

Momentum, structure, and forces in the nucleon from lattice QCD

James Zanotti The University of Adelaide

Workshop on parton distribution functions in the EIC era June 16 - 18, 2025 Institute of Physics, Academia Sinica, Taipei, Taiwan



QCDSF Collaboration

QCDSF Collaboration

- M. Batelaan (Adelaide, PhD 2023 -> W&M)
- K. U. Can (Adelaide)
- J. Crawford (Adelaide, PhD 2025?)*
- A. Hannaford-Gunn (Adelaide, PhD 2023)*
- R. Horsley (Edinburgh)
- T. Howson (Adelaide, PhD 2024)*
- J. McKee (Adelaide, PhD)
- J. Perks (Adelaide, Masters)

- D. Pleiter (KTH)
- P. Rakow (Liverpool)
- G. Schierholz (DESY)
- R. Smail (Adelaide, PhD 2024)*
- H. Stüben (Hamburg)
- I. van Schalkwyk (Adelaide, PhD)
- T. Schar (Adelaide, Masters 2025)
- R. Young (Adelaide)

(* this talk)

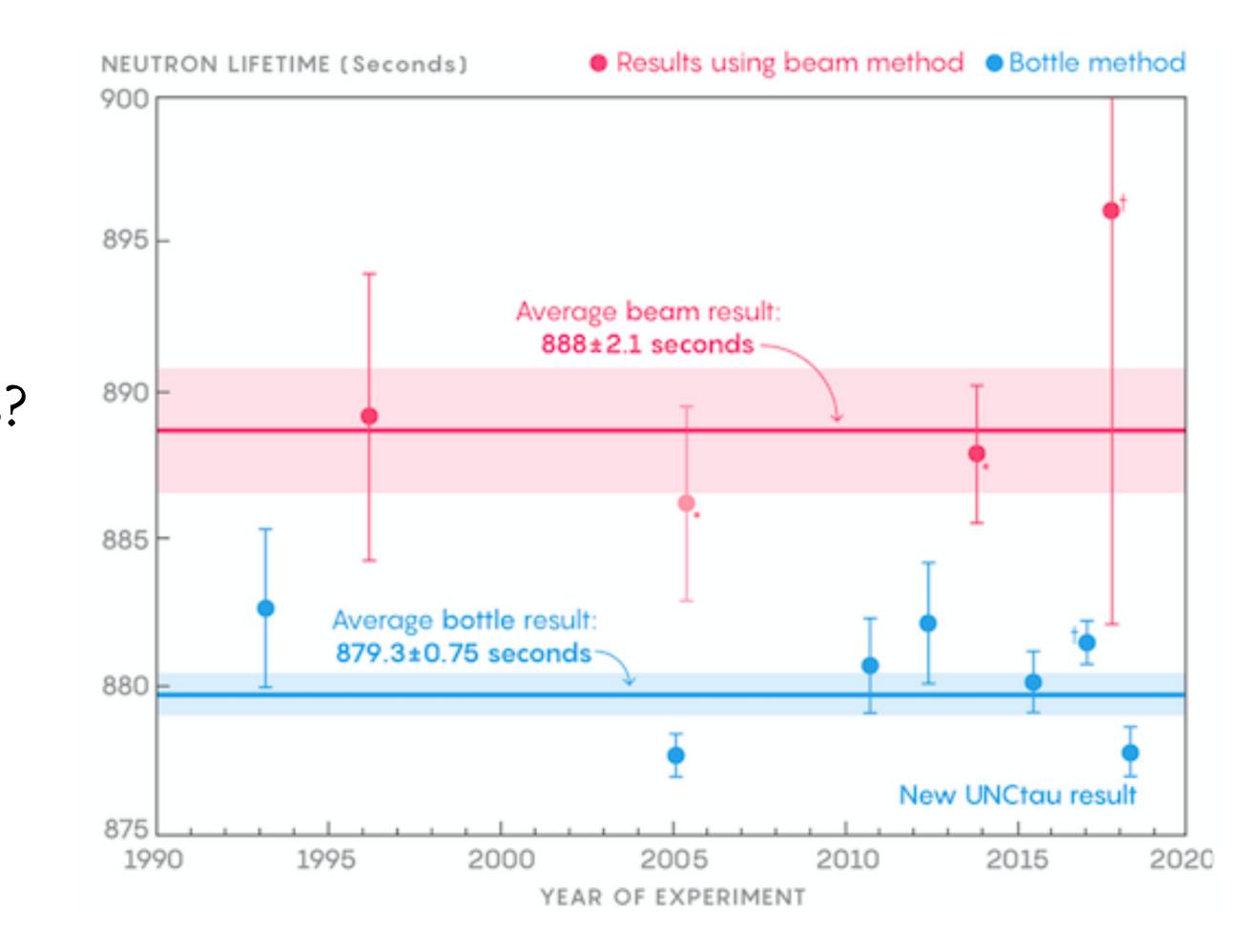
Topics

- Precision isovector axial, tensor, scalar charges [PRD108 (2023)]
- > Quark and gluon momentum fractions, $\langle x \rangle_q$, $\langle x \rangle_g$ [PLB714 (2012) + in preparation]
 - Renormalisation and mixing
- ➤ Off-forward Compton amplitude [PRD105 (2022), PRD110 (2024)]
 - Reconstruction of generalised parton distribution functions
- ► Transverse forces [PRL134 (2025)]

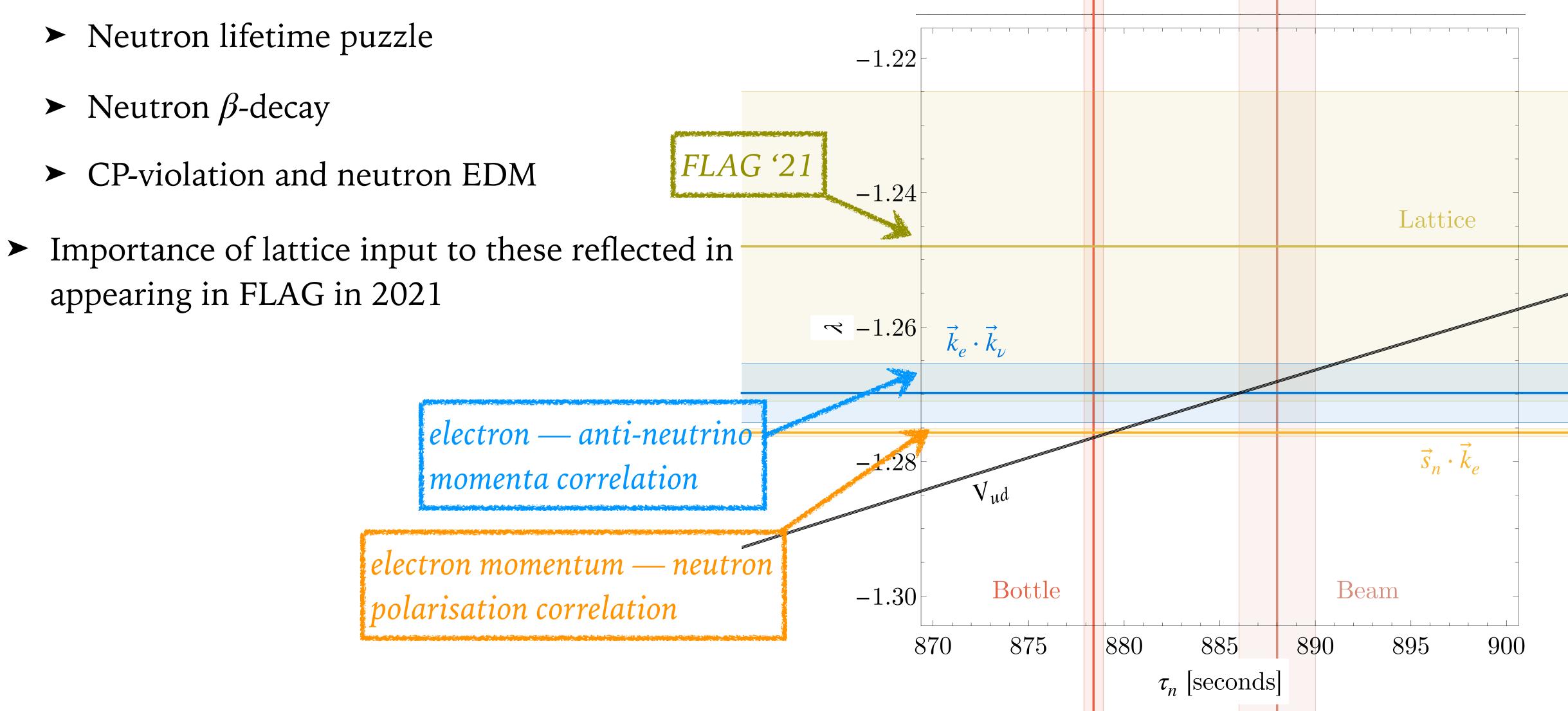
ちょうちょうちょうちょうちょうちょうちょうちょうちょう

Precision isovector axial, tensor, scalar charges [PRD108 (2023)]

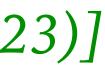
- $\succ \text{Current } \tau_{\text{bottle}}^n \tau_{\text{beam}}^n \sim 4\sigma$
- Unconsidered systematic error in the experiments? or evidence of new physics?
- ► Bottle counts how many neutrons left
- Beam counts final state protons only
- Evidence of some unknown decay in bottle?



- ► Nucleon isovector charges $(g_A^{u-d}, g_T^{u-d}, g_S^{u-d})$ can have an impact on searches for New Physics



[QCDSF, PRD108 (2023)]



► For a beam of polarised neutrons the differential decay rate is described by:

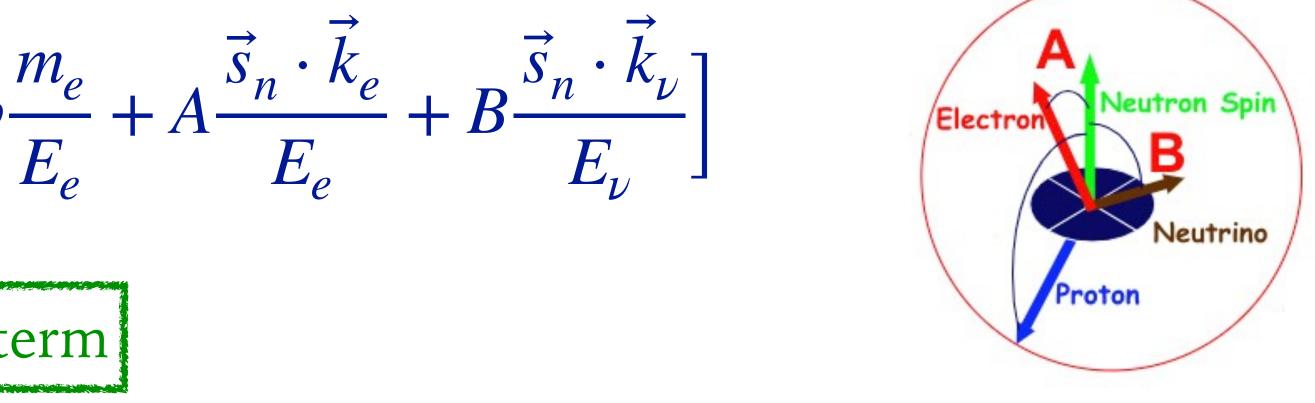
$$dW \propto \frac{1}{\tau_n} F(E_n) \left[1 + a \frac{\vec{k}_e \cdot \vec{k}_\nu}{E_e E_\nu} + b \frac{\vec{k}_e \cdot \vec{k}_\nu}{F_e E_\nu} \right]$$

Fierz interference te

- \succ SM: b = 0
- Added to account for the possible BSM scalar and tensor interactions

SM

 $g_V \approx 1, g_A = 1.2756(13)$



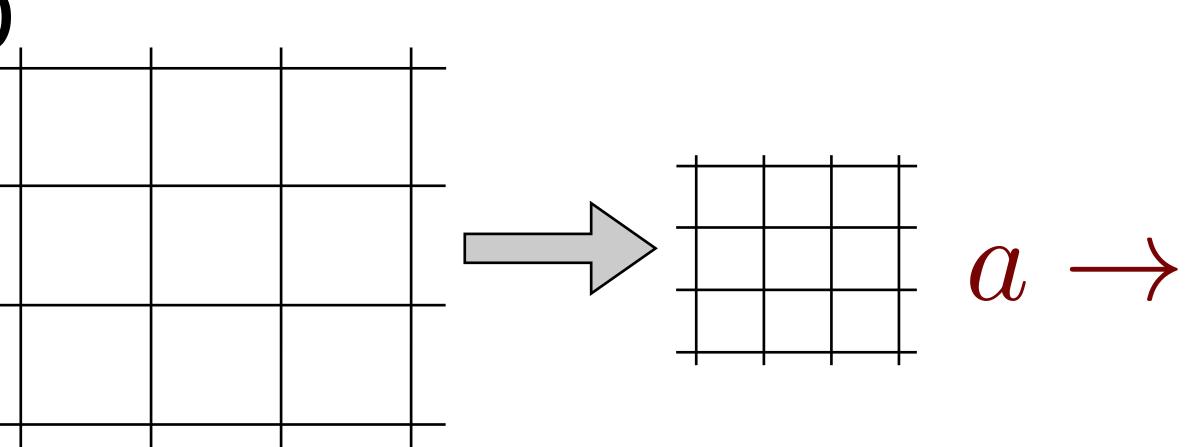
BSM

$g_S \approx ?, g_T \approx ?$

Systematics of Lattice QCD

Extrapolations:

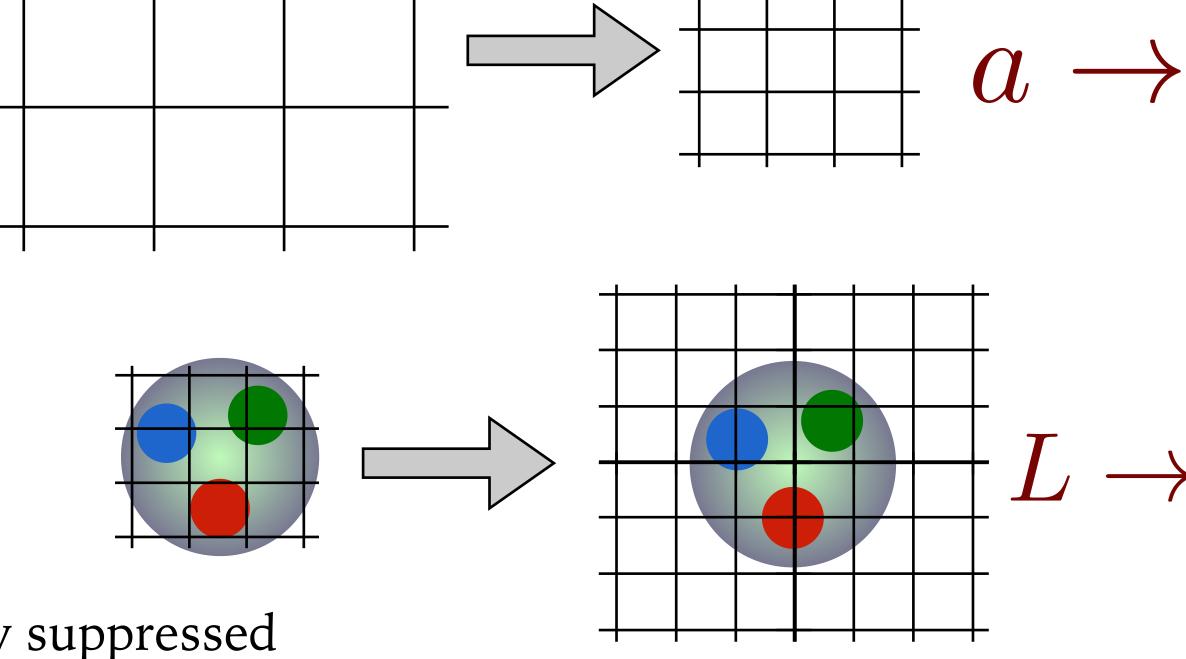
- ► Continuum
 - ► Unavoidable
 - ► Improved actions (errors O(a2))
 - Finer lattice spacings



Systematics of Lattice QCD

Extrapolations:

- ► Continuum
 - ► Unavoidable
 - Improved actions (errors O(a2))
 - Finer lattice spacings
- Finite volume
 - Large volumes so effects are exponentially suppressed



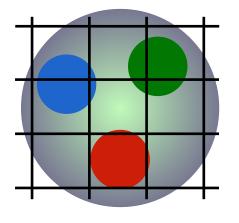
Systematics of Lattice QCD

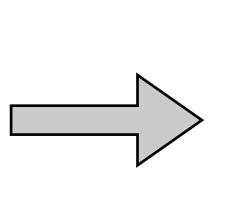
Extrapolations:

- Continuum
 - Unavoidable
 - Improved actions (errors O(a2))
 - Finer lattice spacings
- Finite volume
 - ► Large volumes so effects are exponentially suppressed

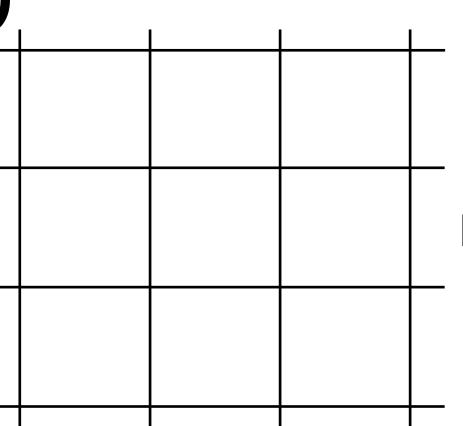
Chiral

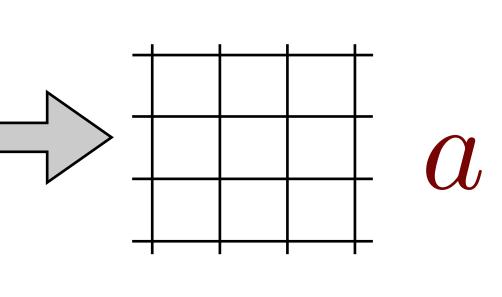
- Simulate at physical quark masses
- Chiral perturbation theory
- ► Flavour-breaking expansion



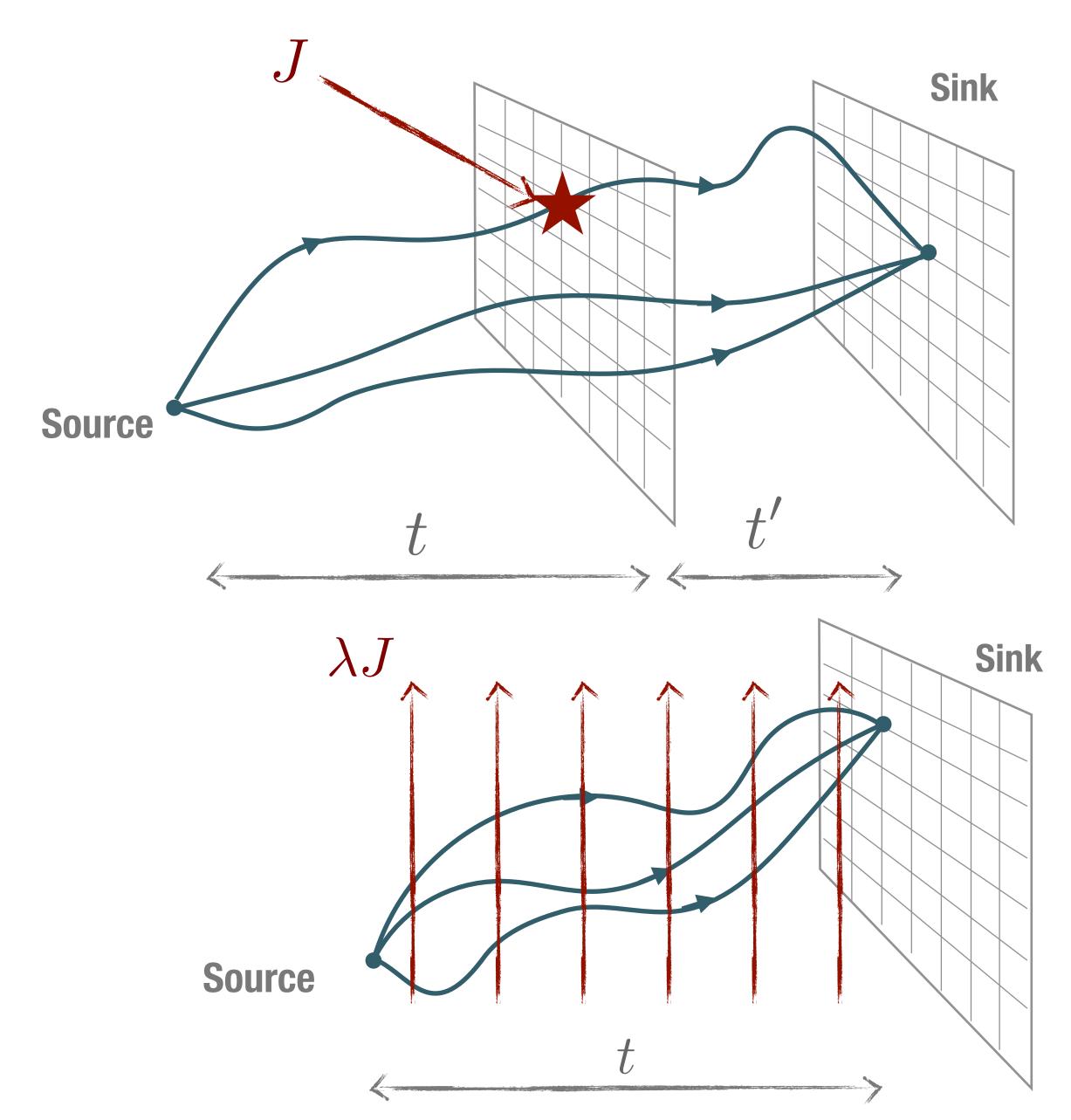








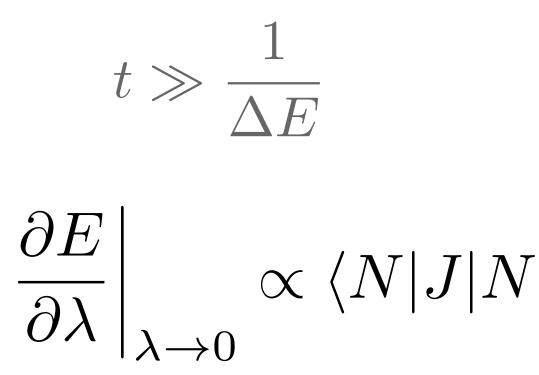
Matrix elements on the lattice



3-pt functions

$$\frac{\langle C_3(t,t')\rangle}{\langle C_2(t)\rangle\langle C_2(t')\rangle} \propto \langle N'|J|N\rangle$$

Feynman-Hellmann



11

Feynman-Hellmann Theorem

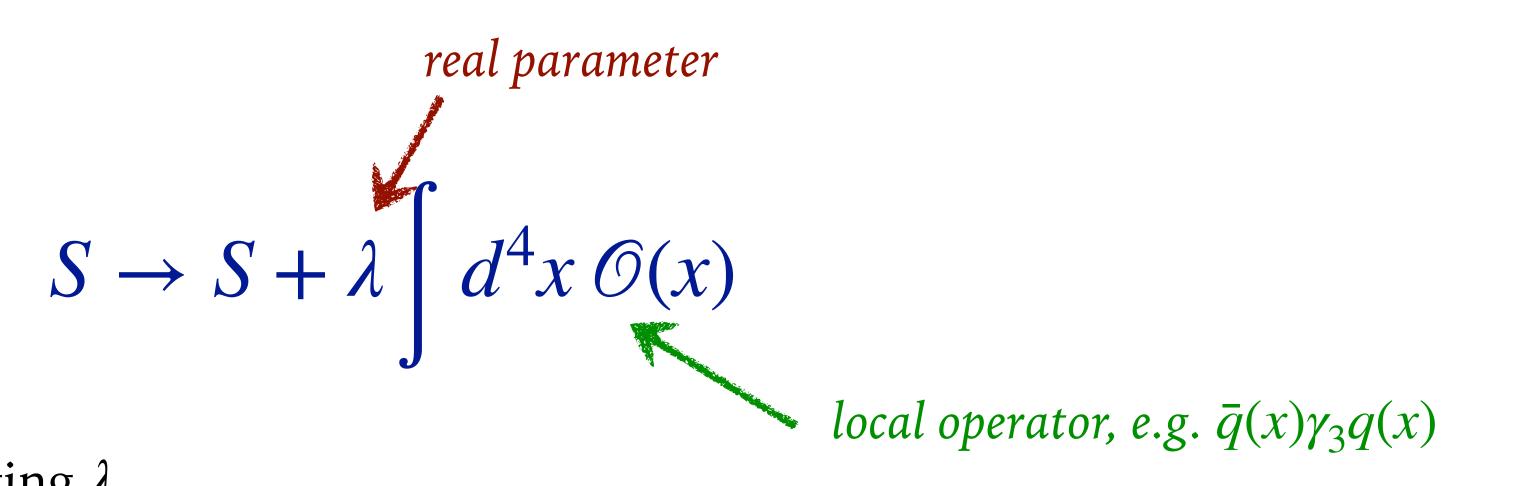
Suppose we want: $\langle H | \mathcal{O} | H \rangle$

