of the fit, we use
Eq. (40) as our fit function, truncating at a very high
order, n = 50, which ensures even marginal e!ects from
the higher moments are negligible.

We note that this model is best justified for valence
quarks, though our results include sea quark contribu-
tions (i.e. H(→x, t)) that we take to be suppressed. The
assumption that our distributions are dominated by va-
lence quark contributions allows us to make the further
constraint on our parameters that

∫ 1

0
dxH

q(x, t = 0) = F
q
1 (|t| = 0) = Nq, (42)

|𝒜2n,0(t) | ≤ 𝒜2n,0(0)

|ℬ2n,0(t) | ≤
2mN

−t
𝒜2n,0(0)

enforce
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GPD reconstruction

➤ Enforce quark counting (leading-twist) 

➤ Truncate series at n=50 moments 

➤ Compare with model-independent 
moment fit and 3-point results
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Figure 6. The Compton amplitude moments An,0, determined from the model-dependent fit, Eq. (40) with the three sets of
priors (‘wide’, ‘medium’ and ‘thin’). We compare these to the moments from the direct moment fit, Eq. (28) (‘moment’); all
results for u quarks. In addition we compare our Compton amplitude moments to the GFFs calculated with local twist-two
operators on the same gauge configurations (‘An,0 3-pt’). We emphasise again that the Compton amplitude moments, An,0

are distinct from the leading-twist GFFs An,0, although they can be related via Eq. (27).

Figure 7. The helicity-conserving GPD, H(x, t), for u

quarks, determined from fitting the model parametrisation
Eq. (40) to our Compton amplitude results. This uses the
‘medium’ priors given in Tab. IV.

For the A4,0 results, there is slightly less agreement

Figure 8. The impact parameter space distribution xH(x, b)
for d quarks, determined from the model parametrisation fit
using the ‘medium’ priors given in Tab. IV. Note colours
correspond to z-axis value, and are simply to help convey
the shape.

among the three sets of priors in the model fit and the
direct moment fits are less well-constrained compared
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GPD reconstruction

H(x, t) = Cx−α(t)(1 − x)β
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Transverse force distribu8ons in the nucleon
Physical Review Letters 134 (2025) — Editor’s suggestion

“The study reveals a spin-independent force that reflects the confinement of quarks, 
with local forces reaching up to 3 billion electron volts per femtometre — about half a 

million Newtons, or the weight of roughly 10 elephants. A spin-dependent force 
has also been mapped, which offers new insights into how the dynamics of quarks are 

influenced by the spin of the proton in which they live.”
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Figure 6. The Compton amplitude moments An,0, determined from the model-dependent fit, Eq. (40) with the three sets of
priors (‘wide’, ‘medium’ and ‘thin’). We compare these to the moments from the direct moment fit, Eq. (28) (‘moment’); all
results for u quarks. In addition we compare our Compton amplitude moments to the GFFs calculated with local twist-two
operators on the same gauge configurations (‘An,0 3-pt’). We emphasise again that the Compton amplitude moments, An,0
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Figure 6. The Compton amplitude moments An,0, determined from the model-dependent fit, Eq. (40) with the three sets of
priors (‘wide’, ‘medium’ and ‘thin’). We compare these to the moments from the direct moment fit, Eq. (28) (‘moment’); all
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Figure 7. The helicity-conserving GPD, H(x, t), for u

quarks, determined from fitting the model parametrisation
Eq. (40) to our Compton amplitude results. This uses the
‘medium’ priors given in Tab. IV.

For the A4,0 results, there is slightly less agreement
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: No simple partonic interpretation!g2



While no simple parton interpretation, moment of the  structure function can be expressed in terms of a 
local matrix element

g2

Colour-Lorentz force
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Burkardt, PRD, 2013

∫ dx x2ḡ2(x) =
d2

3
≡

1
6 ∑

q

e2
qdq

2

dq
2 =

1
2MP+P+Sx

⟨P, S |ψq(0)γ+gG+y(0)ψq(0) |P, S⟩
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Transverse Forces from DIS

• Transversely polarised DIS allows us to explore higher-twist contributions to
observables.

• The twist-3 part of the nucleon structure function g2(x,Q2) does not have a
single particle interpretation.