Modify action with external field:

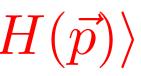
Measure hadron energy while changing λ

$$G(\lambda; \vec{p}; t) = \int dx \, e^{-i\vec{p}\cdot\vec{x}} \langle x \rangle$$

Calculation of matrix elements \equiv hadron spectroscopy $\partial E_H(\lambda, \vec{p})$ $\Big|_{\lambda=0} = \frac{1}{2E_H(\vec{p})} \langle H(\vec{p}) | \mathcal{O}(0) | H(\vec{p}) \rangle$ $\partial\lambda$

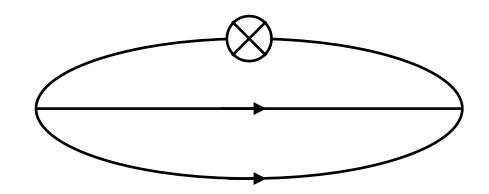


 $\chi'(x)\chi(0)\rangle \stackrel{\text{large t}}{\propto} e^{-E_H(\lambda,\vec{p})t}$



Feynman-Hellmann Theorem

- Can modify fermion action in 2 places:
 - quark propagators *Connected*



- $g_{A}, \Delta \Sigma$ [PRD90 (2014)]
- NPR [PLB740 (2015)]
- G_{E}, G_{M} [PRD96 (2017)]
- $F_{1,2}(\omega, Q^2)$ [PRL118 (2017), PRD102 (2020), PRD107 (2023)] GPDs [PRD105 (2022), PRD110 (2024)]
- $\Sigma \rightarrow n$ [PRD108 (2023)]
- g_A, g_T, g_S [PRD108 (2023)]
- $S_1(Q^2)$ [PRD111 (2025)]
- $F_3(\omega = 0, Q^2)$ [PRD111 (2025)]

fermion determinant *Disconnected* (Requires new gauge configurations) $\langle x \rangle_{g}$ [PLB714 (2012)] NPR [PLB740 (2015)]

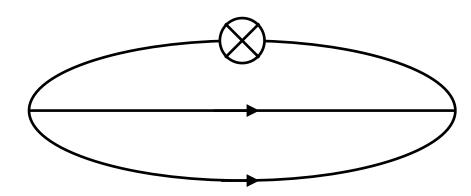
 Δs [PRD92 (2015)]

13

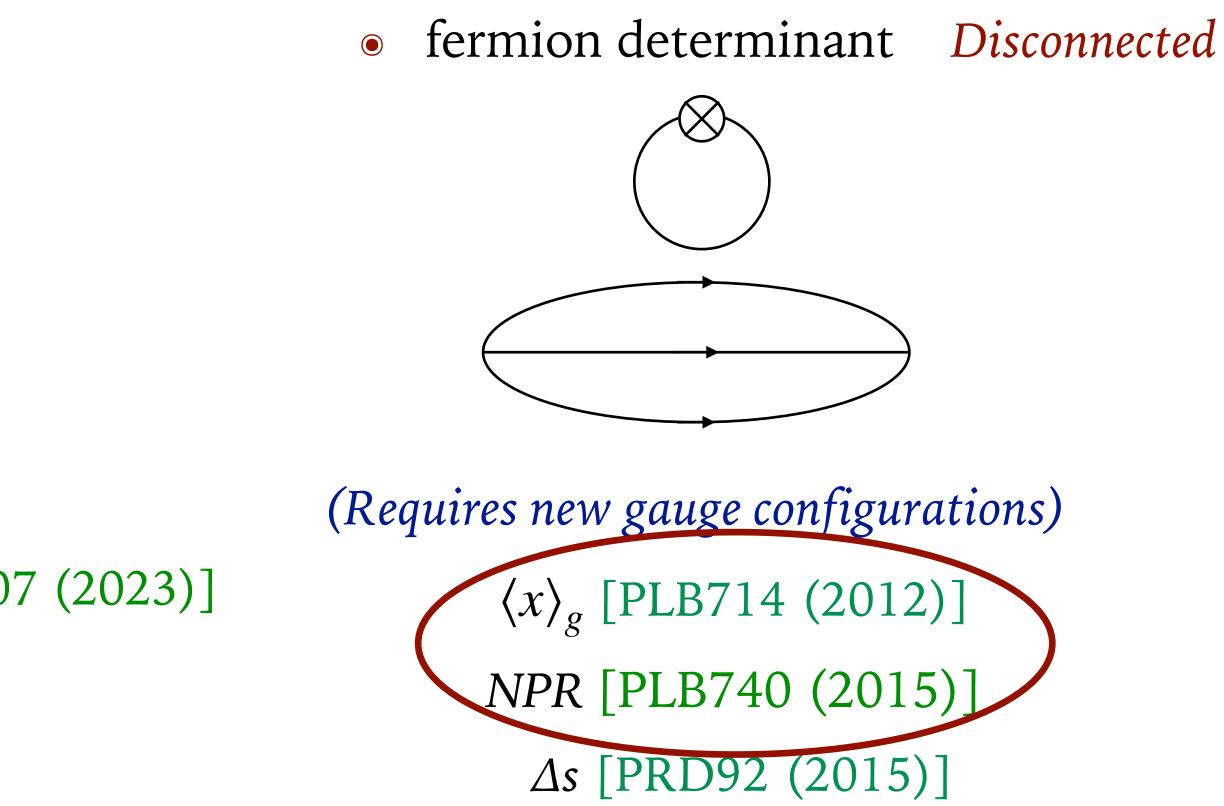
Feynman-Hellmann Theorem

Can modify fermion action in 2 places:

• quark propagators *Connected*



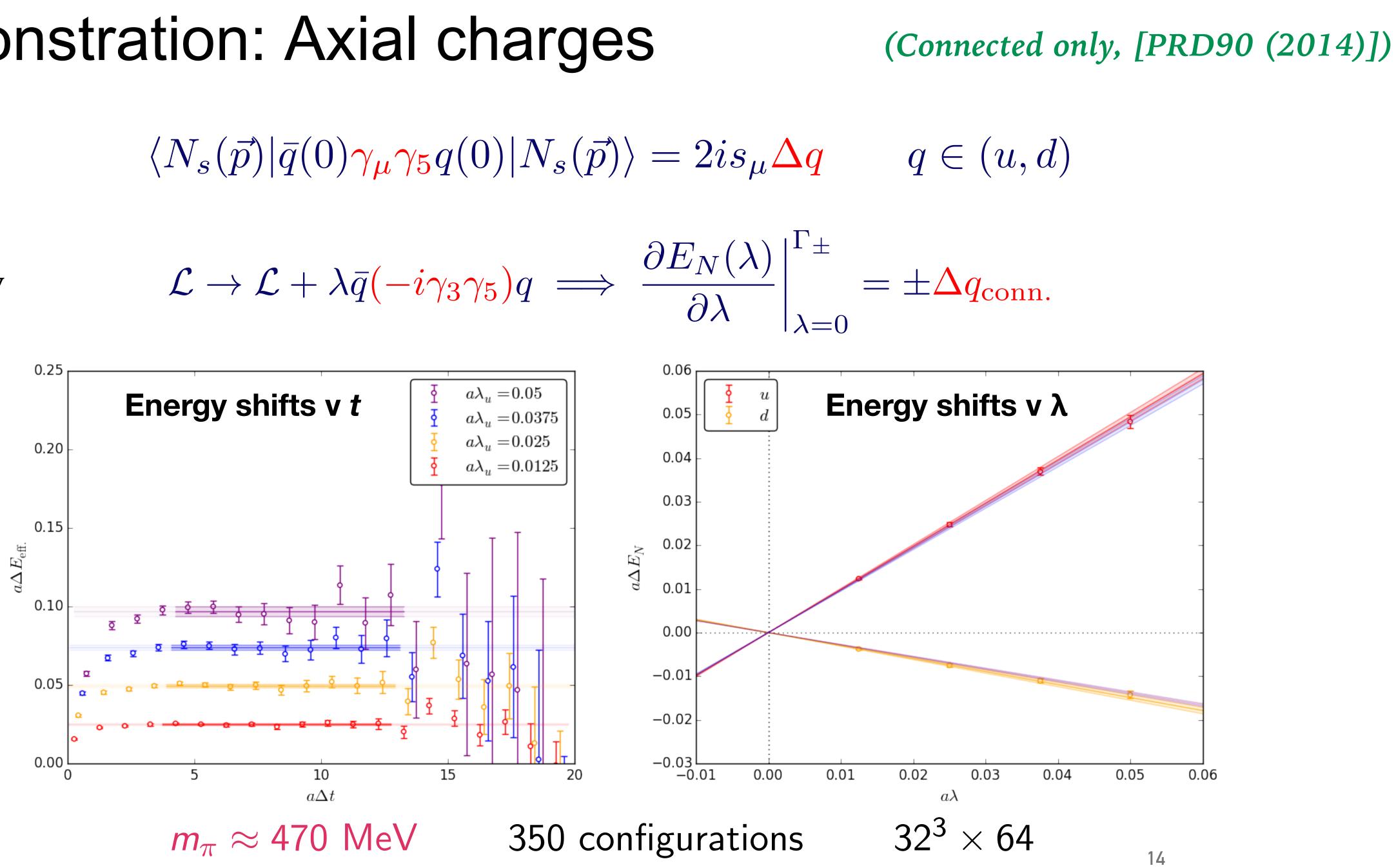
 $g_{A}, \Delta \Sigma [PRD90 (2014)]$ NPR [PLB740 (2015)] G_{E}, G_{M} [PRD96 (2017)] $F_{1,2}(\omega, Q^2)$ [PRL118 (2017), PRD102 (2020), PRD107 (2023)] GPDs [PRD105 (2022), PRD110 (2024)] $\Sigma \rightarrow n [PRD108 (2023)]$ g_A, g_T, g_S [PRD108 (2023)] $S_1(Q^2)$ [PRD111 (2025)] $F_3(\omega = 0, Q^2)$ [PRD111 (2025)]

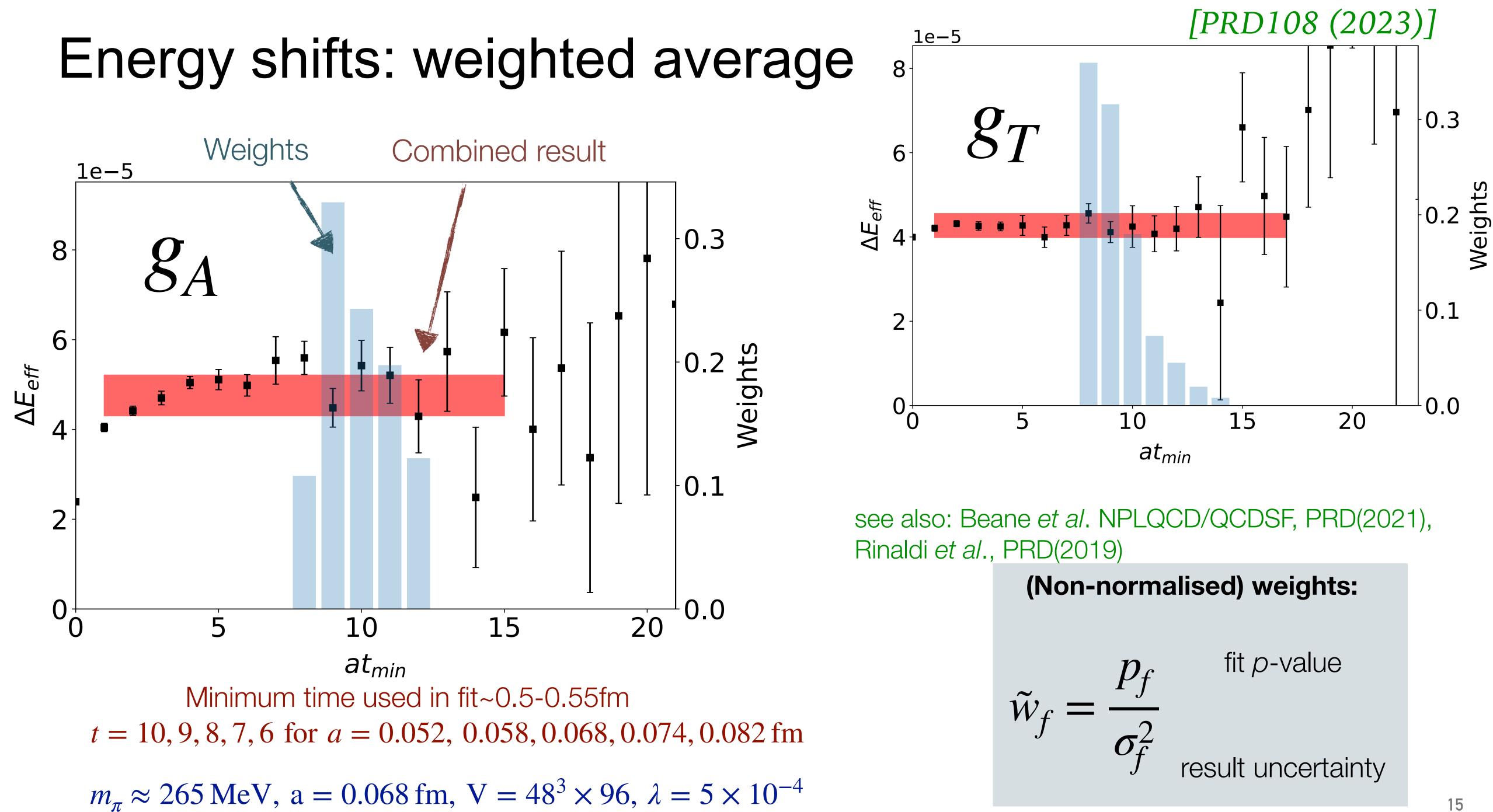


Demonstration: Axial charges

Want

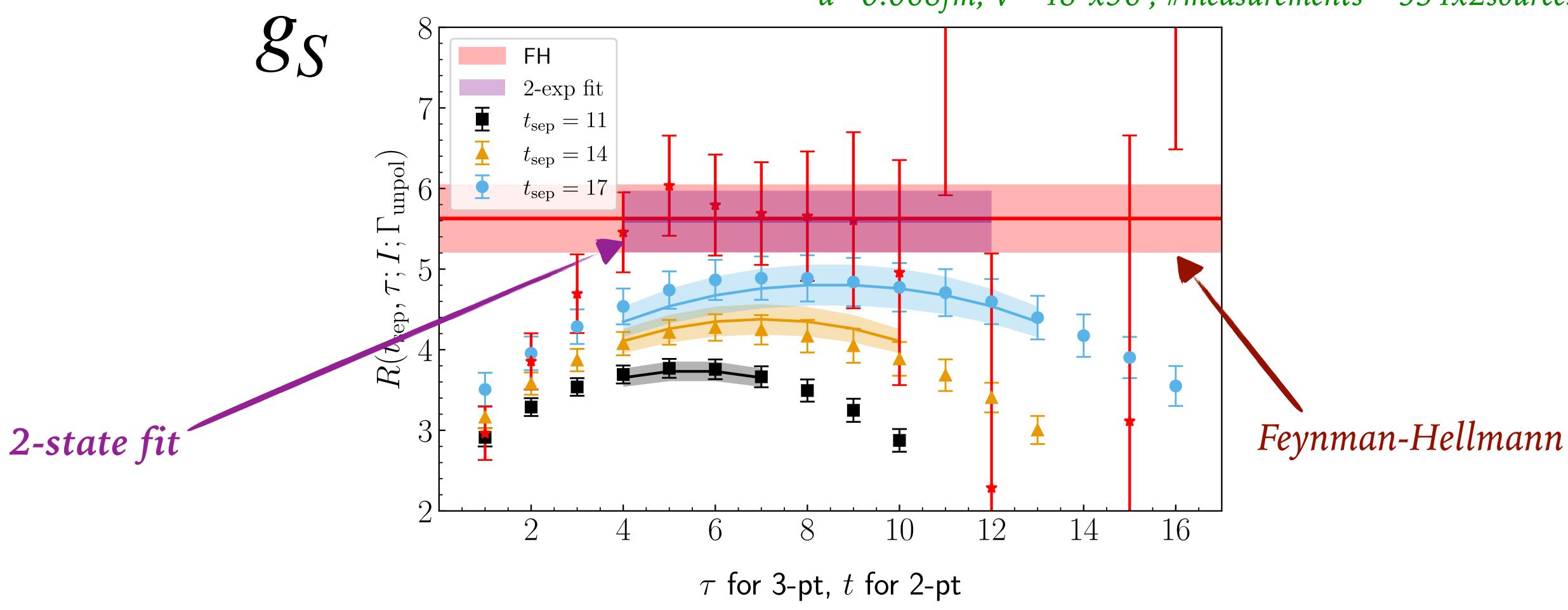
Employ





$$\tilde{w}_f = \frac{p_f}{\sigma_f^2}$$

Comparison to 3-point functions

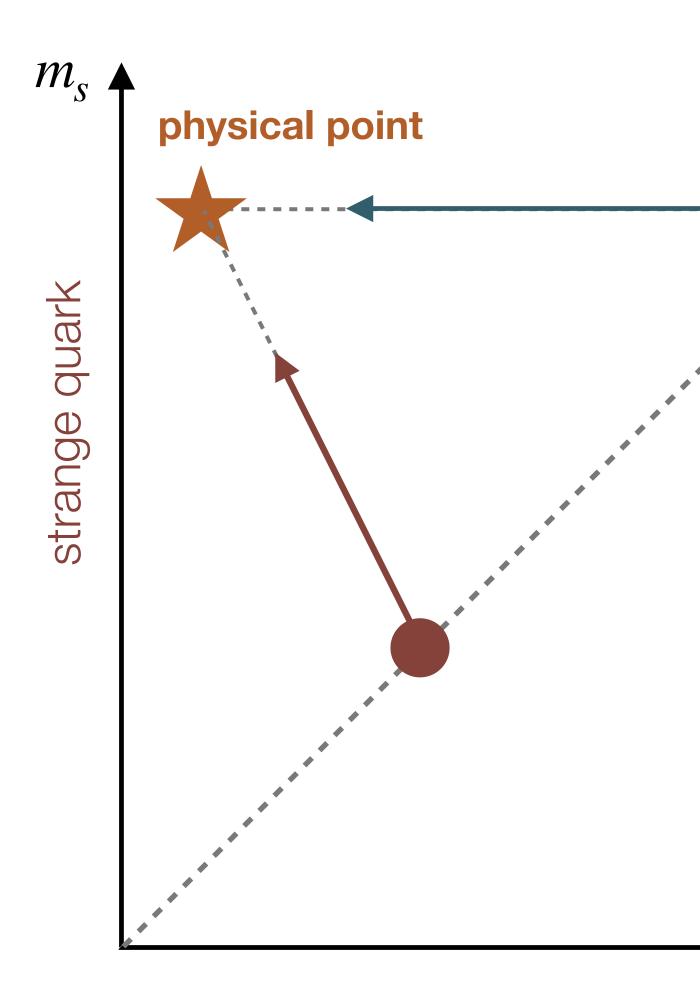


Excellent agreement between Feynman-Hellmann and standard 3-point function methods

$m_{\pi} \approx 265 \,\mathrm{MeV}$

 $a = 0.068 fm, V = 48^{3}x96$, #measurements = 534x2sources

Quark mass trajectory



Bietenholz et al. [QCDSF-UKQCD], PRD(2011)

"Typical" trajectory: fix strange quark mass to physical point and lower light quark mass

QCDSF trajectory: Tune to physical average quark mass. Approach physical point by breaking SU(3) symmetry.

 m_ℓ

Hold "*m*-bar" constant:

exactsul

symmetry

$$\overline{m} = \frac{1}{3} \left(2m_{\ell} + m_s \right) = \frac{1}{3} \left(2m_{\ell}^{\text{phys}} + m_s^{\text{phys}} \right)$$

light quarks

Flavour-breaking expansion

Consider general flavour matrix elements of octet baryons:

 $\langle B' | J^F | B \rangle = A_{B'FB}$

In exact SU(3) limit, just 2 independent constants:

► *F*- and *D*-type couplings

At linear order in SU(3) breaking: 5 slope parameters (3 D's & 2 F's)

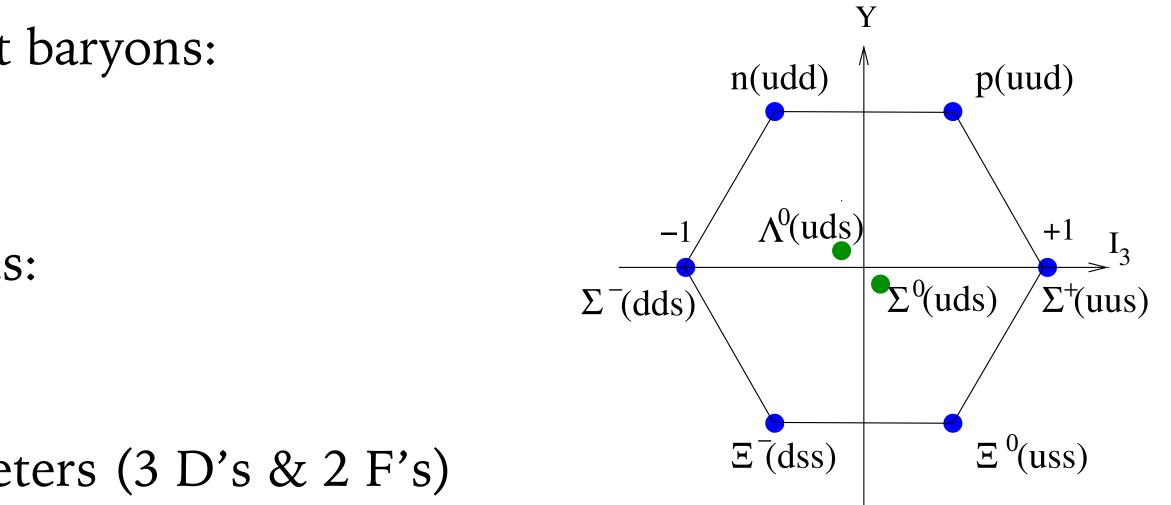
$$F_{1} \equiv \frac{1}{\sqrt{3}} (A_{\bar{N}\eta N} - A_{\bar{\Xi}\eta \Xi}) = 2f - \frac{2}{\sqrt{3}} s_{2} \delta m_{l},$$

$$F_{2} \equiv (A_{\bar{N}\pi N} + A_{\bar{\Xi}\pi \Xi}) = 2f + 4s_{1} \delta m_{l},$$

$$F_{3} \equiv A_{\bar{\Sigma}\pi \Sigma} = 2f + (-2s_{1} + \sqrt{3}s_{2}) \delta m_{l},$$

$$F_{4} \equiv \frac{1}{\sqrt{2}} (A_{\bar{\Sigma}K\Xi} - A_{\bar{N}K\Sigma}) = 2f - 2s_{1} \delta m_{l},$$

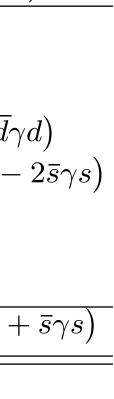
$$F_{5} \equiv \frac{1}{\sqrt{3}} (A_{\bar{\Lambda}K\Xi} - A_{\bar{N}K\Lambda}) = 2f + \frac{2}{\sqrt{3}} (\sqrt{3}s_{1} - s_{2}) \delta m_{l}.$$



> # of parameters (polynomials/operators) reduced by restricting to $\overline{m} = \text{constant}$ line

All matrix elements identical in the SU(3) symmetric limit

Index	Baryon (B)	Meson (F)	Current $(J$
1	n	K^0	$ar{d}\gamma s$
2	p	K^+	$ar{u}\gamma s\ ar{d}\gamma u$
3	Σ^{-}	π^-	
4	Σ^0	π^0	$\frac{1}{\sqrt{2}}\left(\bar{u}\gamma u-\bar{d}\right)$
5	Λ^0	η	$\frac{\frac{1}{\sqrt{2}}\left(\bar{u}\gamma u-\bar{d}\right)}{\frac{1}{\sqrt{6}}\left(\bar{u}\gamma u+\bar{d}\gamma d-\bar{d}\gamma d-$
6	Σ^+	π^+	$ar{u}\gamma d$
7	[I]	K^{-}	$\overline{s}\gamma u$
8	Ξ^0	$ar{K}^0$	$ar{s}\gamma d$
0		η'	$\frac{1}{\sqrt{6}}\left(\bar{u}\gamma u + \bar{d}\gamma d\right)$

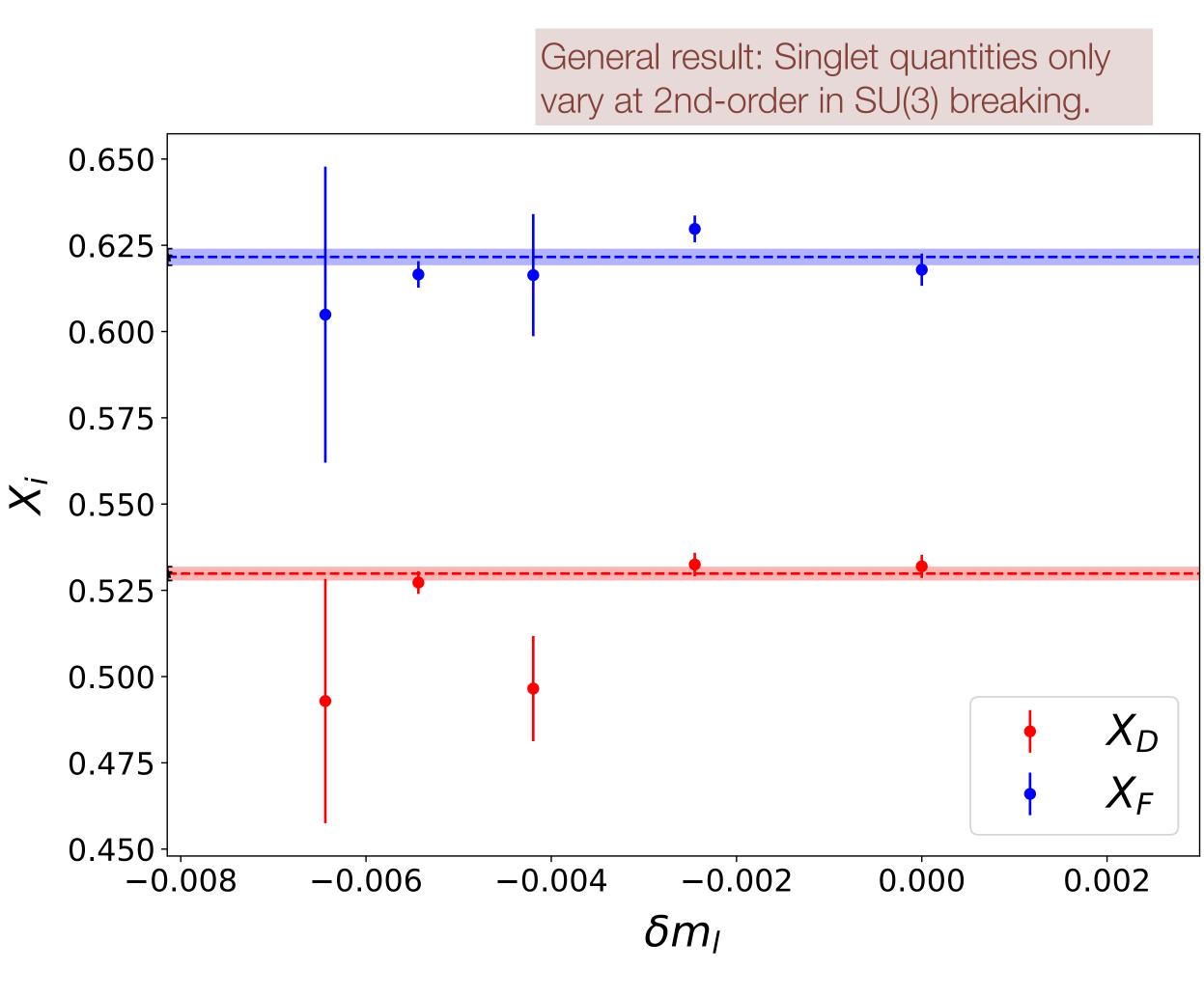


Fan plots

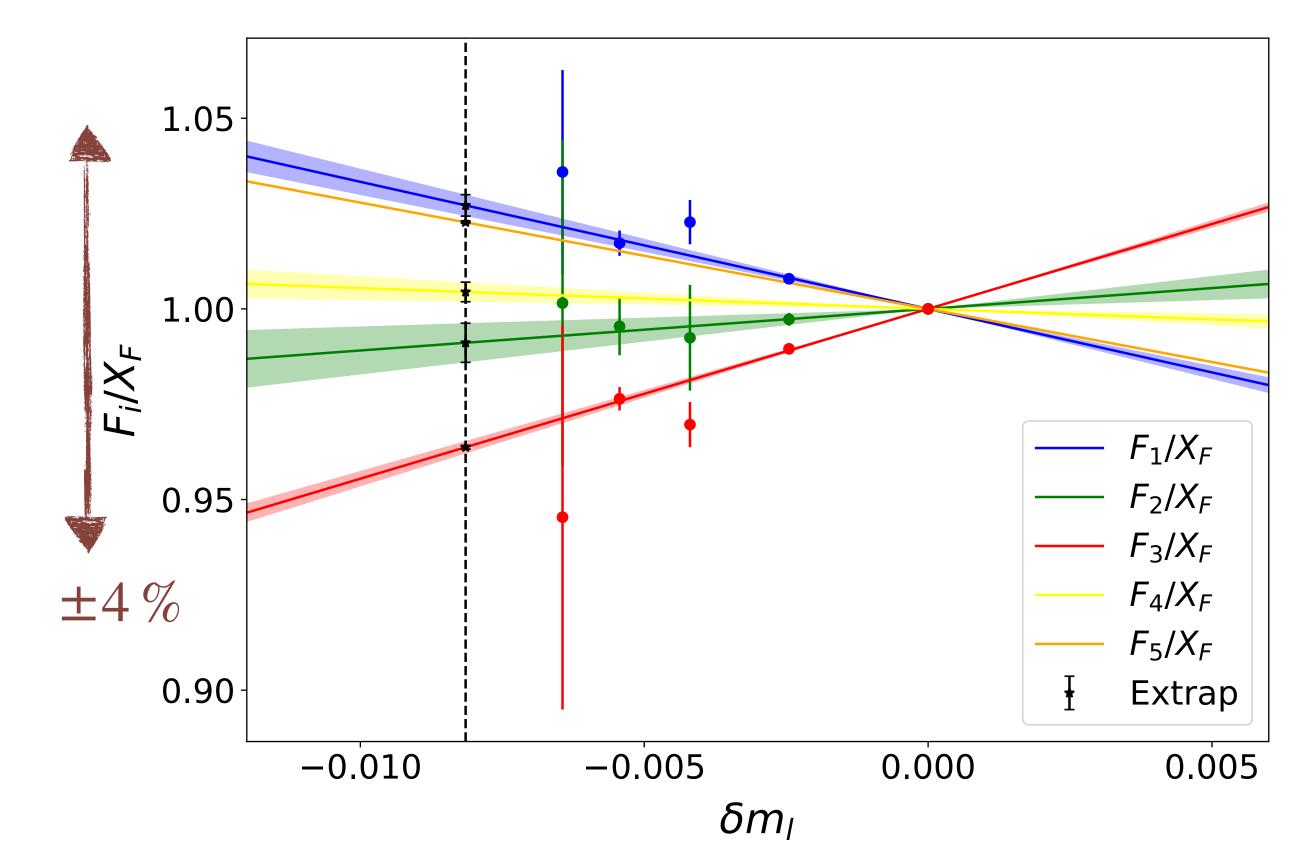
a=0.068fm

Can form a "singlet" combination

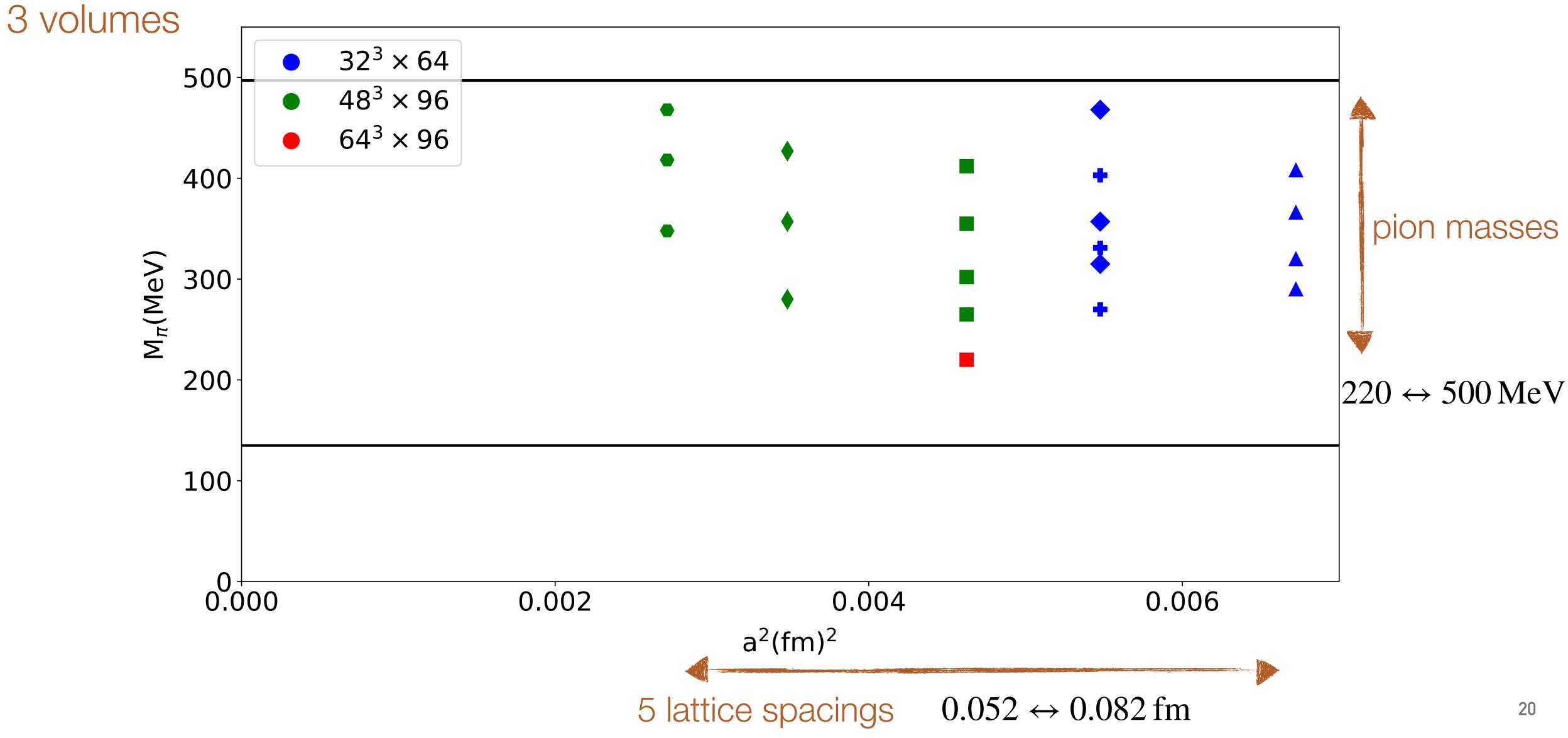
$$X_F = \frac{1}{6}(3F_1 + F_2 + 2F_3) = 2f + \mathcal{O}(\delta m_\ell^2)$$

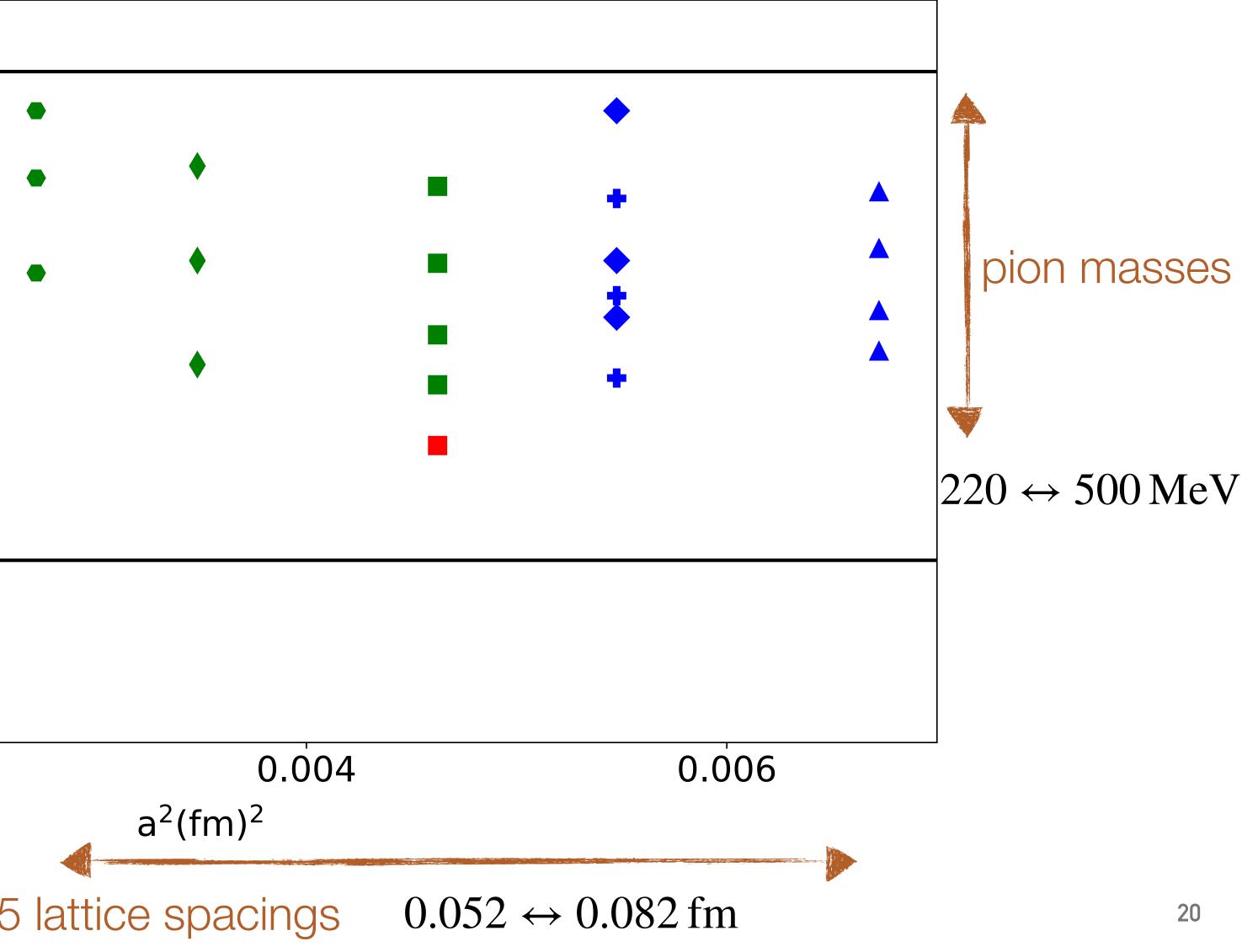


$$\begin{split} F_{1} &\equiv \frac{1}{\sqrt{3}} (A_{\bar{N}\eta N} - A_{\bar{\Xi}\eta \Xi}) = 2f - \frac{2}{\sqrt{3}} s_{2} \delta m_{l}, \\ F_{2} &\equiv (A_{\bar{N}\pi N} + A_{\bar{\Xi}\pi \Xi}) = 2f + 4s_{1} \delta m_{l}, \\ F_{3} &\equiv A_{\bar{\Sigma}\pi \Sigma} = 2f + (-2s_{1} + \sqrt{3}s_{2}) \delta m_{l}, \\ F_{4} &\equiv \frac{1}{\sqrt{2}} (A_{\bar{\Sigma}K\Xi} - A_{\bar{N}K\Sigma}) = 2f - 2s_{1} \delta m_{l}, \\ F_{5} &\equiv \frac{1}{\sqrt{3}} (A_{\bar{\Lambda}K\Xi} - A_{\bar{N}K\Lambda}) = 2f + \frac{2}{\sqrt{3}} (\sqrt{3}s_{1} - s_{2}) \delta m_{l}. \end{split}$$



Simulation details

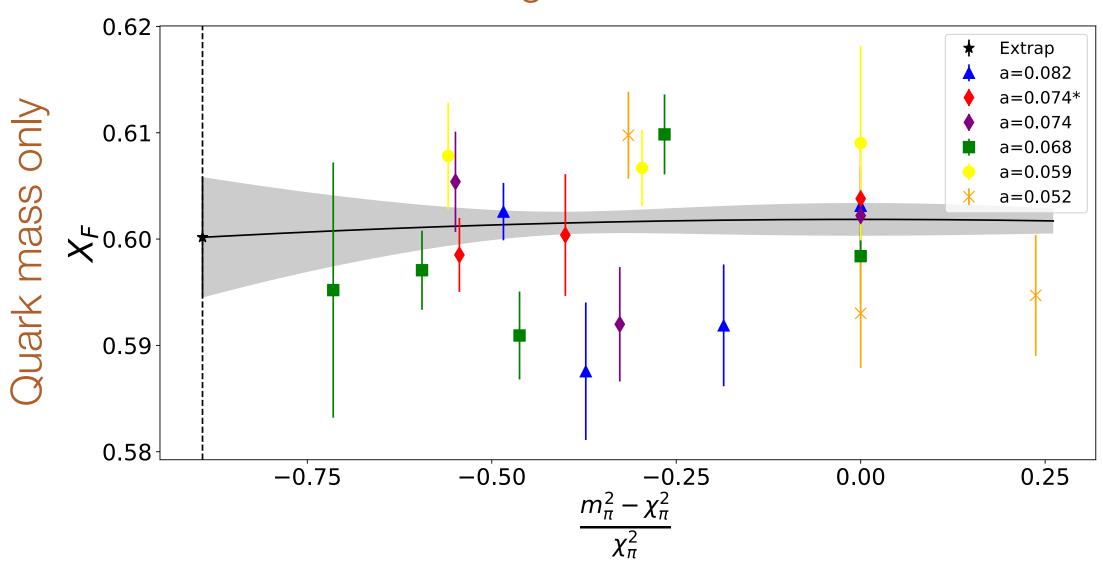


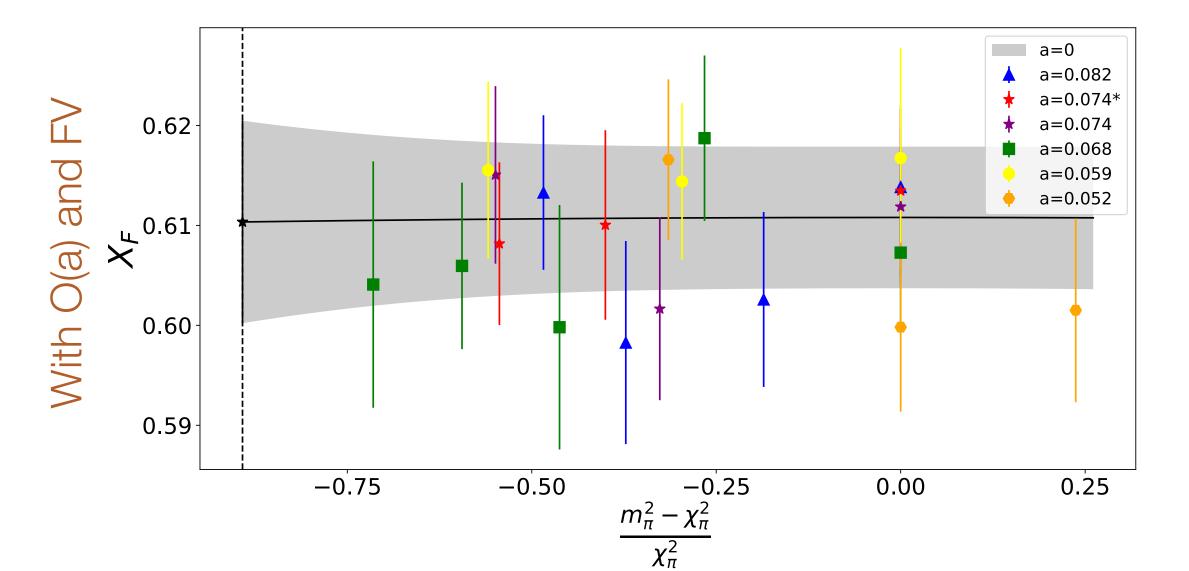


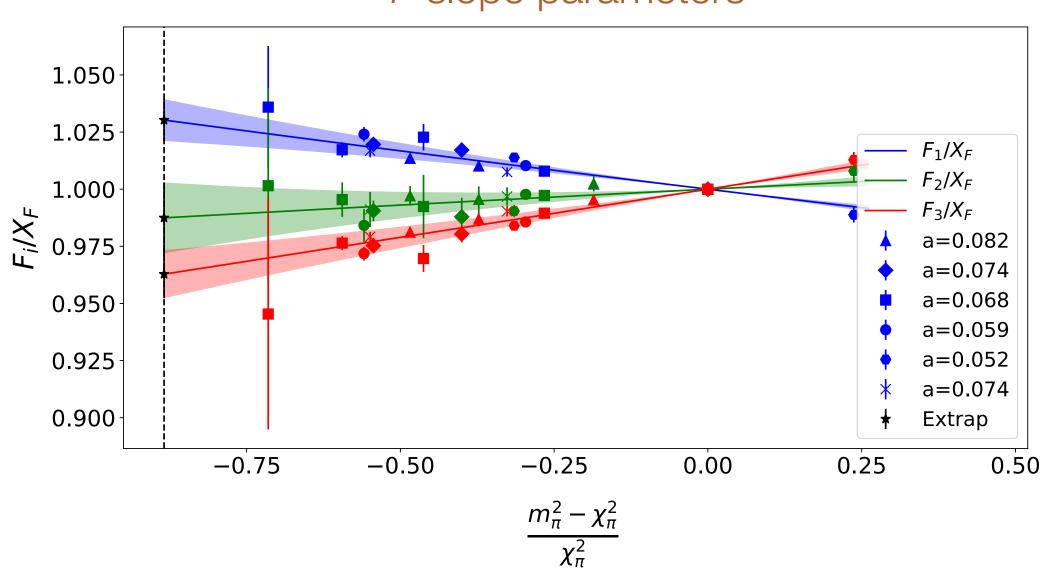
2+1 flavour, NP-improved Wilson fermions