• Alternative interpretation: twist-3 matrix elements represent transverse
forces1.

3
Z 1

�1
dx x2g̃2(x) = d2 =

1
2mP+P+Sx hP,S | (0)�+gG+y(0) (0)|P,Si .

• Untangling the gluon field strength tensor component, we find:

G+y =
1
p

2
�
G0y + Gzy� = �

1
p

2

h
~Ec + ~v ⇥ ~Bc

iy
= �

1
p

2
Fy!

1Burkardt, M. Phys. Rev. D. 2013. arXiv: hep-ph/1510.03112.
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Quark current density 
coupled to colour-

Lorentz force

where
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Electromagnetic Form Factors

⌦
p0, s0

�� �µ 
��p, s

↵
= u(p0, s0)


�µF1(t) +

i�µ⌫q⌫
2mN

F2(t)
�

u(p, s) (13)

Figure: Electromagnetic F1 form factor on the
� = 5.95 lattice.

Figure: Electromagnetic F2 form factor on the
� = 5.95 lattice.
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Quark Densities in the Transverse Plane9

q(b?) =
1
2


F̃ (q)

1 (b2
?)

+
bj
?✏

jiS i

mN

d
db2

?
F̃ (q)

2 (b2
?)

�
(15)

• x̂-polarised ! S = (1, 0).
• Fits our heuristic picture of quark

density asymmetry! Figure: Unpolarised up quark density in an
x̂-polarised proton.

9Göckeler et al., “Transverse spin structure of the nucleon from lattice QCD simulations”.
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2D Fourier 
transforms

Quark densities

Dirac Pauli

F̃1(b2), F̃2(b2)

q(b) =
1
2 [F̃1(b2) +

bjϵ jiSi

mN

d
db2

F̃2(b2)]
Proton spin axis

Quark orbital motion
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Recipe for a Density Distribution

Form factor decomposition of our matrix element is3

⌦
p0, s0

�� �+igG+i 
��p, s

↵
= u(p0, s0)


P+�i�+�1(t) + MP+i�+i�2(t)

+
1
M P+�ii�+��3(t)

�
u(p, s), (1)

where Pµ = (p0 + p)µ/2, �µ = (p0
� p)µ, t = ��2 and �µ� = �µ⌫�⌫ .

1 Compute off-forward matrix elements on the lattice.
2 Compute form factors for a range of momentum transfers.
3 Take 2D Fourier transform to visualise forces in transverse impact

parameter space.
3Aslan, F., Burkardt, M, and Schlegel, M. Phys. Rev. D. 2019. arXiv: hep-ph/1904.03494.
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Off-forward 
matrix elements

Form factors  
→ 2D Fourier 

transform Force distributions in 
the transverse plane

in terms of form factors. The way to parametrizeW closely
follows the procedure outlined in Ref. [7]. In short, we
assume the following ansatz for the matrix element W,

Wμ;νλ ¼ ūðp0; λ0ÞΓμ;νλðp; p0Þuðp; λÞ; ð15Þ

where Γ is a general Dirac matrix depending on the initial
and final nucleon momenta, p and p0, respectively. After
decomposing Γ into the sixteen basis matrices, f1; γ5; γμ;
γμγ5; iσμνg, the coefficients in that decomposition are para-
metrized in terms of the four momenta pμ and p0μ, along

with form factors that depend on t ¼ Δ2 ¼ ðp0 − pÞ2.
A parametrization with a minimal number of form factors
is obtained by applying parity, time reversal, and hermiticity
constraints, as well as Gordon identities.
For general Lorentz indices the matrix elements of the

operator q̄ð0ÞγμigGνλð0Þqð0Þ can be parametrized in terms
of eight form factors [8]. However, for the transverse force
distribution, we are only interested in the matrix elements
of q̄ð0ÞγþigGþið0Þqð0Þ, which can be parametrized in
terms of five form factors, Φ1ðtÞ;…;Φ5ðtÞ, as

hp0; λ0jq̄ð0ÞγþigGþið0Þqð0Þjp; λi ¼ ūðp0; λ0Þ
!