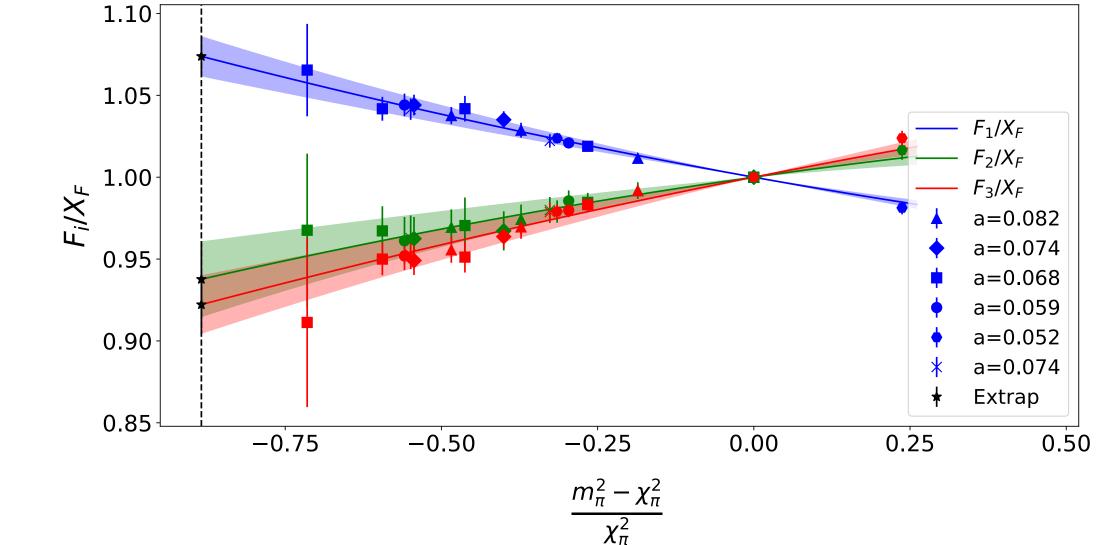
Global fits

Singlet X_{F}

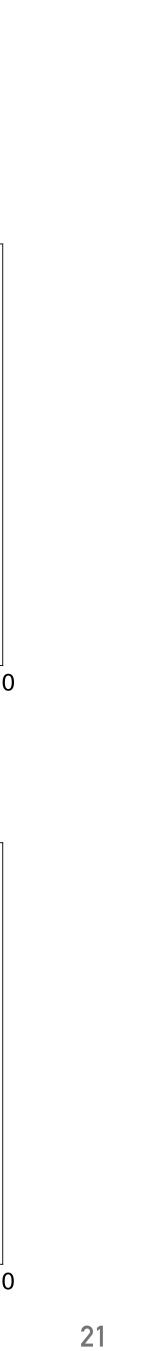




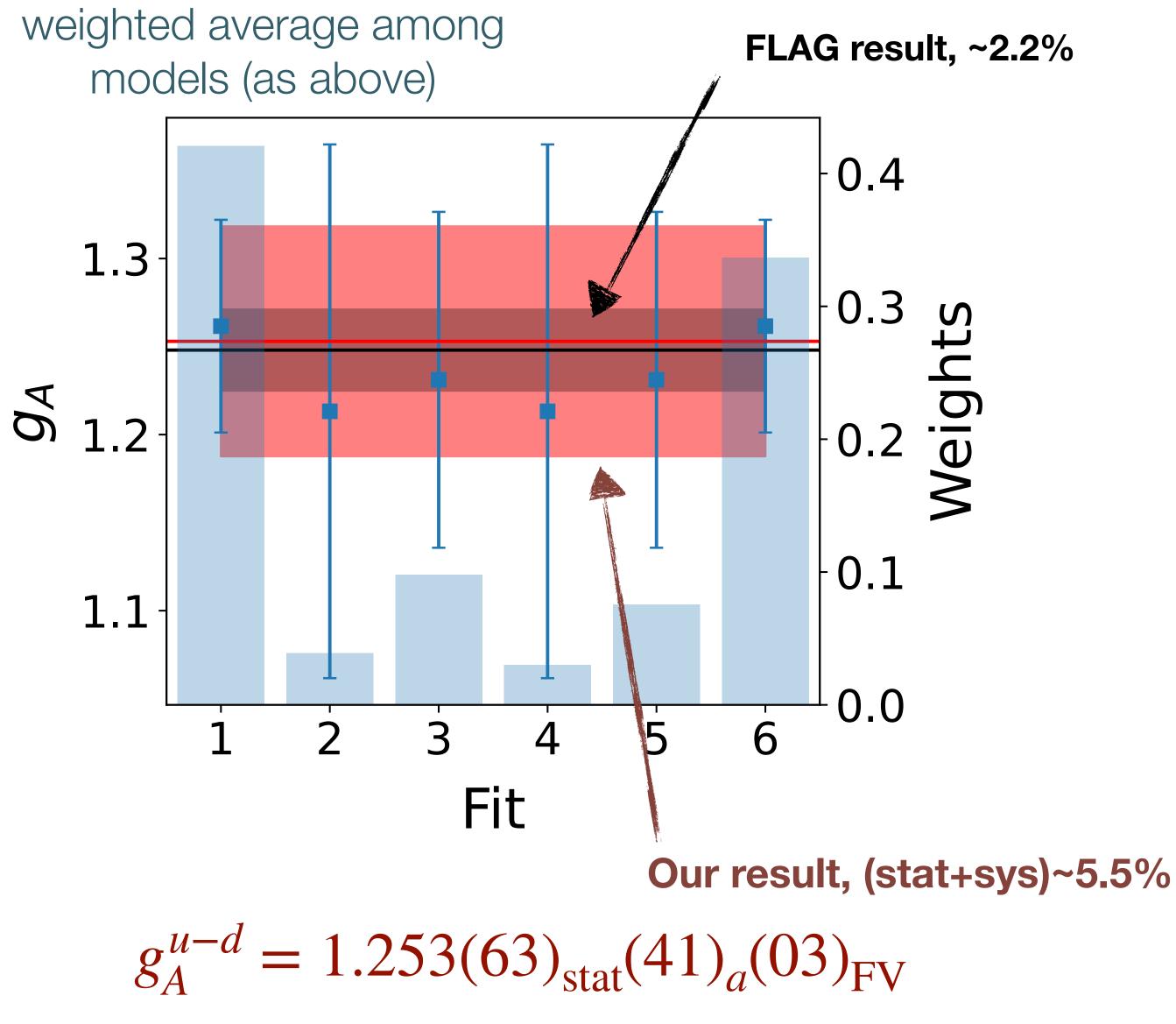




F slope parameters



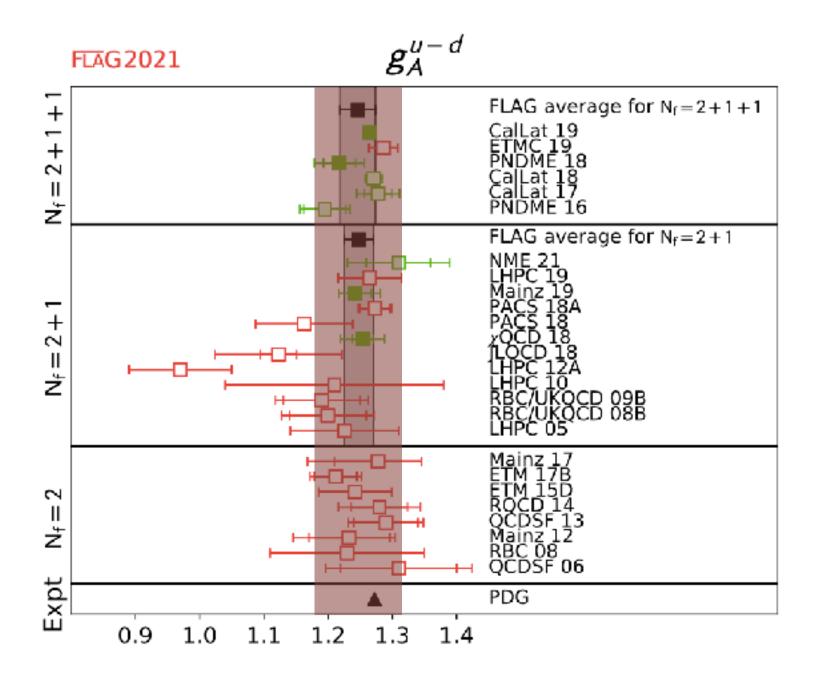
Results - g_A (isovector)



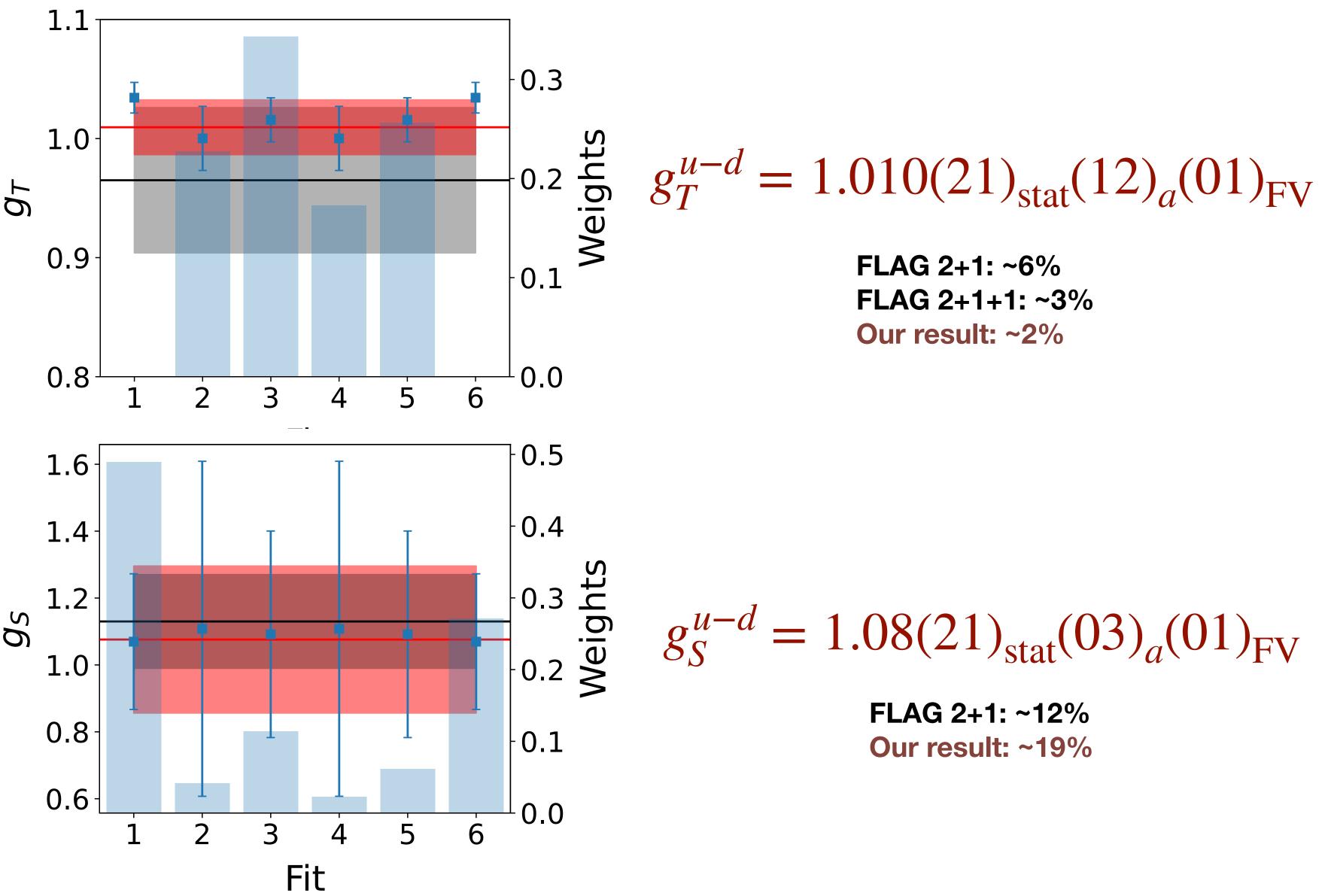
Different model parameterisations

1.
$$\delta m_l^2$$

2. $a, \ \delta m_l^2$
3. $a^2, \ \delta m_l^2$
4. $a, \ \delta m_l^2, \ m_{\pi} L$
5. $a^2, \ \delta m_l^2, \ m_{\pi} L$
6. $\delta m_l^2, \ m_{\pi} L$



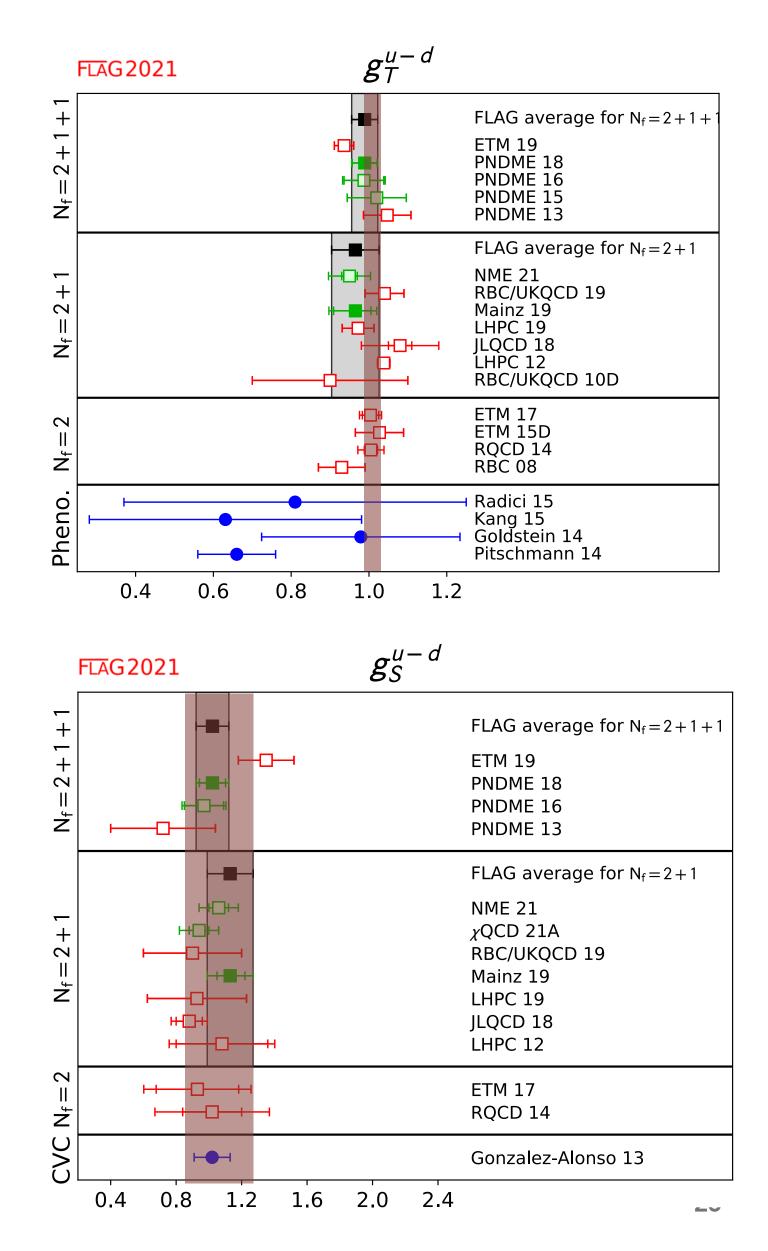
Results - isovector charges $N_f = 2 + 1$



 $\overline{\text{MS}}, \mu = 2 \,\text{GeV}$

FLAG 2+1: ~6% FLAG 2+1+1: ~3% Our result: ~2%

FLAG 2+1: ~12% Our result: ~19%



Quark and gluon momentum fractions, $\langle x \rangle_q, \ \langle x \rangle_g$

[PLB714 (2012) + in preparation]

- Long-standing question re: nucleon momentum:
 How is the nucleon's momentum distributed amongst its constituents?
- Addressed experimentally @ JLab (now), EIC (future)
- Must satisfy the momentum rule

$$\sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = 1$$

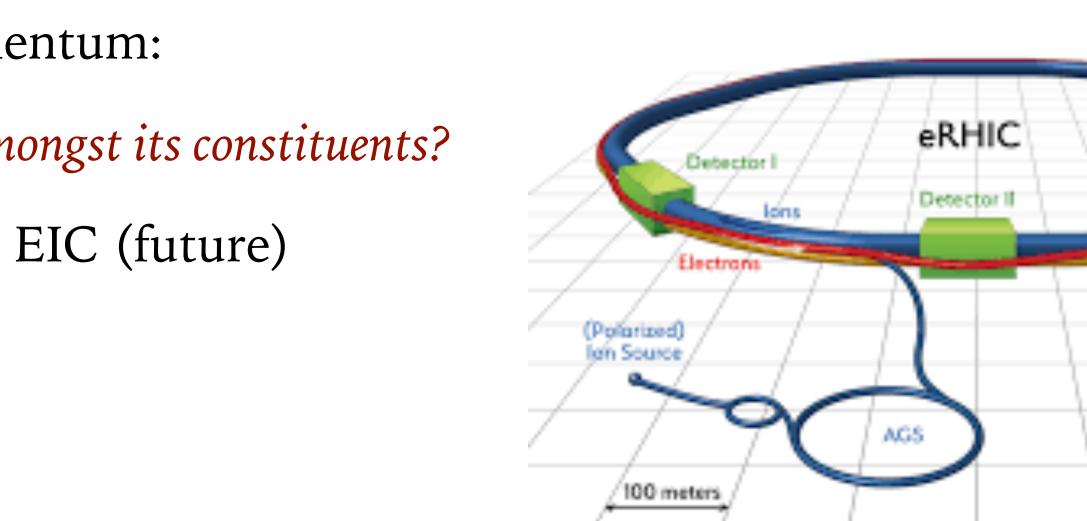
where

 $\langle x \rangle_f$ = fraction of nucleon momentum carried by parton *f*=*q*,*g*

• Experimentally: $\langle x \rangle_g \sim \frac{1}{2}$

Received much interest from Lattice QCD, but with challenges,

> e.g. statistical noise in $\langle x \rangle_g$ due disconnected nature

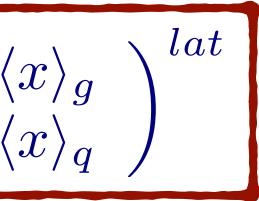


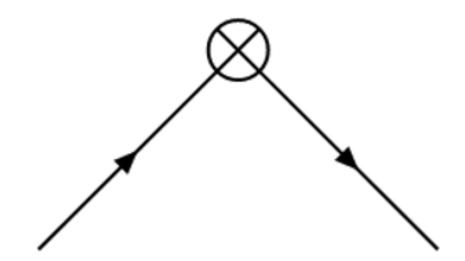
<u>Renormalisation</u>: Mixing between $\langle x \rangle_q$ and $\langle x \rangle_g$ i.e. $\sum_{q} \langle x \rangle_{q}^{R} + \langle x \rangle_{g}^{R} = 1 = Z_{q} \sum_{q} Z_{q}$ does not necessarily mean $\langle x \rangle_a^R = Z_a \langle x \rangle_a^{lat}$ or $\langle x \rangle_g^R = Z_g \langle x \rangle_g^{lat}$ e.g. $\begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_q \end{pmatrix}^R = \begin{pmatrix} Z_{gg} & Z_{gq} \\ Z_{qg} & Z_{qq} \end{pmatrix} \begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_q \end{pmatrix}^{lat}$ $Z_g = Z_{gg} + Z_{qg} \qquad Z_q = Z_{gq} + Z_{qq}$

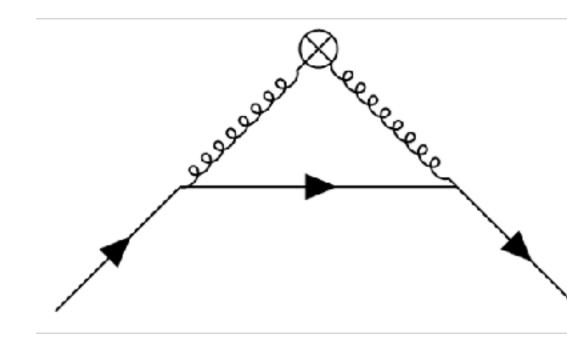
Recent progress in NP determination of Z_{gg}

Mixing due to Z_{qg} , Z_{qg} often ignored or computed perturbatively

$$\langle x \rangle_q^{lat} + Z_g \langle x \rangle_g^{lat}$$







Determining $\langle x \rangle_{q,g}$

Require matrix elements

$$\langle N(\vec{p}) | \mathcal{O}_f^{(b)} | N(\vec{p}) \rangle = 2(m_N^2 + \frac{4}{3}\vec{p}^2) \langle x \rangle_f$$

which can be computed at $\vec{p} = 0$ (for $\mathcal{O}^{(b)}$)

Typically obtained via 3-point functions

This work: Feynman-Hellmann theorem [following QCDSF(2012)]

Compute 2-point functions in the presence of a modification to the action $S \to S(\lambda) = S + \lambda \sum O(z)$ $\frac{\partial E_{\lambda}}{\partial \lambda}$ $=\frac{1}{2E}\left\langle N \right| : \frac{\partial S_{\lambda}}{\partial \lambda} : \left| N \right\rangle$ Matrix elements determined from energy shifts

$$\mathcal{O}^{(b)} = \mathcal{O}_{44} - \frac{1}{3}\mathcal{O}_{ii}$$

$$\mathcal{O}^{(g)}_{\mu\nu} = -\operatorname{Tr}_c F_{\mu\alpha} F_{\nu\alpha} , \quad \mathcal{O}^{(b)}_g = \frac{2}{3}\operatorname{Tr}_c (-\mathscr{E}^2 + \mathcal{O}^{(q)}_{\mu\nu}) = \bar{q}\gamma_\mu \overleftrightarrow{D}_\nu q , \quad \mathcal{O}^{(b)}_q = \bar{q}\gamma_4 \overleftrightarrow{D}_4 q - \frac{1}{3}\bar{q}\gamma_i \overleftrightarrow{D}_i$$

$$\mathcal{O}(\tau) = \int d^3 x \mathcal{O}(\tau, \vec{x})$$

The modified action

Wilson gluonic action:

Modify with gluon operate

 $S_g(\lambda_g) =$

Similary modify Wilson/Clover action with $\mathcal{O}_{q}^{(b)}$:

 $S_q^W(\lambda) = \sum_{i} \bar{q}(x)q(x) - \kappa \left[\sum_{i} \bar{q}(x)\left(1 - (1 + \lambda_q)\gamma_4\right)\right]$ $\sum \bar{q}(x) \left(1 - (1 - \frac{1}{3}\lambda_q)\gamma_i\right)$ modified hopping term

$$U_{4}(x) q(x + \hat{4}) + \sum_{x} \bar{q}(x + \hat{4}) \left(1 + (1 + \lambda_{q})\gamma_{4}\right) U_{4}^{\dagger}(x) q(x)$$
$$U_{i}(x) q(x + \hat{i}) + \sum_{x,i} \bar{q}(x + \hat{i}) \left(1 + (1 - \frac{1}{3}\lambda_{q})\gamma_{i}\right) U_{i}^{\dagger}(x) q(x)$$



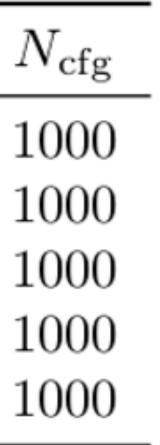
Simulation details

Quenched QCD \longrightarrow no disconnected quad Volume: $24^3 \times 48$ Wilson glue, $\beta = 6.0 \implies a = 0.1$ fm 5 values of λ_g

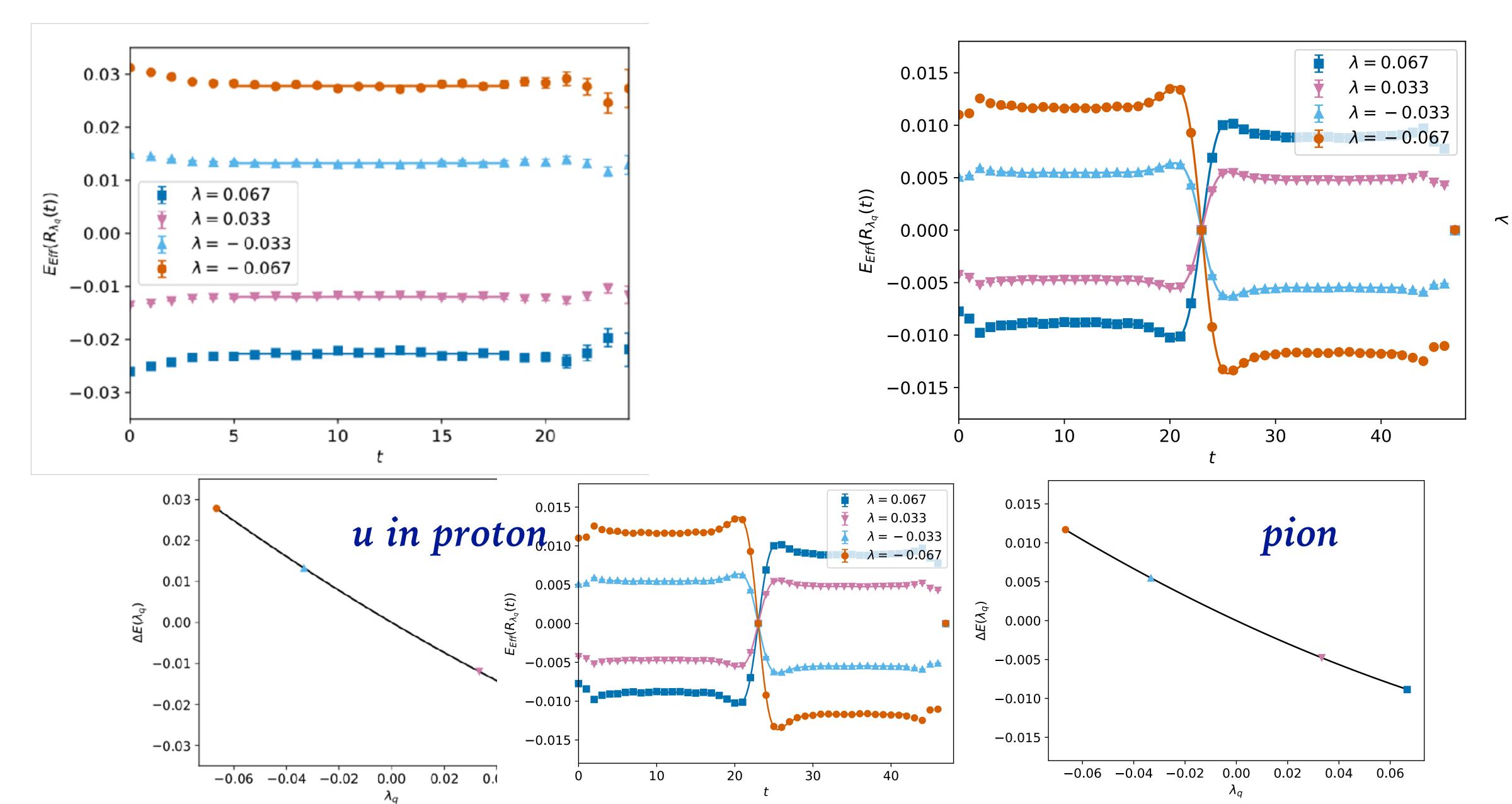
NP-clover action for valence quarks $\kappa = 0.1320, 0.1333, 0.1342 \implies m_{\pi} \approx 1080, 820, 600 \text{ MeV}$ 5 values of $\lambda_q = -0.0666, -0.0333, 0, +0.0333, +0.0666$

arks and
$$Z_{qg} = 0$$

N_s	N_t	β	λ_g	β_{input}	$\xi_{ ext{input}}$
24	48	6.0	-0.0666	5.9867	0.9354
24	48	6.0	-0.0333	5.9967	0.9672
24	48	6.0	0	6.0	1
24	48	6.0	+0.0333	5.9967	1.0340
24	48	6.0	+0.0666	5.9867	1.0689

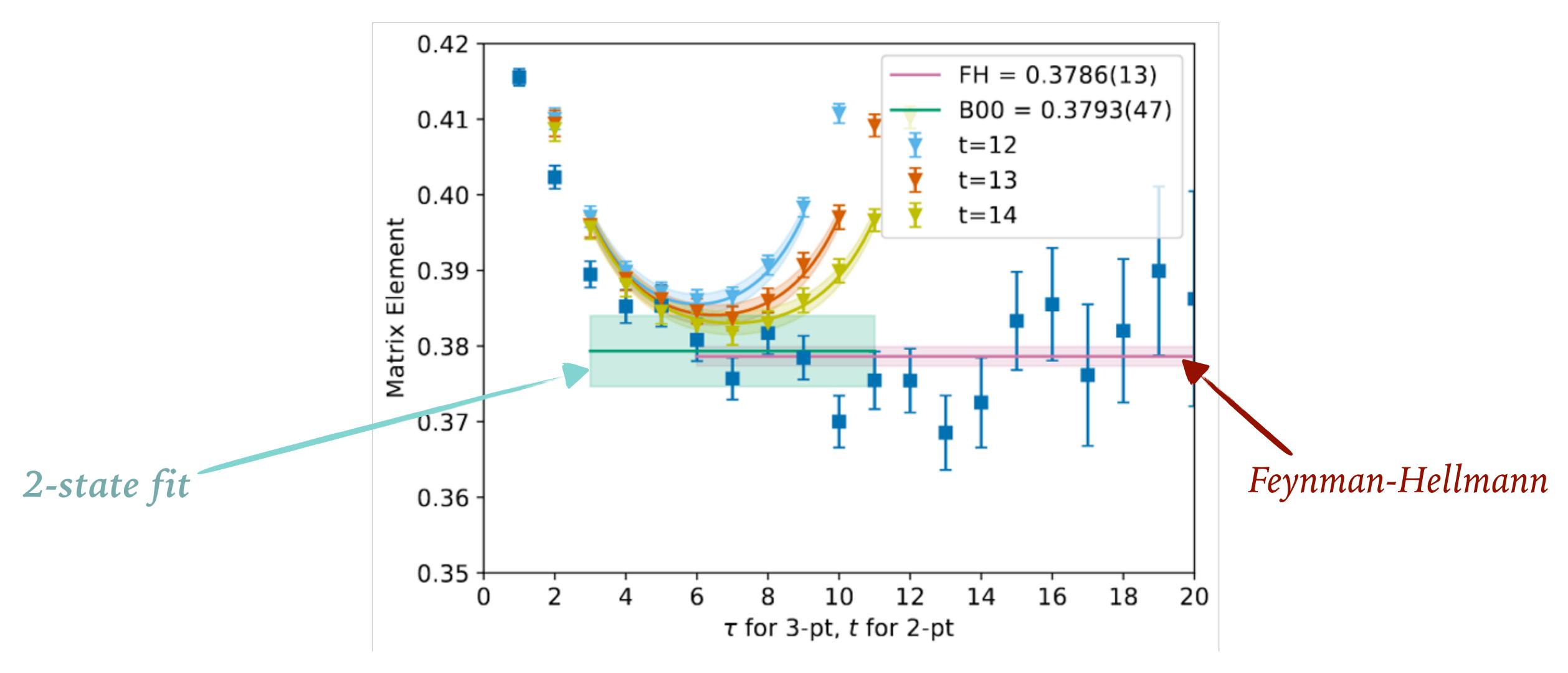


Energy shifts: Quark operator



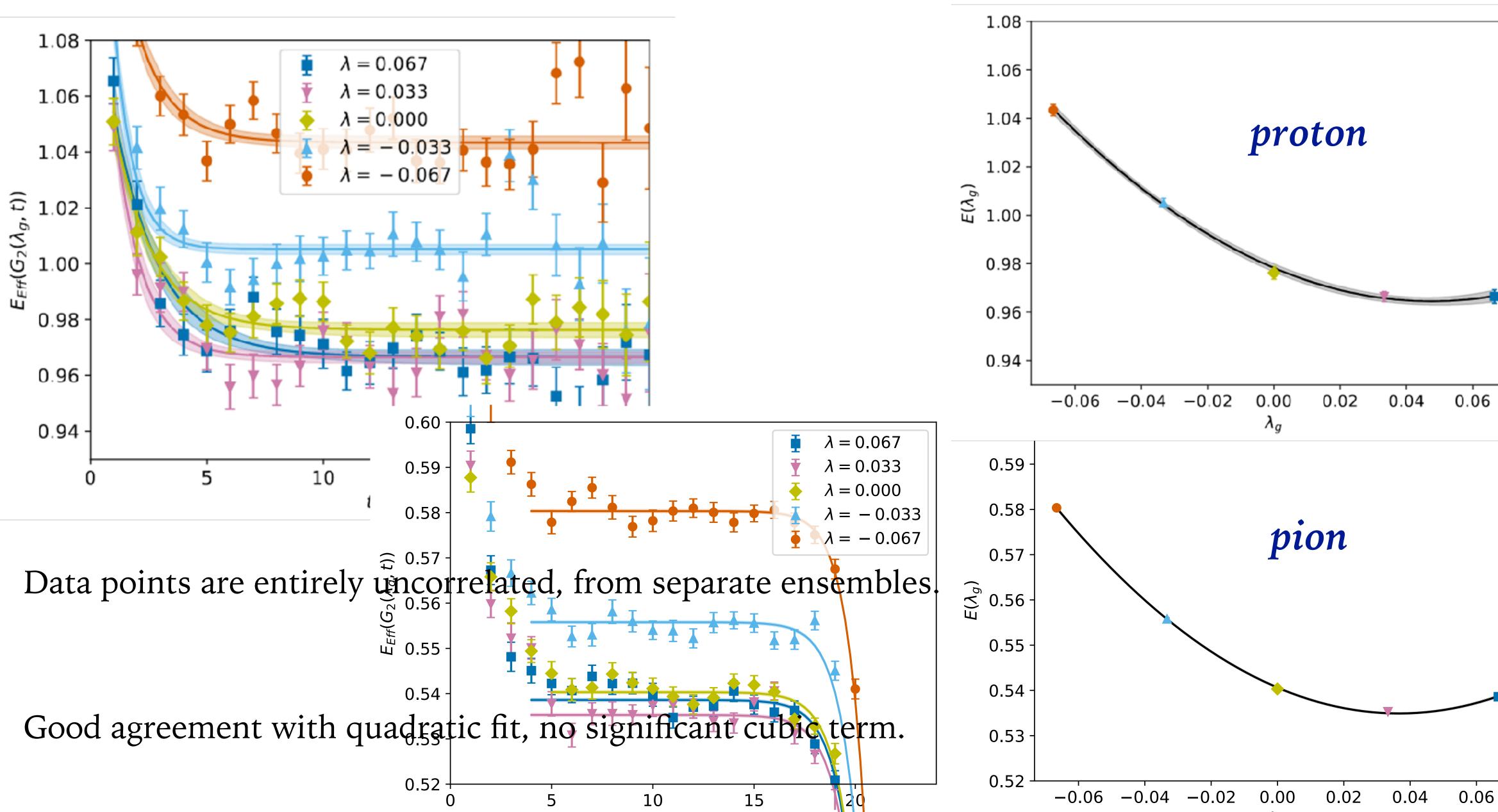
$m_{\pi} \approx 1065 \,\mathrm{MeV}$

Quark operator - comparison to 3-point functions



Excellent agreement between Feynman-Hellmann and standard 3-point function methods

Energies: Gluon operator



$m_{\pi} \approx 1065 \,\mathrm{MeV}$

Renormalisation

But
$$Z_{qg} = 0$$
 in quenched QCD
for $n_f = 0$ with $m_u = m_d$
and
 $\left(\langle x \rangle_g + \langle x \rangle_u + \langle x \rangle_d \right)^R = Z_g \langle x \rangle_g^{lat} + Z_q \left(\langle x \rangle_u + \langle x \rangle_u \right)^{lat} = 1$
with Z_g, Z_q depending only on coupling g and
 $Z_g = Z_{gg}$ and $Z_q = Z_{gq}^{\overline{MS}} + Z_{qq}^{\overline{MS}}$
We will employ RI'-MOM, e.g. $\frac{1}{12} \operatorname{Tr} \left(\Gamma^R [\Gamma^{\mathrm{Tree}}]^{-1} \right) = 1$, $\Gamma^R = Z_{\emptyset} Z_{\psi}^{-1} \Gamma^{lat}$ and $\Gamma^{lat} =$
 $[NPB445(1994), NPB544(1999)]$



Recall quark-glue mixing under renormalisation $\begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_q \end{pmatrix}^R = \begin{pmatrix} Z_{gg} & Z_{gq} \\ Z_{qg} & Z_{qq} \end{pmatrix} \begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_q \end{pmatrix}^{lat}$

Renormalisation - FH

Extract 3-point functions from perturbed quark/gluon propagators

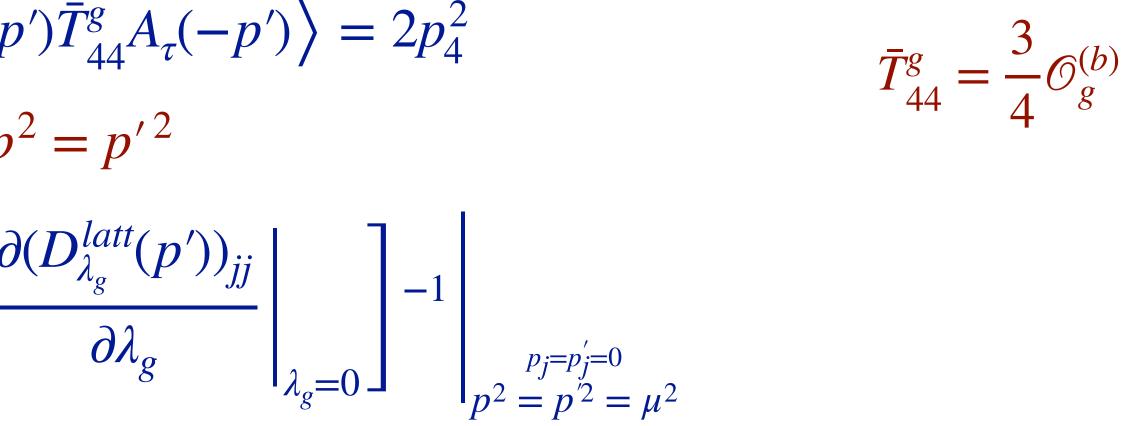
Generate propagators on same modified gauge fields as above

Gluon: $\frac{\partial D_{\lambda_g}(p)}{\partial \lambda_g} \bigg|_{\lambda = 0} = -\langle A(p)O(0)A(-p) \rangle^{lat} =$

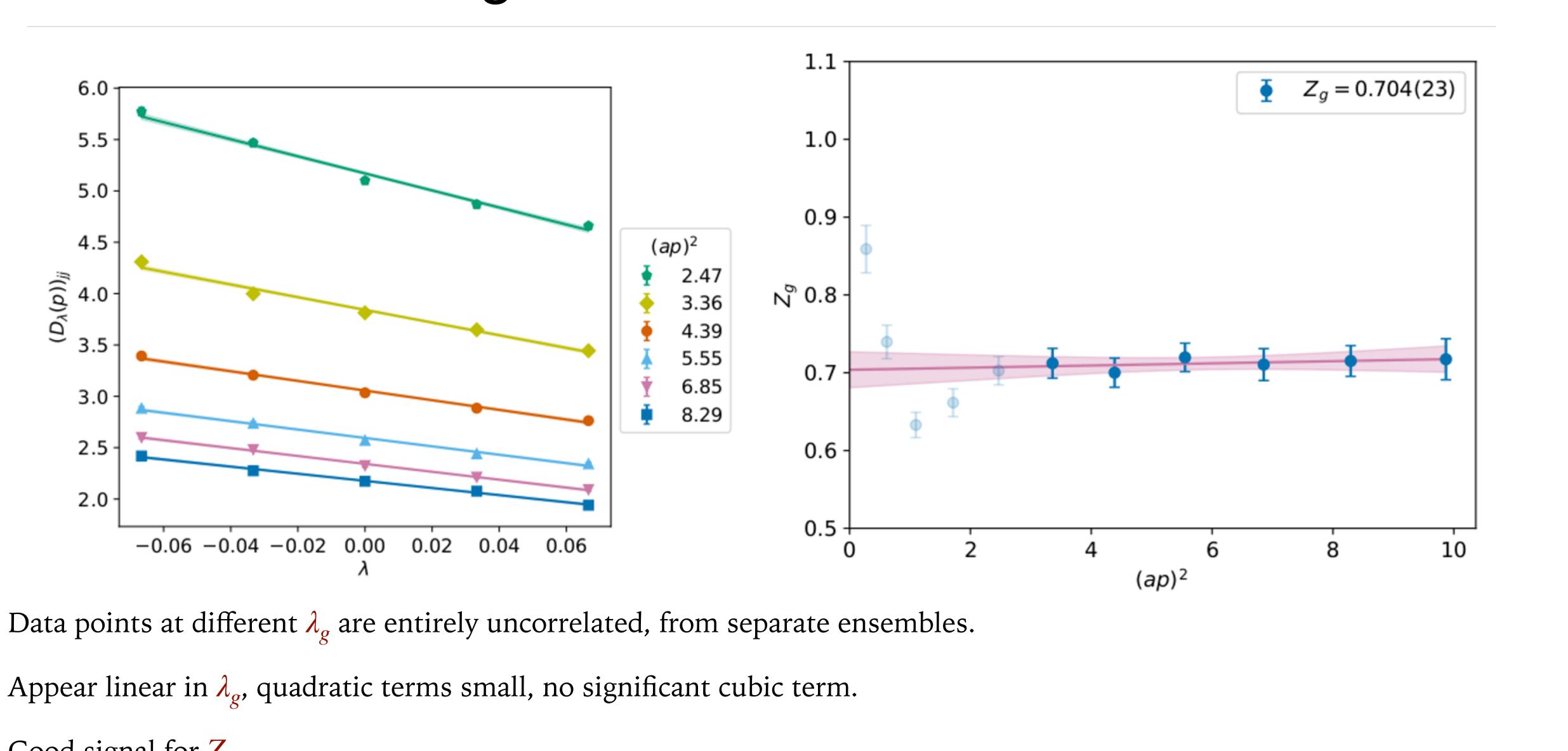
with $\langle A(p)O_g(0)A(-p)\rangle^R = Z_A Z_{\mathcal{O}_o} \langle A(p)O_g(0)A(-p)\rangle^{lat}$ take combination $\left\langle A_{\rho}(p)\bar{T}^{g}_{44}A_{\tau}(-p)\right\rangle - \left\langle A_{\rho}(p')\bar{T}^{g}_{44}A_{\tau}(-p')\right\rangle = 2p_{4}^{2}$ when $\rho \neq 4, p_4 \neq 0, p_4' = 0, p_\rho = p_\rho' = 0$ and $p^2 = p'^2$ $Z_g(\mu) = 2p_4^2 p^2 D_0^{lat}(p) \left[\frac{\partial (D_{\lambda_g}^{latt}(p))_{jj}}{\partial \lambda} \right] - \frac{\partial (D_{\lambda_g}^{latt}(p'))_{jj}}{\partial \lambda} - \frac{\partial (D_{\lambda_g}^{latt}(p'))_{jj}}{\partial \lambda} \right] - 1$ $\partial \lambda_g$ $\lambda_g = 0$

Similar to: QCDSF(2015) [PLB740 (2015)]

- $D(p)^{R} = Z_{A}D(p)^{lat}$
- To avoid mixing with non-physical operators in the EMT [Collins&Scalise(1994),Shanahan&Detmold(2019)]



Renormalisation - glue



Appear linear in λ_g , quadratic terms small, no significant cubic term. Good signal for Z_g

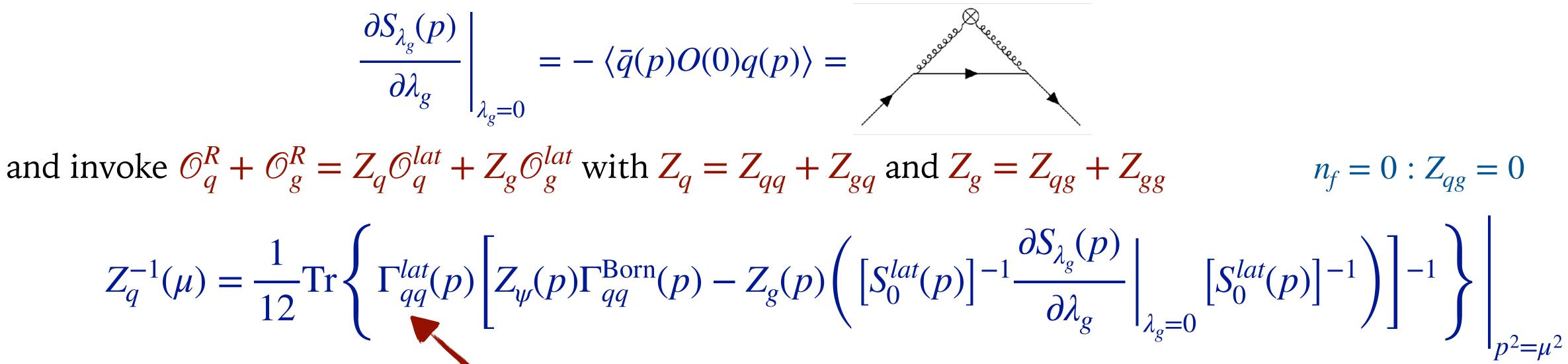
35

Renormalisation - quark

Need to account for quark-glue mixing

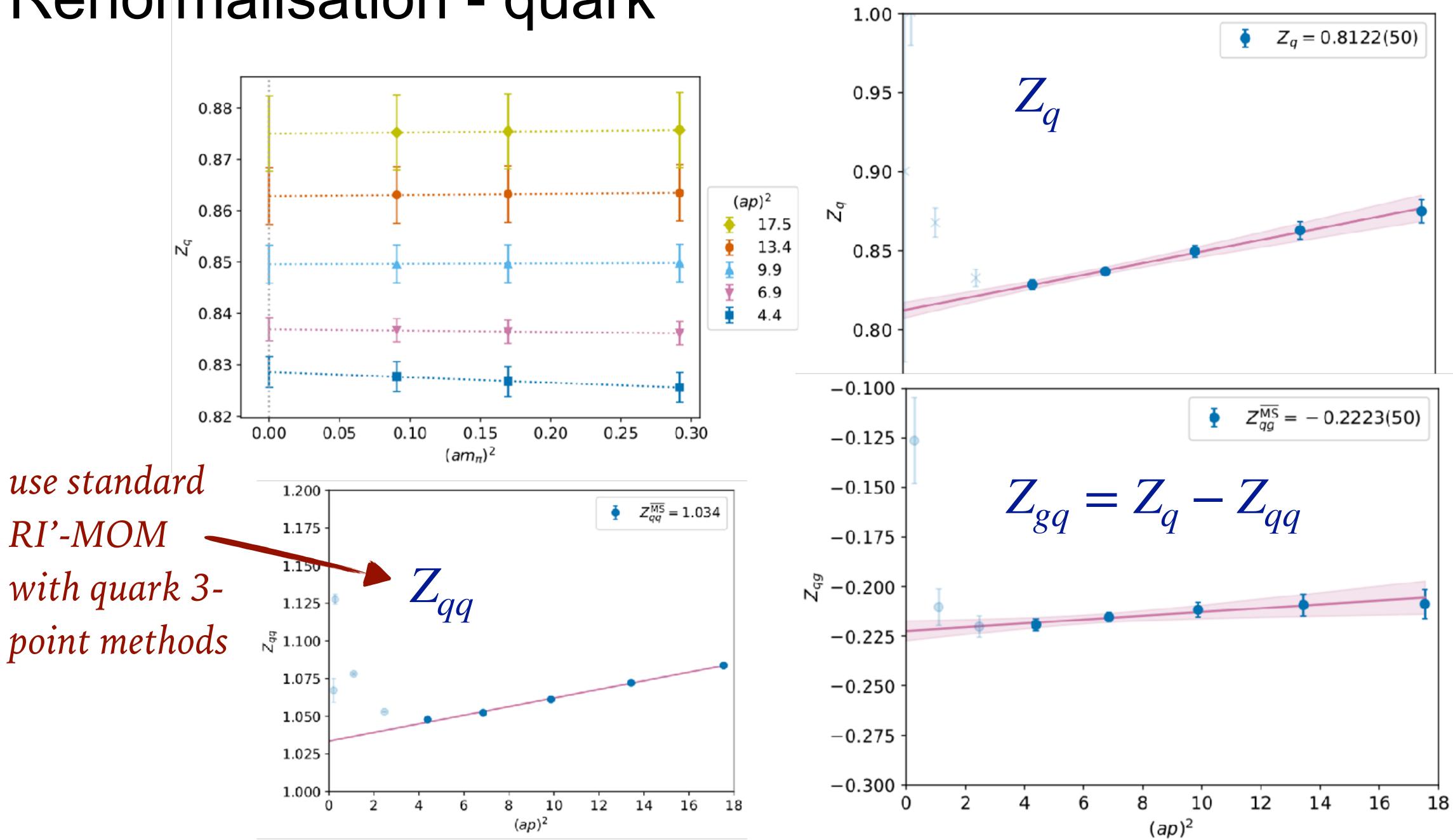
 Z_{qq} can be obtained via usual RI'-MOM (e.g. QCDSF(2005)) To account for mixing, generate quark propagators on same modified gauge fields