1

M2
½PþΔi

⊥ − P⊥ΔþÞ&γþΦ1ðtÞ þ
Pþ

M
iσþiΦ2ðtÞ

þ 1

M3
iσþΔ½PþΔi

⊥Φ3ðtÞ − P⊥ΔþΦ4ðtÞ& þ
PþΔþ

M3
iσiΔΦ5ðtÞ

"
uðp0; λÞ: ð16Þ

FIG. 1. Transverse force fields obtained from the three form factors,Φ1,Φ2 andΦ3 in Eq. (16). The orientations of the force fields F 2

and F 3 are for a nucleon polarized in the x-direction.
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Compute 3-point correlators on the lattice

Recall: 3-point functions 
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hC3(t, t0)i
hC2(t)ihC2(t0)i

/ hN 0|J |Ni
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Computing Matrix Elements in Lattice QCD

Figure: Ratio fit proportional to the forward
matrix element d2.

Figure: Ratio fit proportional to the
corresponding mixing operator.
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3 source–sink separations to 
establish ground-state dominance

𝒪[5]
[i{j]4} = −

g
6

ψ (G̃ijγ4 + G̃i4γj) ψ − traces
𝒪[5]



Transverse force distributions in the proton from lattice QCD J. A. Crawford

(a) Renormalised ω1 form factor results. (b) Renormalised ω3 form factor results.

Figure 1: Form factors computed at our finest lattice spacing with corresponding dipole fits.

By taking a 2D Fourier transform of the form factors, we obtain a visualisation of the colour-
Lorentz force distributions in the transverse plane,

F
𝐿

𝑀
→
𝑀
=
∫

𝐿
2ε↑

(2𝑀)2 𝑁
↓𝑁b·𝛚↑

𝑂
𝐿

𝑀
→
𝑀
(𝛚↑), (9)

where,

𝑂
𝐿

𝑀
→
𝑀
(𝛚↑) =

𝑃

↔
2𝑄+

〈
𝑅
+
,

ε↑

2
, 𝑆

→

####𝑇(0)𝑈+𝑃𝑉𝑊+ 𝐿
(0)𝑇(0)

####𝑅+,↓ε↑

2
, 𝑆

〉
,

= 𝑋(𝑅
→
, 𝑆

→
)

[
𝑄
+ε𝑁

𝑈
+ω1(𝑌) + 𝑍𝑄

+
𝑃𝑎

+𝑁ω2(𝑌) +
1
𝑍

𝑄
+ε𝑁

𝑃𝑎
+εω3(𝑌)

]
𝑋(𝑅, 𝑆).

(10)

Here, 𝑏 = 𝑐, 𝑑 represents the transverse index, 𝑆→, 𝑆 denote the nucleon polarisation and 𝛚↑ is the
transverse momentum transferred to the nucleon. In the following, we denote the contribution to
the total force from the ω𝑁 form factor as F𝑁 .

The first term in the form factor decomposition, corresponding to the Dirac bilinear
𝑋(𝑅

→
, 𝑆

→
)𝑈

+
𝑋(𝑅, 𝑆), is diagonal in the nucleon spins and therefore is not sensitive to the nucleon

polarisation. As such, the Fourier transform of this term describes the colour-Lorentz force acting
on unpolarised quarks in an unpolarised proton. This Fourier transform is shown in Figure 2,
where we have taken the Fourier transform of the interpolating dipole fit. The force is shown
to be attractive for all regions of impact parameter space, consistent with our understanding of
confinement. The vectors shown in the figure are weighted by the corresponding quark density,
and so to estimate the magnitude of these colour-Lorentz forces, we divide out the quark density
dependence. The quark density is computed through 2D Fourier transforms of the electromagnetic
form factors 𝑂1(𝑌) and 𝑂2(𝑌) using the procedure outlined in Refs. [25, 26]. The quark density
distributions are plotted alongside the force distributions to aid in visualisation.

5

 form factorΦ1
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➤ : isotropic force distribution 

➤ Dipole fits to lattice results

Φ1
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Recipe for a Density Distribution

Form factor decomposition of our matrix element is3

⌦
p0, s0

�� �+igG+i 
��p, s

↵
= u(p0, s0)


P+�i�+�1(t) + MP+i�+i�2(t)

+
1
M P+�ii�+��3(t)

�
u(p, s), (1)

where Pµ = (p0 + p)µ/2, �µ = (p0
� p)µ, t = ��2 and �µ� = �µ⌫�⌫ .