then isolate mixing term $Z_{gq} = Z_q - Z_{qq}$

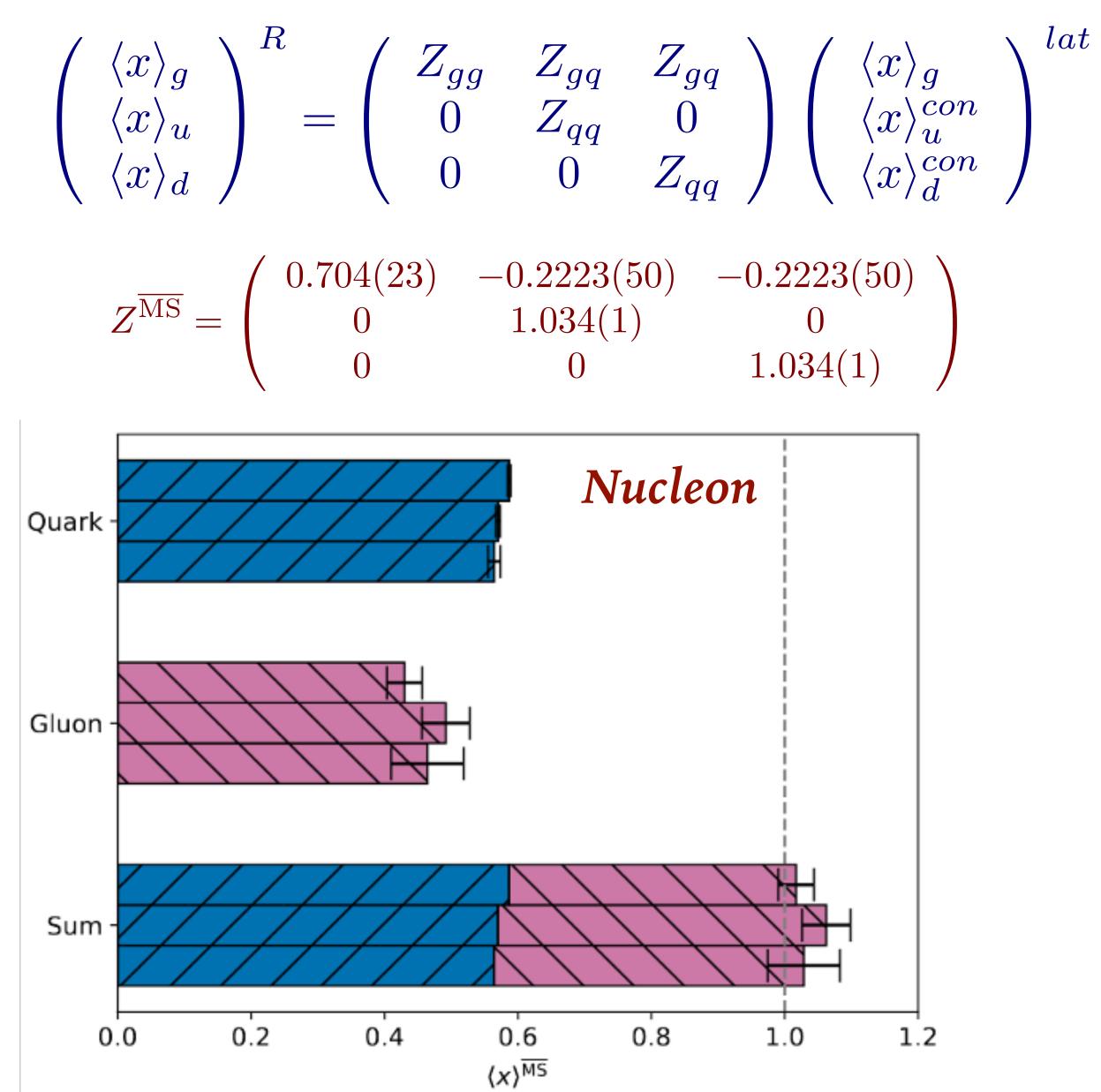


use standard quark 3-point methods

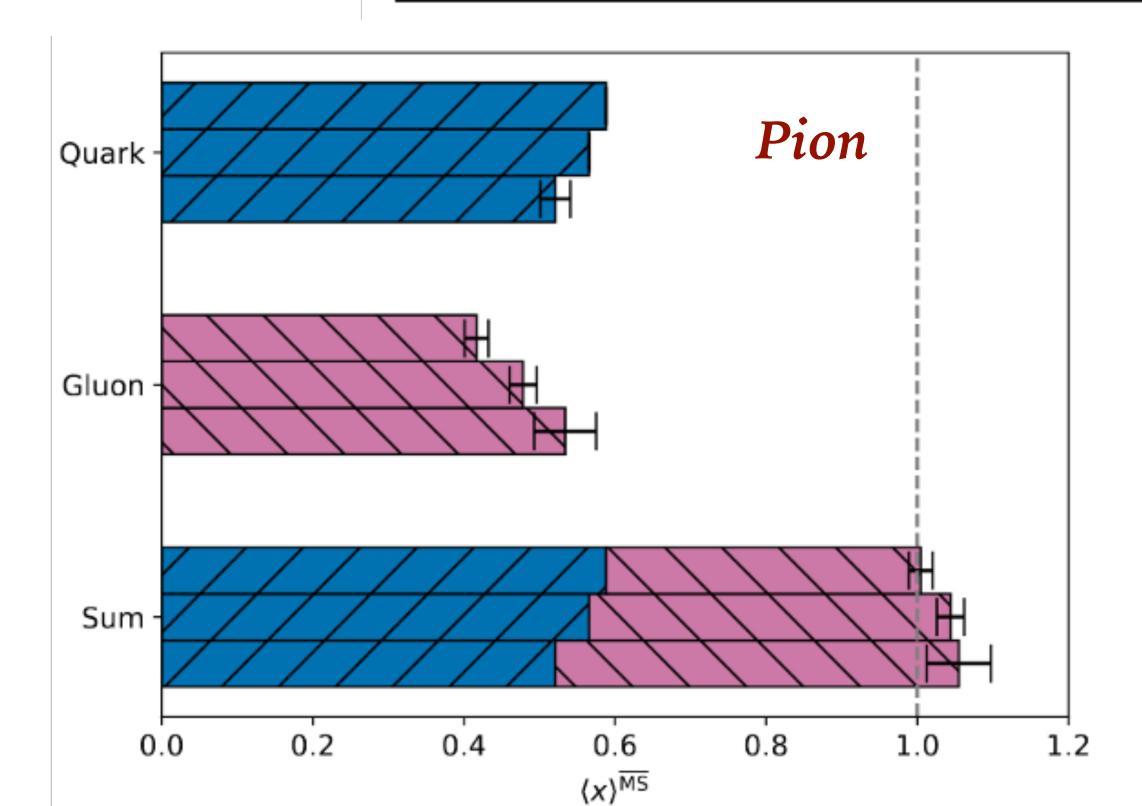
Renormalisation - quark



Momentum sum rule



Nucleon						
am_{π}	$\langle x \rangle_q^{\overline{\mathrm{MS}}}$	$\langle x \rangle_g^{\overline{\mathrm{MS}}}$	$\langle x \rangle_q^{\overline{\mathrm{MS}}} + \langle x$			
0.540	0.5869(23)	0.430(26)	1.018(27)			
0.412	0.5703(31)	0.492(36)	1.063(36)			
0.300	0.5645(92)	0.464(54)	1.029(54)			
Pion						
am_π	$\langle x \rangle_q^{\overline{\mathrm{MS}}}$	$\langle x \rangle_g^{\overline{\mathrm{MS}}}$	$\langle x \rangle_q^{\overline{\mathrm{MS}}} + \langle x \rangle_q$			
0.540	0.58803(58)	0.417(16)	1.005(16			
0.412	0.56569(80)	0.478(18)	1.045(18			
0.300	0.521(20)	0.534(41)	1.056(42			
	$\begin{array}{c} 0.540 \\ 0.412 \\ 0.300 \end{array}$ am_{π} 0.540 \\ 0.412 \end{array}	$\begin{array}{c c} am_{\pi} & \langle x \rangle_{q}^{\overline{\mathrm{MS}}} \\ \hline 0.540 & 0.5869(23) \\ 0.412 & 0.5703(31) \\ 0.300 & 0.5645(92) \end{array}$ $am_{\pi} & \langle x \rangle_{q}^{\overline{\mathrm{MS}}} \\ \hline 0.540 & 0.58803(58) \\ 0.412 & 0.56569(80) \end{array}$	am_{π} $\langle x \rangle_q^{\overline{\text{MS}}}$ $\langle x \rangle_g^{\overline{\text{MS}}}$ 0.5400.5869(23)0.430(26)0.4120.5703(31)0.492(36)0.3000.5645(92)0.464(54)Pion am_{π} $\langle x \rangle_q^{\overline{\text{MS}}}$ $\langle x \rangle_g^{\overline{\text{MS}}}$ 0.5400.58803(58)0.417(16)0.4120.56569(80)0.478(18)			

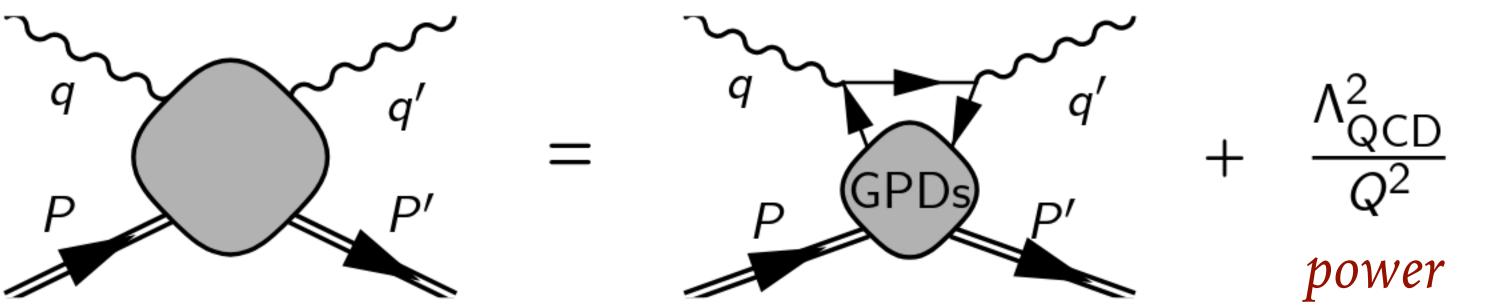


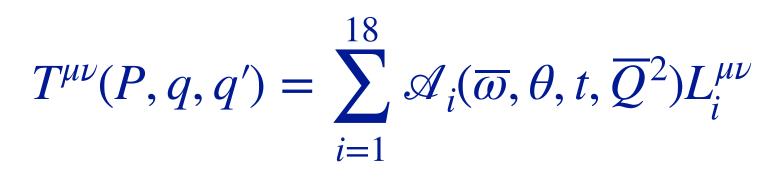
Off-forward Compton amplitude

[PRD105 (2022), PRD110 (2024)]

Off-forward Compton

 $T^{\mu\nu} = \left[d^4 z e^{\frac{i}{2} (\mathbf{q} + \mathbf{q}') \cdot \mathbf{z}} \langle N(p') | T J^{\mu}(z) J^{\nu}(0) | N(p) \rangle \right]$

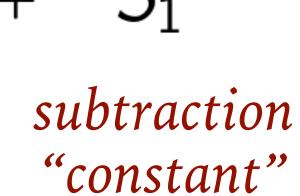




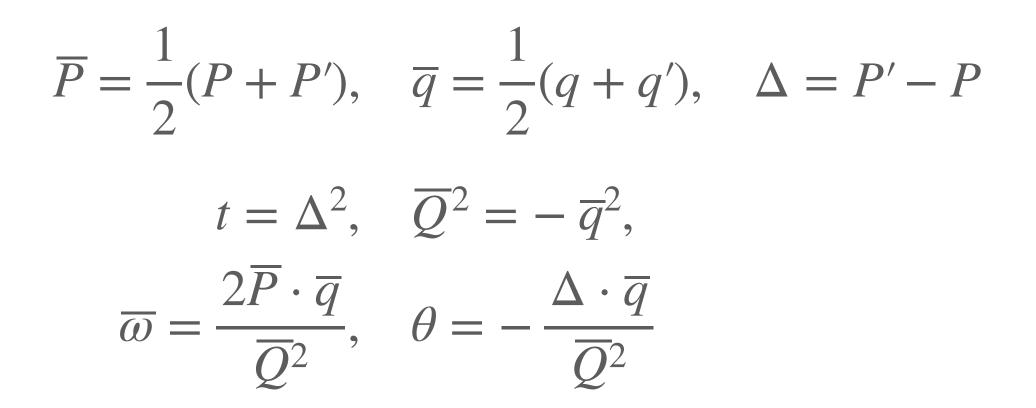
18 tensor structures

[PRD105 (2022), PRD110 (2024)]

power corrections



 $S_1(t, Q^2)$



$$\begin{aligned} & \text{Off-forward Compton} \\ \bar{T}_{\mu\nu} = \frac{1}{2\bar{P}\cdot\bar{q}} \Big[-\left(h\cdot\bar{q}\mathcal{H}_{1} + e\cdot\bar{q}\mathcal{E}_{1}\right)g_{\mu\nu} + \frac{1}{\bar{P}\cdot\bar{q}}\left(h\cdot\bar{q}\mathcal{H}_{2} + e\cdot\bar{q}\mathcal{E}_{2}\right)\bar{P}_{\mu}\bar{P}_{\nu} + \mathcal{H}_{3}h_{\{\mu}\bar{P}_{\nu\}} \Big] \\ & + \frac{i}{2\bar{P}\cdot\bar{q}}\epsilon_{\mu\nu\rho\kappa}\bar{q}^{\rho}\left(\tilde{h}^{\kappa}\tilde{\mathcal{H}}_{1} + \tilde{e}^{\kappa}\tilde{\mathcal{E}}_{1}\right) + \frac{i}{2(\bar{P}\cdot\bar{q})^{2}}\epsilon_{\mu\nu\rho\kappa}\bar{q}^{\rho}\Big[\left(\bar{P}\cdot\bar{q}\tilde{h}^{\kappa} - \tilde{h}\cdot\bar{q}\bar{P}^{\kappa}\right)\tilde{\mathcal{H}}_{2} + \left(\bar{P}\cdot\bar{q}\tilde{e}^{\kappa} - \tilde{e}\cdot\bar{q}\bar{P}^{\kappa}\right)\tilde{\mathcal{E}}_{2}\Big] \\ & + \left(\bar{P}_{\mu}q'_{\nu} + \bar{P}_{\nu}q_{\mu}\right)\left(h\cdot\bar{q}\mathcal{K}_{1} + e\cdot\bar{q}\mathcal{K}_{2}\right) + \left(\bar{P}_{\mu}q'_{\nu} - \bar{P}_{\nu}q_{\mu}\right)\left(h\cdot\bar{q}\mathcal{K}_{3} + e\cdot\bar{q}\mathcal{K}_{4}\right) + q_{\mu}q'_{\nu}\left(h\cdot\bar{q} - e\cdot\bar{q}\right)\mathcal{K}_{5} \\ & + h_{[\mu}\bar{P}_{\nu]}\mathcal{K}_{6} + \left(h_{\mu}q'_{\nu} + h_{\nu}q_{\mu}\right)\mathcal{K}_{7} + \left(h_{\mu}q'_{\nu} - h_{\nu}q_{\mu}\right)\mathcal{K}_{8} + \bar{P}_{\{\mu}\bar{u}(P')i\sigma_{\nu\}\alpha}u(P)\bar{q}^{\alpha}\mathcal{K}_{9}, \end{aligned}$$

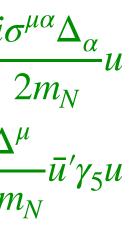
$$\begin{array}{c} \mathcal{H}^{\mu} = \bar{u}'\gamma^{\mu}u, \quad e^{\mu} = \bar{u}'\tilde{\gamma}^{\mu}\sigma_{5}u, \quad \bar{e}^{\mu} = \bar{u}'\tilde{\gamma}^{\mu}\sigma_{5}u, \quad \bar{e}$$

 $\mathcal{H}_1 \xrightarrow{t \to 0} \mathcal{F}_1, \quad \mathcal{H}_2 + \mathcal{H}_3 \xrightarrow{t \to 0} \mathcal{F}_2,$ $\tilde{\mathcal{H}}_1 \xrightarrow{t \to 0} \tilde{g}_1, \quad \tilde{\mathcal{H}}_2 \xrightarrow{t \to 0} \tilde{g}_2,$

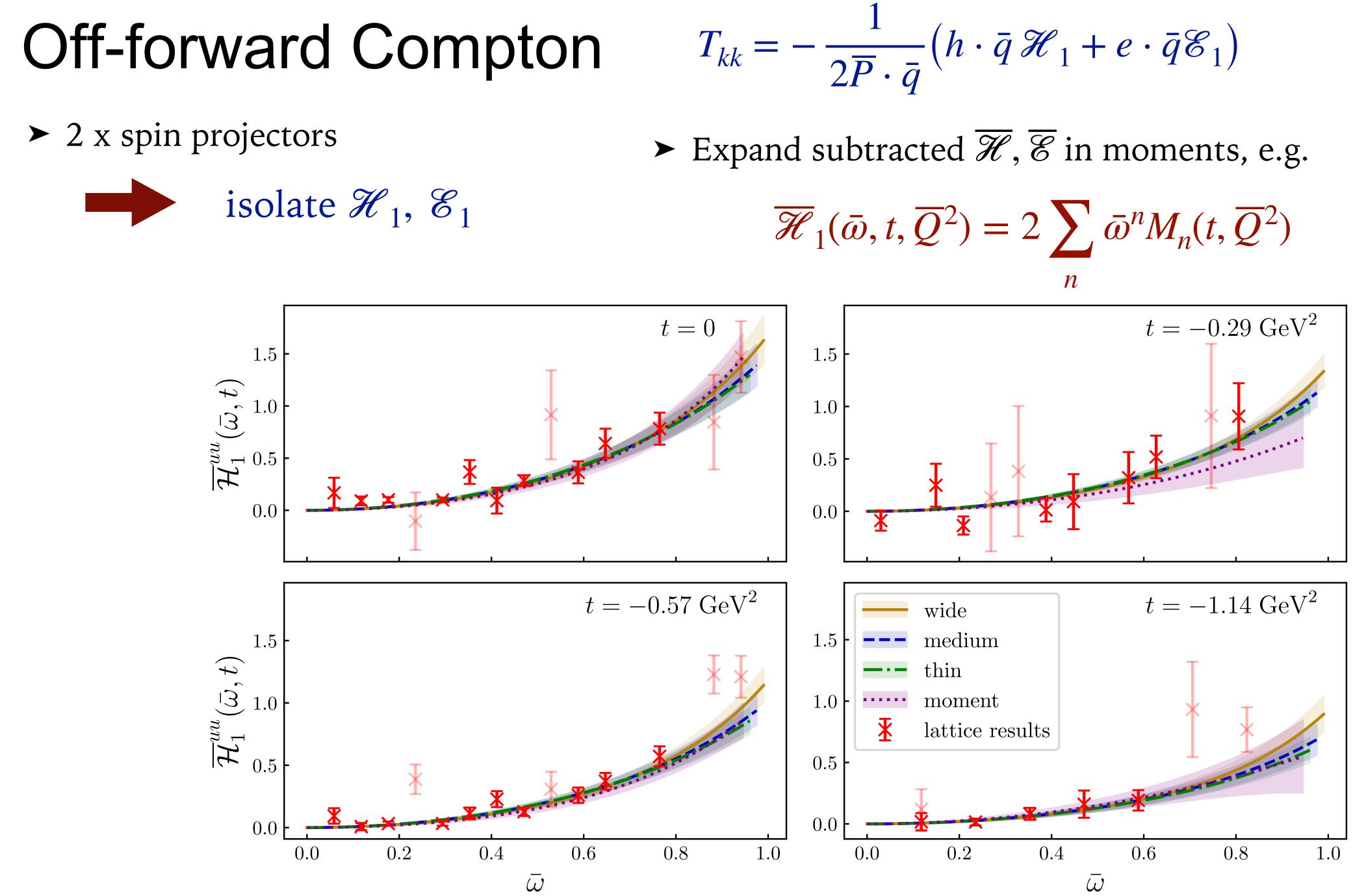
- Kinematics chosen carefully
- ► With current chosen $\hat{e}_k \propto \vec{\Delta} = \vec{q}_1 \vec{q}_2 T_{\mu\nu}$ reduces to $T_{kk} = -\frac{1}{2\overline{P} \cdot \bar{q}} \left(h \cdot \bar{q} \,\mathcal{H}_1 + e \cdot \bar{q} \,\mathcal{E}_1 \right)$

Belitsky, Müller, Kirchner, NPB(2002) Belitsky, Müller, Ji, NPB(2014)

$rac{L}{2\pi} \mathbf{q}_1, \ rac{L}{2\pi} \mathbf{q}_2$	$rac{L}{2\pi}\mathbf{\Delta}$	$rac{L}{2\pi}ar{\mathbf{q}}$	t $[GeV^2]$	$ar{Q}^2$ [GeV ²]	$N_{ m meas}$
(5,3,0)			0	4.86	1605
$egin{array}{c} (4,3,3)\ (3,4,3) \end{array}$	(1, -1, 0)	$\left(rac{7}{2},rac{7}{2},3 ight)$	-0.29	4.79	1031
$(5,3,1) \\ (5,3,-1)$	(0, 0, 2)	(5, 3, 0)	-0.57	4.86	1072
$egin{array}{c} (4,2,4)\ (2,4,4) \end{array}$	(2, -2, 0)	(3, 3, 4)	-1.14	4.86	1031



vist



Off-forward Compton

Moments match onto Mellin moments of GPDs

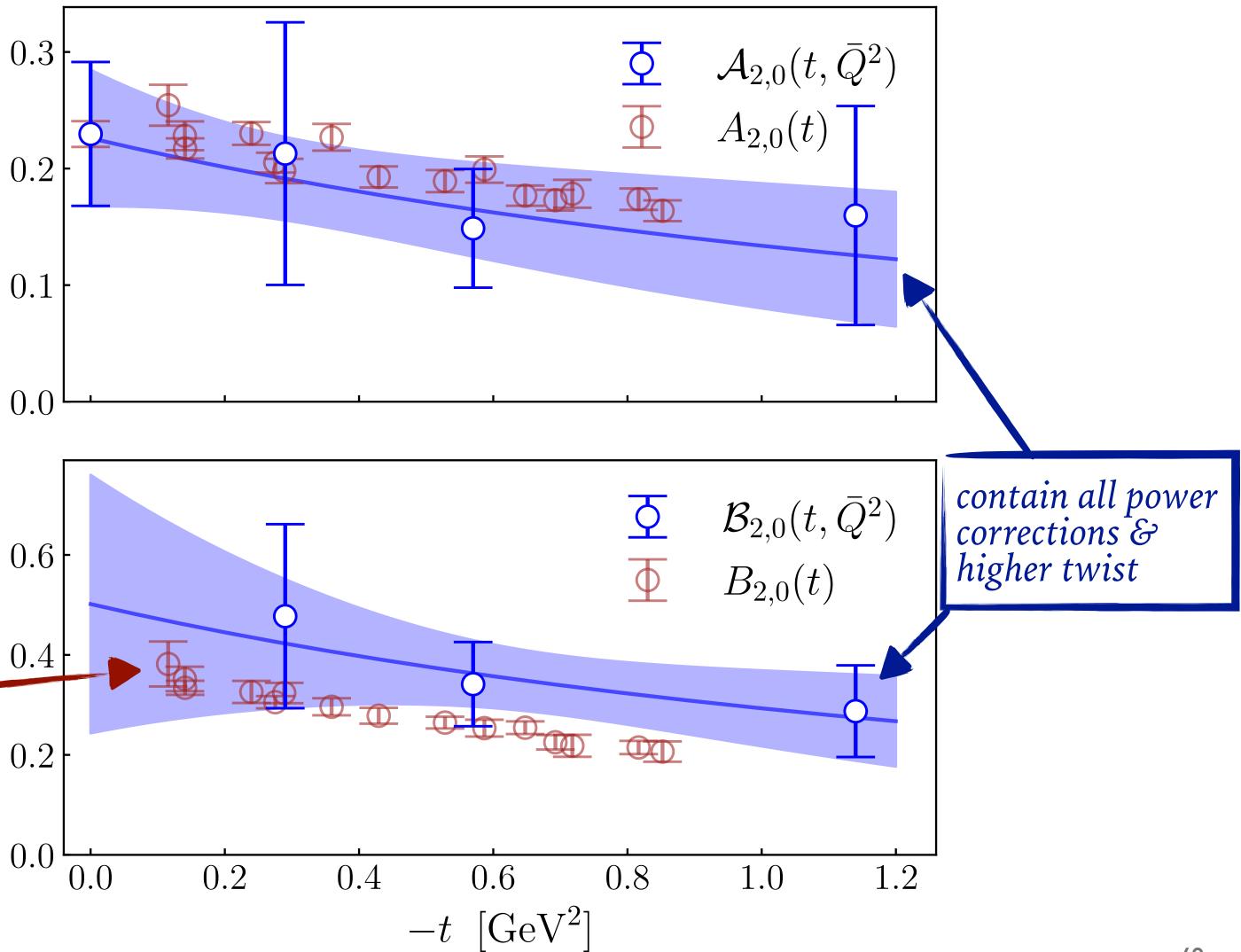
$$M_{n}(t,\theta,\overline{Q}^{2}) \xrightarrow{\overline{Q}^{2} \to \infty} \int_{-1}^{1} dx \, x^{n-1} H_{1}(x,\xi,t) \qquad 0.3$$

$$= \sum_{j=0,2,4,\dots}^{n-1} (-2\xi)^{j} A_{n,j}(t) + (-2\xi)^{n} C_{n}(t) \Big|_{n \text{ even } 0.1$$

$$\xi = \frac{\theta}{\overline{\omega}} \qquad 0.0$$

3-point functions using twist-2 operators

0.0



Off-forward Compton GPD reconstruction

Employ model-dependent ansatz

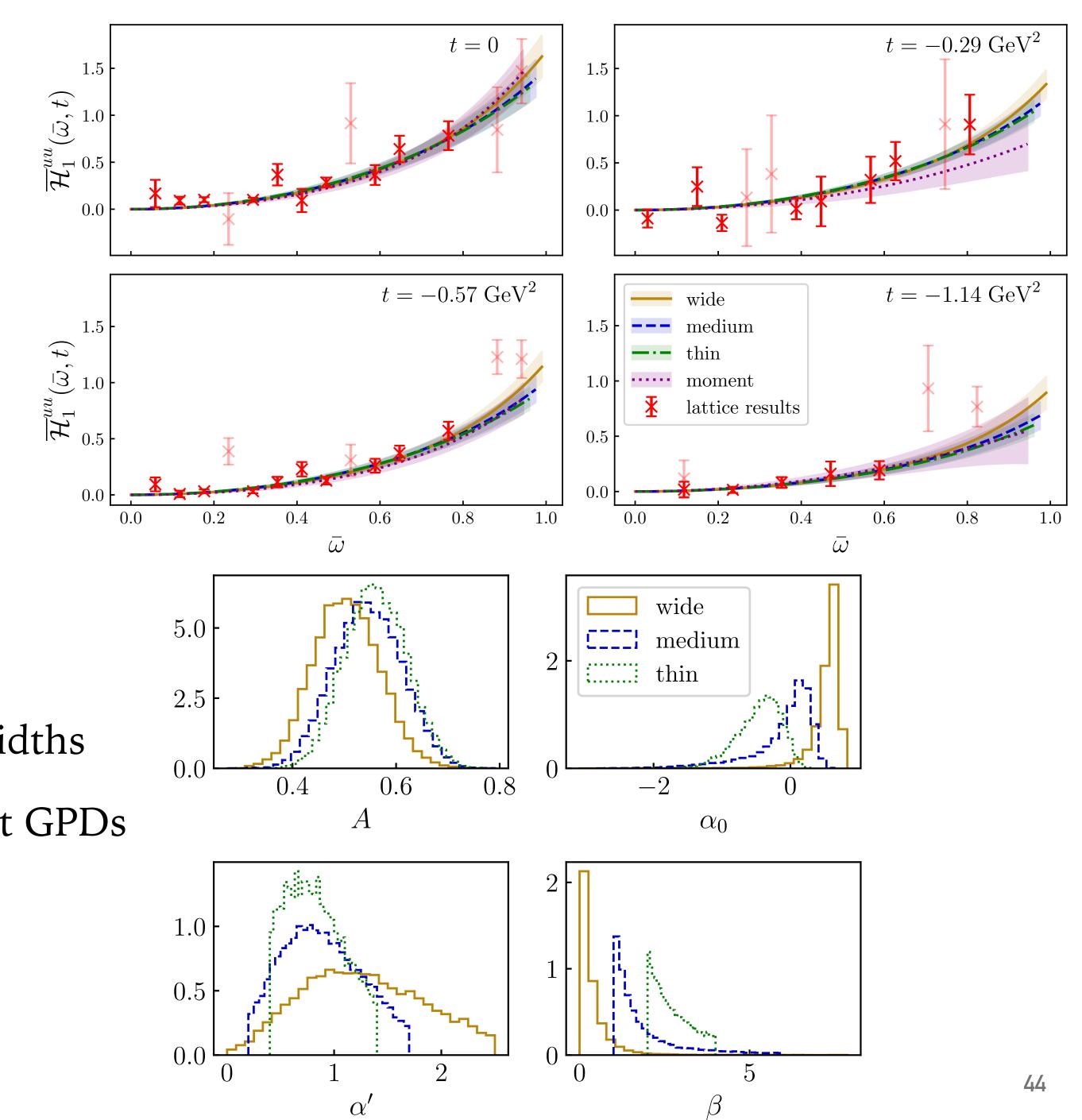
$$H(x, t) = Cx^{-\alpha(t)}(1 - x)^{\beta}$$
$$\alpha(t) = \alpha_0 + \alpha' t$$

(dispersion relation)

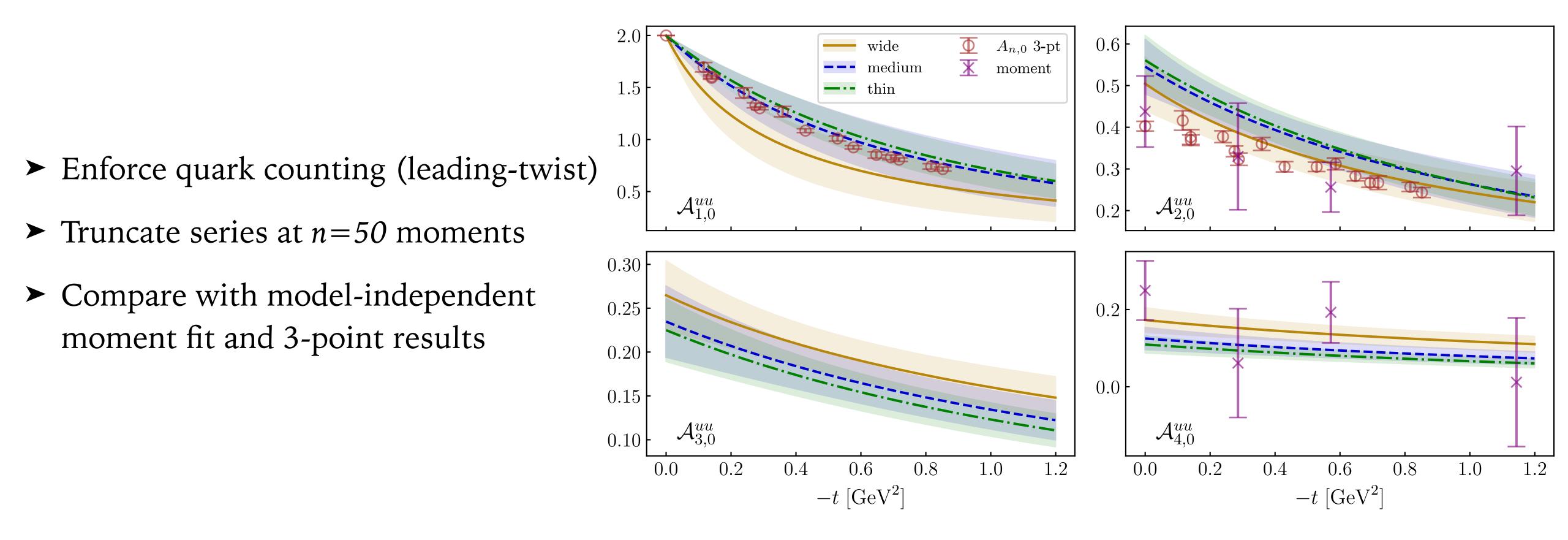
$$\overline{\mathcal{H}}_{1}(\bar{\omega}, t) = 2C \sum_{n=1}^{\infty} \bar{\omega}^{2n} \frac{\Gamma(2n - \alpha(t))\Gamma(\beta + 1)}{\Gamma(1 + 2n - \alpha(t) + \beta)}$$

- Perform Bayesian fit with 3 priors of differing widths
- Drawing on positivity constraint of leading-twist GPDs

enforce
$$\begin{aligned} \left| \mathscr{A}_{2n,0}(t) \right| &\leq \mathscr{A}_{2n,0}(0) \\ \left| \mathscr{B}_{2n,0}(t) \right| &\leq \frac{2m_N}{\sqrt{-t}} \mathscr{A}_{2n,0}(0) \end{aligned}$$

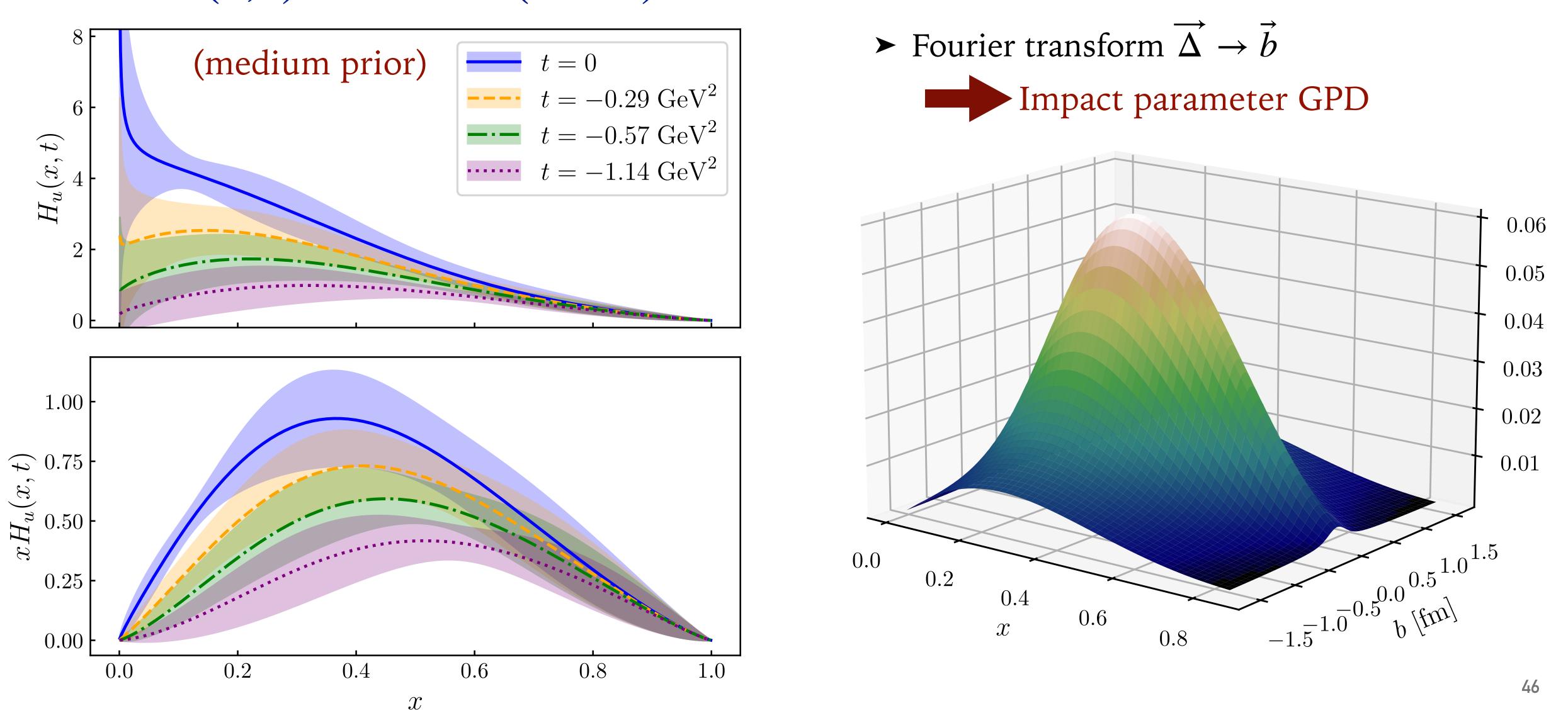


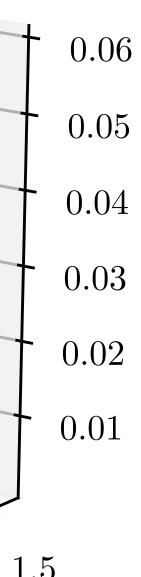
Off-forward Compton GPD reconstruction



45

Off-forward Compton GPD reconstruction $H(x,t) = Cx^{-\alpha(t)}(1-x)^{\beta}$





46

Transverse force distributions in the nucleon

Physical Review Letters 134 (2025) — Editor's suggestion

"The study reveals a spin-independent force that reflects the confinement of quarks, with local forces reaching up to 3 billion electron volts per femtometre — about half a million Newtons, or the weight of roughly 10 elephants. A spin-dependent force has also been mapped, which offers new insights into how the dynamics of quarks are influenced by the spin of the proton in which they live."

Protons' Internal Forces Are As Strong As The Weight Of 5 Schoolbuses

Raw News Health, 26 Feb 2025 Protons sit in the nuclei of all atoms, but they are not fundamental particles: They are made of three quarks...

Weight Of 5 Schoolbuses IfIscience, 26 Feb 2025

Space and Physicsphysics PUBLISHED31 minutes ago This is why you need very powerful particle accelerators to smash them! Dr.

Force As Strong As 10 Compressed Elephants Rests Inside A Proton, Suggests Study

Wonderful Engineering, 24 Feb 2025 Protons, the building blocks of all matter, hold some of the deepest mysteries in modern physics.

SPACE DAILY

Space Daily, 24 Feb 2025 The international collaboration, which includes researchers from the University of Adelaide, is focused on uncovering the ...

Mapping the forces inside protons

COSMOS magazine, 24 Feb 2025 You might be surprised to hear that there's anything "inside" a proton. But scientists have mapped the forces between the...

SKY NIGHTLY

Illuminating the Inner Workings of the Proton

Sky Nightly , 24 Feb 2025 Illuminating the Inner Workings of the Proton by Simon Mansfield Sydney, Australia (SPX) Feb 21, 2025 A team of scientists has...

Protons' Internal Forces Are As Strong As The

Illuminating the Inner Workings of the Proton

Force as strong as 10 compressed elephants rests inside a proton, suggests study

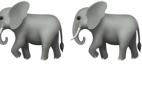
Interesting Engineering, 23 Feb 2025

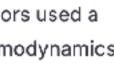
To uncover the forces within a proton, the study authors used a computational technique called lattice quantum chromodynamics (La...

Illuminating the proton's inner workings

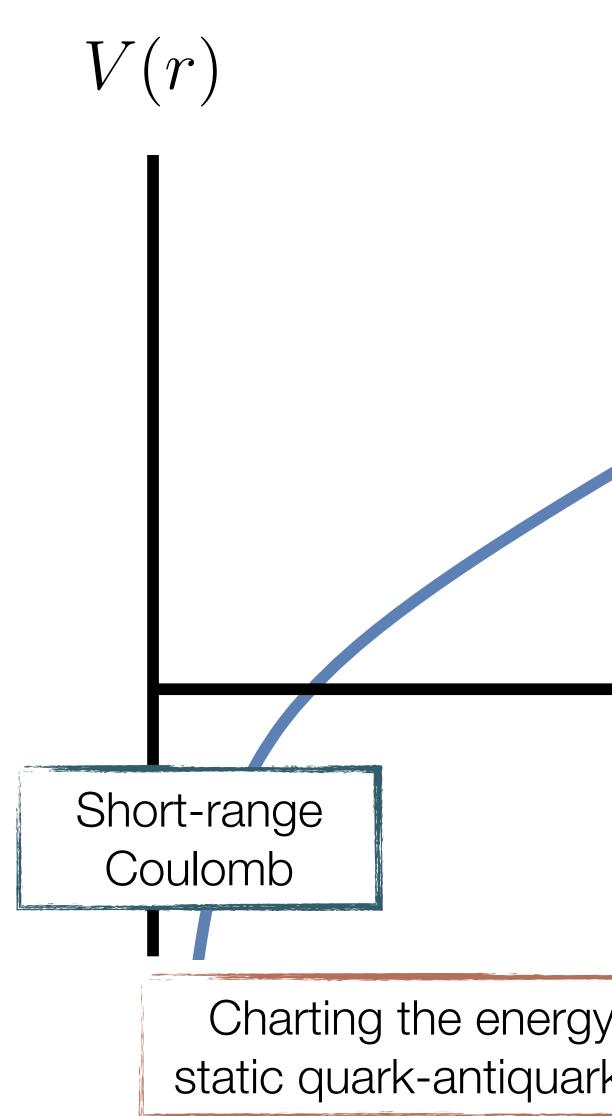
Science Daily, 21 Feb 2025

Scientists have now mapped the forces acting inside a proton, showing in unprecedented detail how quarks -- the tiny particles...





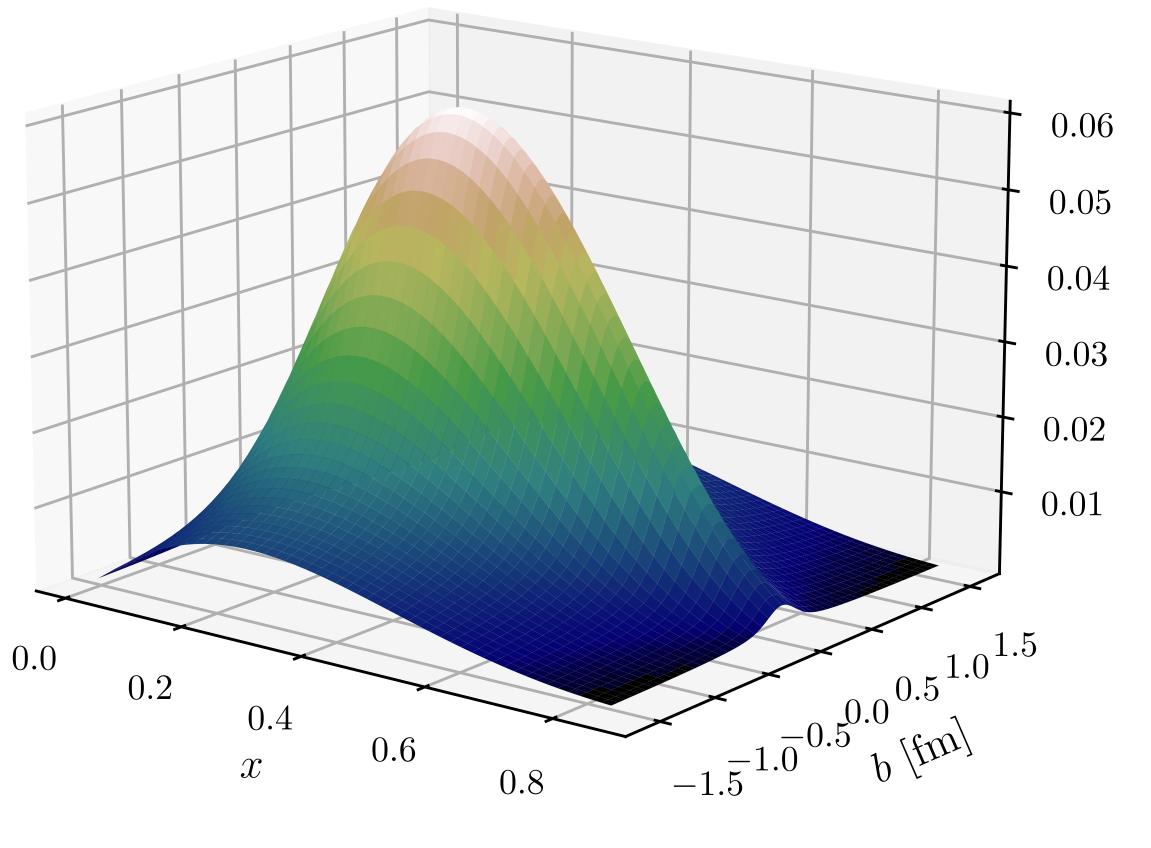
Confinement: static quark potential



 γ

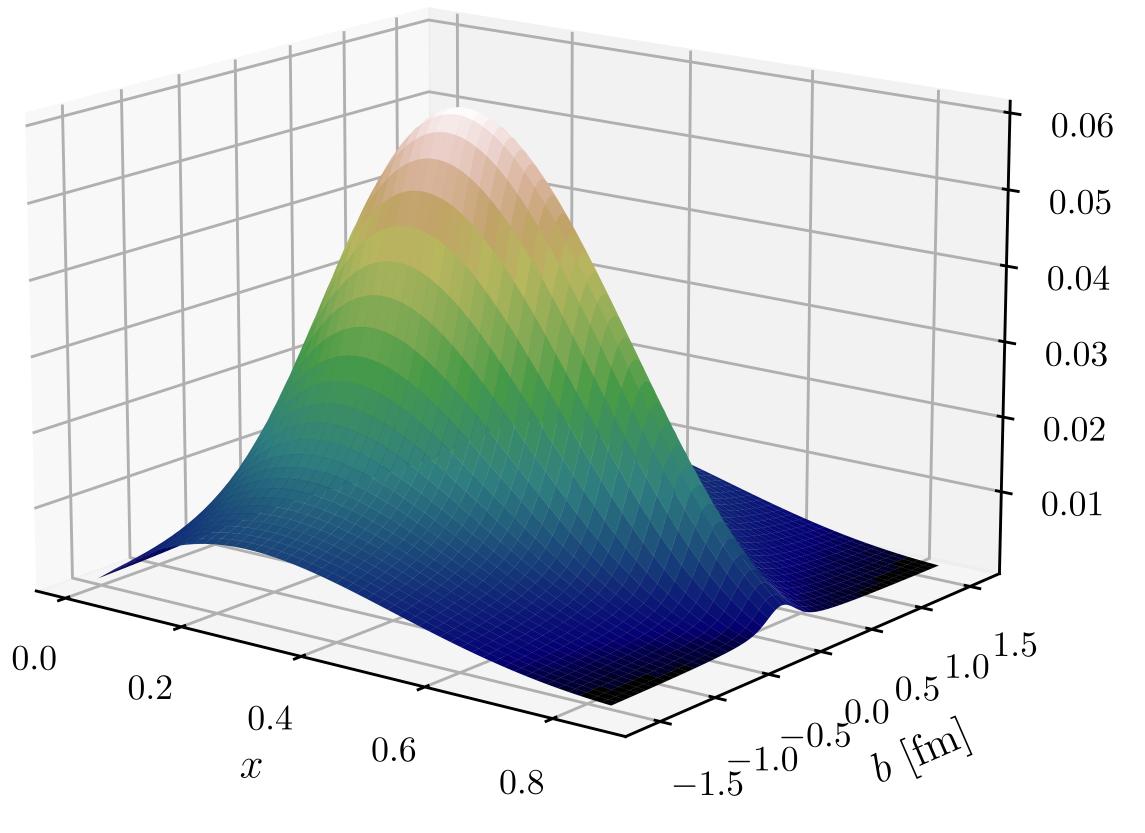
Charting the energy dependence between static quark-antiquark pair (in pure Yang-Mills)