1 Compute off-forward matrix elements on the lattice.
2 Compute form factors for a range of momentum transfers.
3 Take 2D Fourier transform to visualise forces in transverse impact

parameter space.
3Aslan, F., Burkardt, M, and Schlegel, M. Phys. Rev. D. 2019. arXiv: hep-ph/1904.03494.
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β = 5.95 (a ∼ 0.052 fm)

Negative form factors 
 attractive forces⟹

mπ ∼ 410 GeV



Discretisation effects

56

Extract form factors at 3 lattice spacings, 

a ∼ 0.74, 0.68, 0.52 fm
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Global Fit of Form Factors

Figure: Up and down quark �1 form factor on all
lattices.

• Repeating on all lattices, we see
some lattice spacing dependence.

• Perform a global fit by introducing
a-dependence to the dipole fit
function,

�i(t, a) =
�i(0) + bia⇣

1 + t
⇣

1
⇤2

i
+ cia

⌘⌘2 ,

(25)
• Remove lattice artefacts by

subtracting off continuum result,

��i(t) = �i(t, a)� �i(t, 0) (26)
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Some tension between different 
lattices; mostly in overall normalisation

mπ ∼ 410 GeV
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Global Fit Results - �1 and �3

Figure: Results for the �1 Form Factor. Figure: Results for the �3 Form Factor.
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Global fit

57

Model a dependence in magnitude and slope
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Global Fit of Form Factors

Figure: Up and down quark �1 form factor on all
lattices.

• Repeating on all lattices, we see
some lattice spacing dependence.

• Perform a global fit by introducing
a-dependence to the dipole fit
function,

�i(t, a) =
�i(0) + bia⇣

1 + t
⇣

1
⇤2

i
+ cia

⌘⌘2 ,

(25)
• Remove lattice artefacts by

subtracting off continuum result,

��i(t) = �i(t, a)� �i(t, 0) (26)
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Global Fit Results - �1 and �3

Figure: Results for the �1 Form Factor. Figure: Results for the �3 Form Factor.
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Error bars here include estimate for a → 0



Force densities
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2D Fourier transform to impact parameter space

Quark densities

q(b) =
1
2 [F̃1(b2) +

bjϵ jiSi

mN

d
db2

F̃2(b2)]

Force densities

ℱi
ss′ 

(b) = − 2 2P+ d
db2

Φ̃1(b2) + 2mNϵijSjΦ̃2(b2) −
2 2ϵ jkSk

mN [δij d
db2

+ 2bibj d2

(db2)2 ] Φ̃3(b2)



Force densities
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2D Fourier transform to impact parameter space

Quark densities

q(b) =
1
2 [F̃1(b2) +

bjϵ jiSi

mN

d
db2

F̃2(b2)]

Force densities

ℱi
ss′ 

(b) = − 2 2P+ d
db2

Φ̃1(b2) + 2mNϵijSjΦ̃2(b2) −
2 2ϵ jkSk

mN [δij d
db2

+ 2bibj d2

(db2)2 ] Φ̃3(b2)

Unpolarised
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Force Density Distributions

Figure: Force density in an unpolarised proton.
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Quark densities

Unpolarised

q(b) =
1
2 [F̃1(b2) +

bjϵ jiSi

mN

d
db2

F̃2(b2)]

Force densities

ℱi
ss′ 

(b) = − 2 2P+ d
db2

Φ̃1(b2) + 2mNϵijSjΦ̃2(b2) −
2 2ϵ jkSk

mN [δij d
db2

+ 2bibj d2

(db2)2 ] Φ̃3(b2)

2D Fourier transform to impact parameter space

Spherically symmetric
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Quark Densities in the Transverse Plane9

q(b?) =
1
2


F̃ (q)

1 (b2
?)

+
bj
?✏

jiS i

mN

d
db2

?
F̃ (q)

2 (b2
?)

�
(15)

• x̂-polarised ! S = (1, 0).
• Fits our heuristic picture of quark

density asymmetry! Figure: Unpolarised up quark density in an
x̂-polarised proton.

9Göckeler et al., “Transverse spin structure of the nucleon from lattice QCD simulations”.
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Force densities
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2D Fourier transform to impact parameter space

Quark densities

q(b) =
1
2 [F̃1(b2) +

bjϵ jiSi

mN

d
db2

F̃2(b2)]

Force densities

ℱi
ss′ 

(b) = − 2 2P+ d
db2

Φ̃1(b2) + 2mNϵijSjΦ̃2(b2) −
2 2ϵ jkSk

mN [δij d
db2

+ 2bibj d2

(db2)2 ] Φ̃3(b2)

distorted distributions

Transversely polarised 
densities sensitive to 
impact parameter

Proton spin axis

Quark orbital motion
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Quark Densities in the Transverse Plane9

q(b?) =
1
2


F̃ (q)

1 (b2
?)

+
bj
?✏

jiS i

mN

d
db2

?
F̃ (q)

2 (b2
?)

�
(15)

• x̂-polarised ! S = (1, 0).
• Fits our heuristic picture of quark

density asymmetry! Figure: Unpolarised up quark density in an
x̂-polarised proton.

9Göckeler et al., “Transverse spin structure of the nucleon from lattice QCD simulations”.
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Force Density Distributions

Figure: Force density in a proton polarised in the x̂ direction.
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Force densities

61

2D Fourier transform to impact parameter space

Quark densities

q(b) =
1
2 [F̃1(b2) +

bjϵ jiSi

mN

d
db2

F̃2(b2)]

Force densities

ℱi
ss′ 

(b) = − 2 2P+ d
db2

Φ̃1(b2) + 2mNϵijSjΦ̃2(b2) −
2 2ϵ jkSk

mN [δij d
db2

+ 2bibj d2

(db2)2 ] Φ̃3(b2)

distorted distributions

Transversely polarised 
densities sensitive to 
impact parameter

Proton spin axis

Quark orbital motion



Local forces
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Dividing out the quark densities

Force densities = “quark density” x “force”

ℱ ∼ ⟨ρF⟩
 Motivates modelling the local forces as:

F ∼
⟨ρF⟩
⟨ρ⟩
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Force Density Distributions

Figure: Force density in an unpolarised proton.
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Local forces
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spin independent Φ1
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Model Dependence and Force Magnitude Estimates

Figure: Model dependence of F1 force as a
function of radial b.

Figure: Model dependence of F3 force as a
function of radial b.
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Strong forces at 
intermediate distances

Does this resemble the static 
quark potential anyone?

∼
⟨ψγ+F+bψ⟩

⟨ψγ+ψ⟩

🤔

F1(Q2) / Φ1(Q2)



Local forces
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spin dependent Φ3 ∼
⟨ψγ+F+jψ⟩

⟨ψγ+ψ⟩
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Model Dependence and Force Magnitude Estimates

Figure: Model dependence of F1 force as a
function of radial b.

Figure: Model dependence of F3 force as a
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Short distance behaviour quite sensitive to model: 
need good FFs at large Q2 Asymptotic trend? 

… need better FFs at smaller Q2

Sketch magnitude of force along  (fixed )bx by = 0

F1(Q2) / Φ3(Q2)
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Figure 6. The Compton amplitude moments An,0, determined from the model-dependent fit, Eq. (40) with the three sets of
priors (‘wide’, ‘medium’ and ‘thin’). We compare these to the moments from the direct moment fit, Eq. (28) (‘moment’); all
results for u quarks. In addition we compare our Compton amplitude moments to the GFFs calculated with local twist-two
operators on the same gauge configurations (‘An,0 3-pt’). We emphasise again that the Compton amplitude moments, An,0

are distinct from the leading-twist GFFs An,0, although they can be related via Eq. (27).

Figure 7. The helicity-conserving GPD, H(x, t), for u

quarks, determined from fitting the model parametrisation
Eq. (40) to our Compton amplitude results. This uses the
‘medium’ priors given in Tab. IV.

For the A4,0 results, there is slightly less agreement

x
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Figure 8. The impact parameter space distribution xH(x, b)
for d quarks, determined from the model parametrisation fit
using the ‘medium’ priors given in Tab. IV. Note colours
correspond to z-axis value, and are simply to help convey
the shape.

among the three sets of priors in the model fit and the
direct moment fits are less well-constrained compared

Summary and outlook
Colour-

Lorentz Forces
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Force Density Distributions

Figure: Force density in a proton polarised in the x̂ direction.
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Analysis

Clover action comprises the tree-level Symanzik improved gluon
action together with a stout smeared fermion action, modified for
the use of the FH technique.

Rose Smail
Constraining Beyond The Standard Model Nucleon Isovector Charges

Precision results for 
hadronic structure 
observables now 

becoming possible

Feynman-Hellmann offers competitive alternative 
to n-point functions for some observables

Twist-3 matrix elements 
offer new opportunities 

to probe interaction 
dynamics of partons

Future improvements: ensembles 
with near-physical quark masses 
and 4 ≲ mπL
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Phenomenology impact

Following the method presented in Bhattacharya et al., PRD, 2012

90% C.L. allowed regions in the ✏T ,S plane, Green band is the existing
band from 0+ ! 0+ nuclear beta, gT = gS = 1 with no error.

Rose Smail
Constraining Beyond The Standard Model Nucleon Isovector Charges43/46

Phenomenology impact

Tensor and scalar charges using our results: gT = 1.013(21),
�gT/gT ⇡ 2% gS = 0.94(31), �gS/gS ⇡ 30%

Rose Smail
Constraining Beyond The Standard Model Nucleon Isovector Charges

Experimental rates sensitive to product of 

(Tensor and scalar charges: ) X (new-physics effective couplings: )gT /gS ϵT /ϵS

Impact on phenomenology

67

Following Bhattacharya et al., PRD, 2012

With  (no error)gT = gS = 1Current and projected experimental limits with  (this work)gT /gS
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gSgT

E(λ) = E(0) ± λgq
T + 𝒪(λ2) E(λ) = E(0) + λgq

S + 𝒪(λ2)

∂E↑(λ)
∂λ λ=0

= + gq
T

∂E↓(λ)
∂λ λ=0

= − gq
T

∂E(λ)
∂λ λ=0

= + gq
S

Spin-dependent: Spin-independent:

Lambda dependence mπ ≈ 265 MeV, a = 0.068 fm, V = 483 × 96



Global fits
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Want result  

➤ in continuum  and infinite volume limits 

➤ at physical quark masses 

Global fit 

➤ Include  or  terms in X (singlet) and slope parameters 

➤ Free parameter to encode leading finite-volume correction on singlet: 

➤ Work to  in flavour expansion

O(a) O(a2)

O(δm2
l )

fL(m) = ( m
Xπ )

2
e−mL

mL

[functional form from chiral EFT, 
see Beane & Savage PRD(2004)]

XD,F = X*D,F(1 + c1
1
3

[ fL(mπ) + 2fL(mπ)]) + c2a + c3δm2
l D̃1 = 1 − 2(r̃1 + b̃1a)δml + d̃1δm2

l

δml → δml =
m2

π − X2
π

X2
π

e.g.



Results - Hyperon charges
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This work

gΣ
T = 0.805(15)

gΞ
T = − 0.1952(75)

gΣ
A = 0.876(28)

gΞ
A = − 0.206(21)

gΣ
S = 2.80(25)

gΞ
S = 1.59(12)

gΣ
T = 0.798(26)

gΞ
T = − 0.1872(72)

gΣ
A = 0.875(49)

gΞ
A = − 0.267(18)

gΣ
S = 3.98(33)

gΞ
S = 2.57(16)

Not in FLAG, but recent results by RQCD [PRD108(2023)]

RQCD

some tension



In quenched QCD with heavy quark masses reveals for both  and N  

Currently generating dynamical ensembles with: 

➤  NP Clover fermions with  

➤ 3 values each of  and  

➤ Z matrix more complicated:

π ⟨x⟩q ∼ 0.5 − 0.6, ⟨x⟩g ∼ 0.4 − 0.5

nf = 2 mπ ∼ 600 MeV

λq λg

Momentum fractions extra

71

ZNS
qq = Za − Zb

ZS
qq = ZNS

qq + nf Zb
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