Imaging nucleon structure

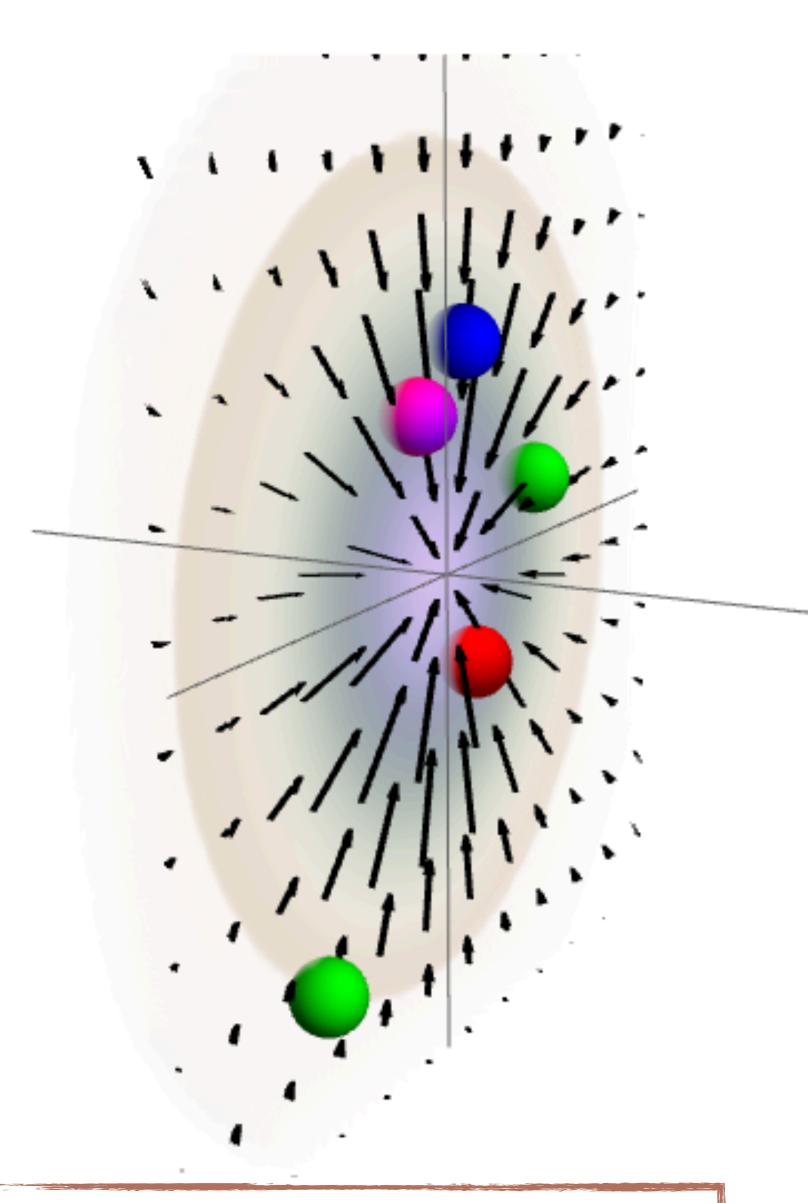


Recall: Generalised parton distributions Describe the (longitudinal) momentum and (transverse) **position** of quarks

Imaging nucleon structure

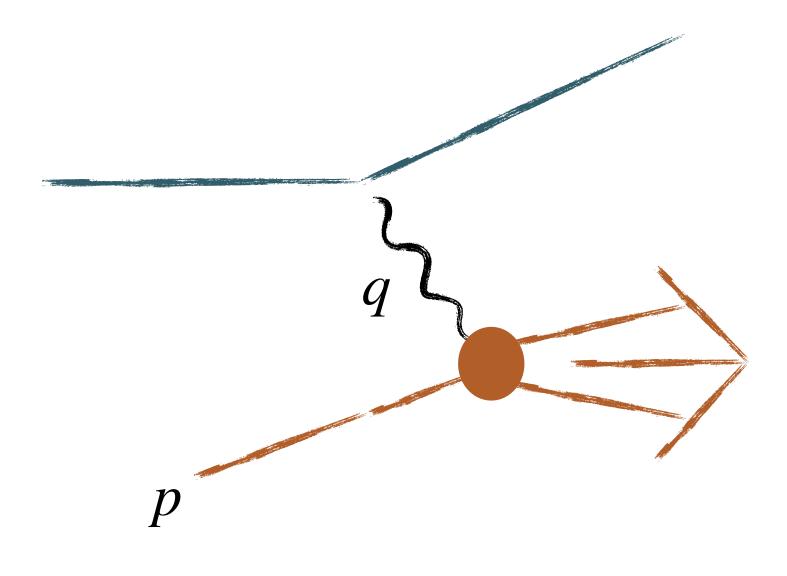


Recall: Generalised parton distributions Describe the (longitudinal) **momentum** and (transverse) **position** of quarks



Can we go further to describe the forces acting on these quarks?

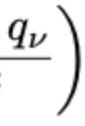
Inelastic scattering



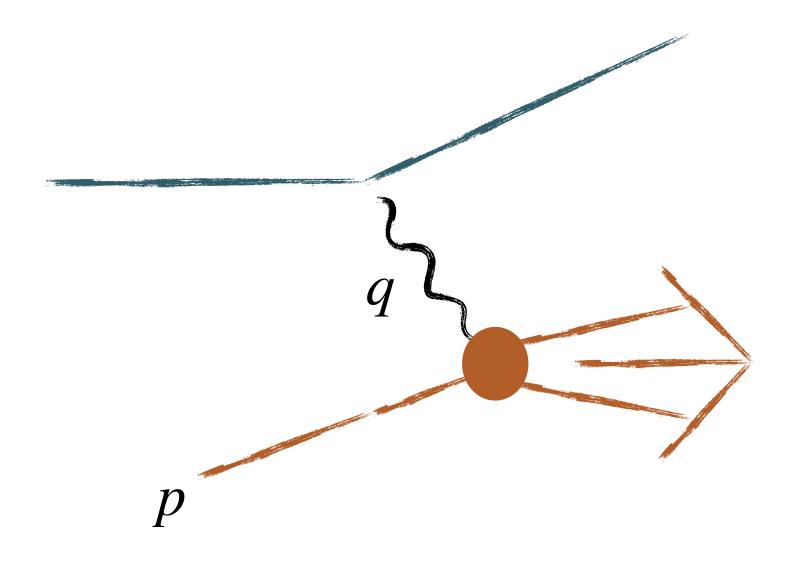
 W_{I}

Hadron tensor

$$egin{split} f_{\mu
u} &= F_1 \left(-g_{\mu
u} + rac{q_\mu q_
u}{q^2}
ight) + rac{F_2}{p \cdot q} \left(p_\mu - rac{p \cdot q \ q_\mu}{q^2}
ight) \left(p_
u - rac{p \cdot q \ q_\mu}{q^2}
ight) \\ &+ rac{ig_1}{p \cdot q} \ \epsilon_{\mu
u\lambda\sigma} q^\lambda s^\sigma + rac{ig_2}{(p \cdot q)^2} \ \epsilon_{\mu
u\lambda\sigma} q^\lambda \left(p \cdot q \ s^\sigma - s \cdot q \ p^\sigma
ight) \ , \end{split}$$



Inelastic scattering



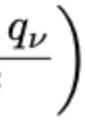
 W_{j}

Scaling functions

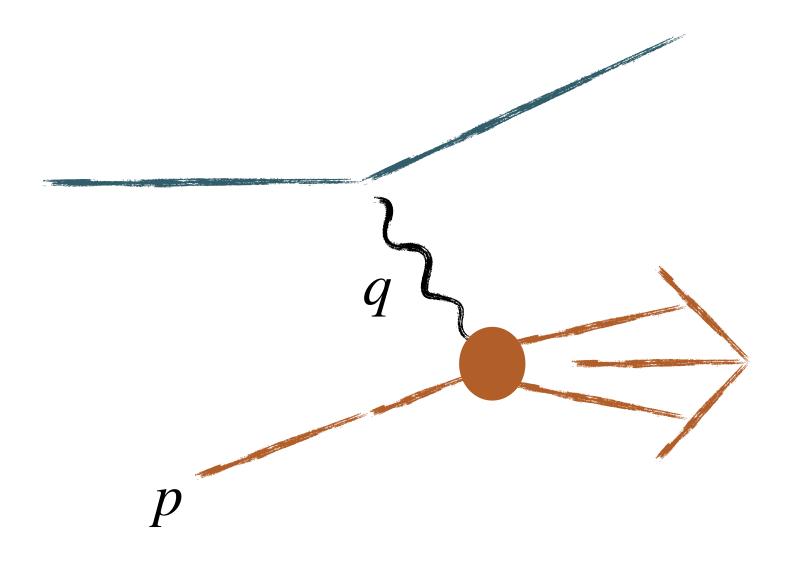
In the deep inelastic region, large Q^2 , these functions map onto the parton distributions

Hadron tensor

$$\begin{split} f_{\mu\nu} = & F_1 \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) + \underbrace{F_2}_{p \cdot q} \left(p_{\mu} - \frac{p \cdot q \ q_{\mu}}{q^2} \right) \left(p_{\nu} - \frac{p \cdot q}{q^2} \right) \\ & + \underbrace{ig_1}_{p \cdot q} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} s^{\sigma} + \frac{ig_2}{(p \cdot q)^2} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} \left(p \cdot q \ s^{\sigma} - s \cdot q \ p^{\sigma} \right) \ , \end{split}$$



Inelastic scattering



 W_{μ}

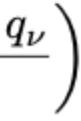
Scaling funct

In the dee large Q^2 , onto the

 g_2 : No simp

Hadron tensor

$$\begin{aligned}
\mu \nu &= F_1 \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) + F_2 \left(p_{\mu} - \frac{p \cdot q \ q_{\mu}}{q^2} \right) \left(p_{\nu} - \frac{p \cdot q \ q}{q^2} + \frac{ig_1}{p \cdot q} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} s^{\sigma} + \frac{ig_2}{(p \cdot q)^2} \epsilon_{\mu\nu\lambda\sigma} q^{\lambda} \left(p \cdot q \ s^{\sigma} - s \cdot q \ p^{\sigma} \right) ,
\end{aligned}$$
tions
there inelastic region,
these functions map
parton distributions
ele partonic interpretation!



Colour-Lorentz force

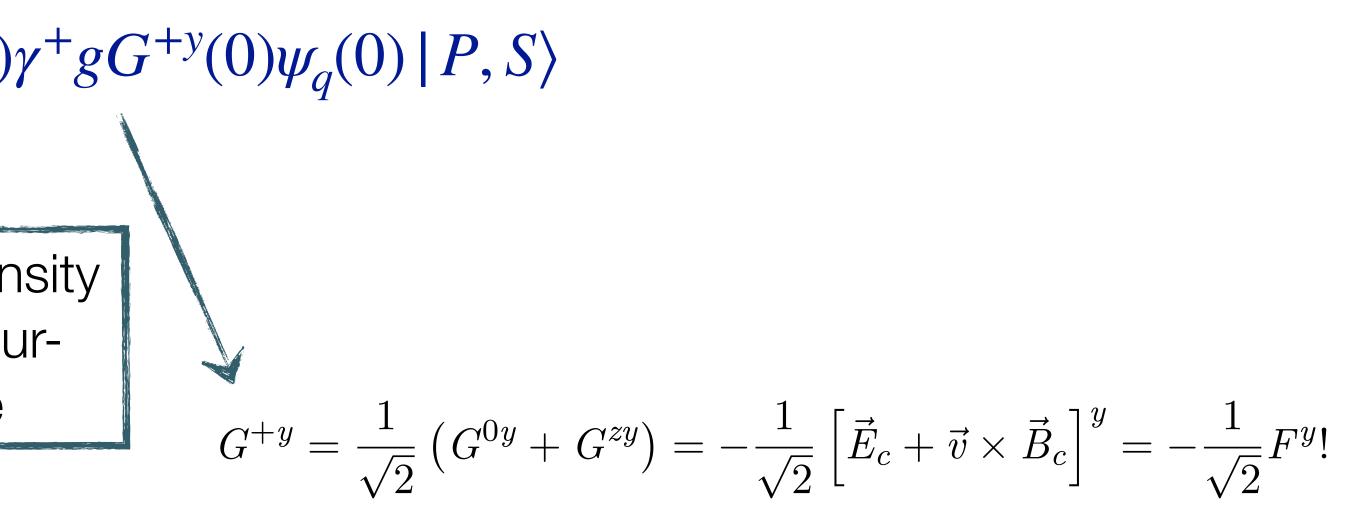
While no simple parton interpretation, moment of the g_2 structure function can be expressed in terms of a local matrix element

$$\int dx \, x^2 \bar{g}_2(x) = \frac{d_2}{3} \equiv \frac{1}{6} \sum_q e_q^2 d_2^q$$

where
$$d_2^q = \frac{1}{2MP + P + S^x} \langle P, S | \overline{\psi}_q(0)$$

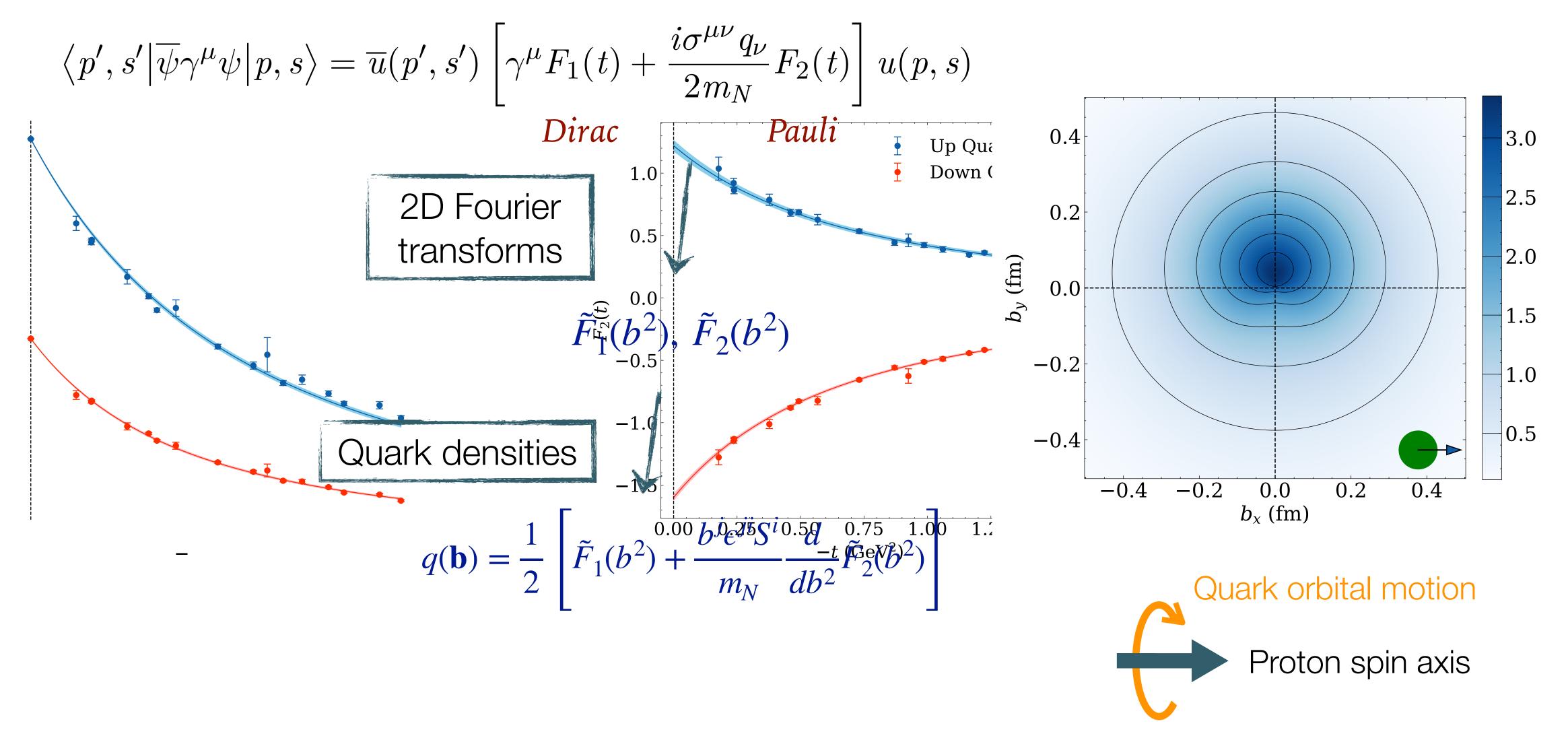
Quark current density coupled to colour-Lorentz force

Burkardt, PRD, 2013



Transverse densities

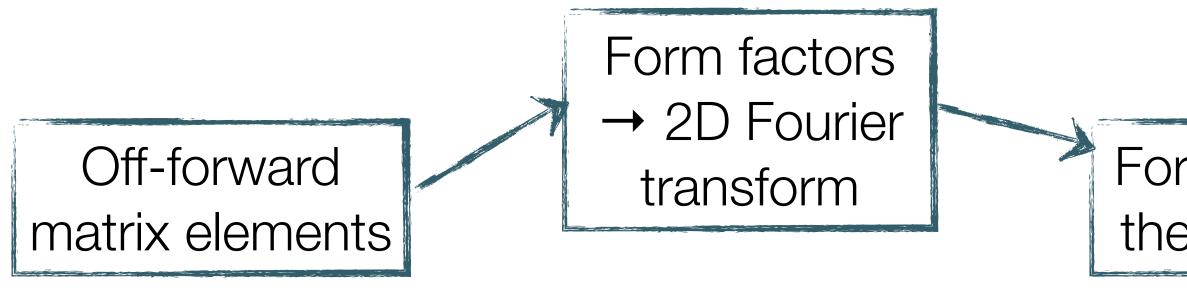
Electromagnetic current



Twist-3 off-forward matrix elements Aslan, Burkardt, Schlegel, PRD, 2019

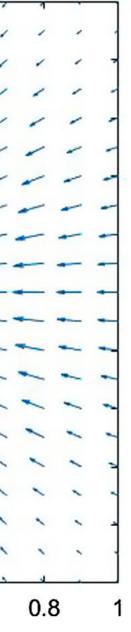
 $\langle p', s' | \overline{\psi} \gamma^+ i g G^{+i} \psi | p, s \rangle = \overline{u}(p)$

where $P^{\mu} = (p' + p)^{\mu}/2$, $\Delta^{\mu} = (p' + p)^{\mu}/2$



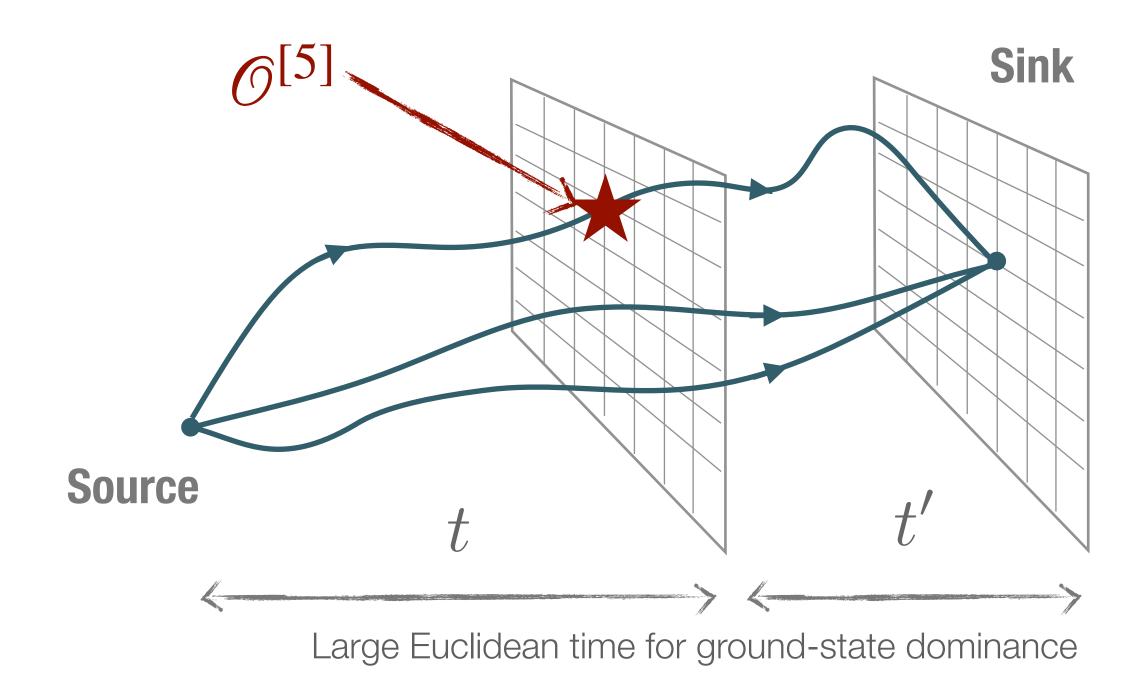
$$p', s') \left[P^{+} \Delta^{i} \gamma^{+} \Phi_{1}(t) + MP^{+} i \sigma^{+i} \Phi_{2}(t) + \frac{1}{M} P^{+} \Delta^{i} i \sigma^{+\Delta} \Phi_{3}(t) \right] u(p, s),$$

$$p' - p)^{\mu}, t = -\Delta^{2} \text{ and } \sigma^{\mu\Delta} = \sigma^{\mu\nu} \Delta_{\nu}.$$
Fride distributions in the transverse plane
$$p_{1}^{*} = \frac{1}{2} \sum_{\substack{a = 0 \\ a = 0$$



Recall: 3-point functions

Compute 3-point correlators on the lattice



3 source-sink separations to establish ground-state domin

$$\mathcal{O}_{[i|j]4}^{[5]} = -\frac{g}{6}\overline{\psi}\left(\tilde{G}_{ij}\gamma_{4} + \tilde{G}_{i4}\gamma_{j}\right)\psi - \text{trans}$$

$$\frac{\langle C_{3}(t,t')\rangle}{\langle C_{2}(t)\rangle\langle C_{2}(t')\rangle} \propto \langle N'|J|N\rangle$$

$$-0.0004$$

$$-0.0006$$

$$\frac{-0.0008}{0}$$

$$-0.0012$$

$$-0.0012$$

$$-0.0012$$

$$\frac{1}{1}$$

$$t_{sep} = 14$$

$$-0.0014$$

$$\frac{1}{1}$$

$$t_{sep} = 18$$

$$\frac{1}{1}$$

$$t_{sep} = 22$$

$$-0.0016$$

$$-0.0016$$

$$\frac{1}{8}$$

$$-6$$

$$-4$$

$$-2$$

$$-2$$

$$-2$$

$$-2$$

$$-4$$

$$-6$$

$$-4$$

(-

Φ_1 form factor

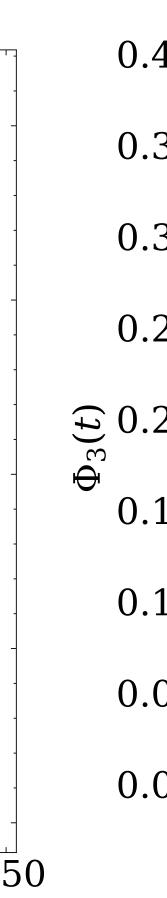
- ► Φ_1 : isotropic force distribution
- ► Dipole fits to lattice results

Negative form factors

 \implies attractive forces

$$\begin{split} \left\langle p', s' \middle| \overline{\psi} \gamma^{+} i g G^{+i} \psi \middle| p, s \right\rangle &= \overline{u}(p', s') \bigg[P^{+} \Delta^{i} \gamma^{+} \Phi_{1}(t) + M P^{+} i \sigma^{+i} \Phi_{2}(t) \\ &+ \frac{1}{M} P^{+} \Delta^{i} i \sigma^{+\Delta} \Phi_{3}(t) \bigg] u(p, s), \end{split}$$

$m_{\pi} \sim 410 \,\mathrm{GeV}$ $\beta = 5.95 \ (a \sim 0.052 \, \text{fm})$ -0.1-0.2 $\Phi_1(t)$ SPECIAL RESEARCH CENTRE FOR THE SUBAT -0.4STRUCTUREO Up Quark Down Quark -0.50.25 0.75 1.001.25 0.00 0.50 1.50-t (GeV²)



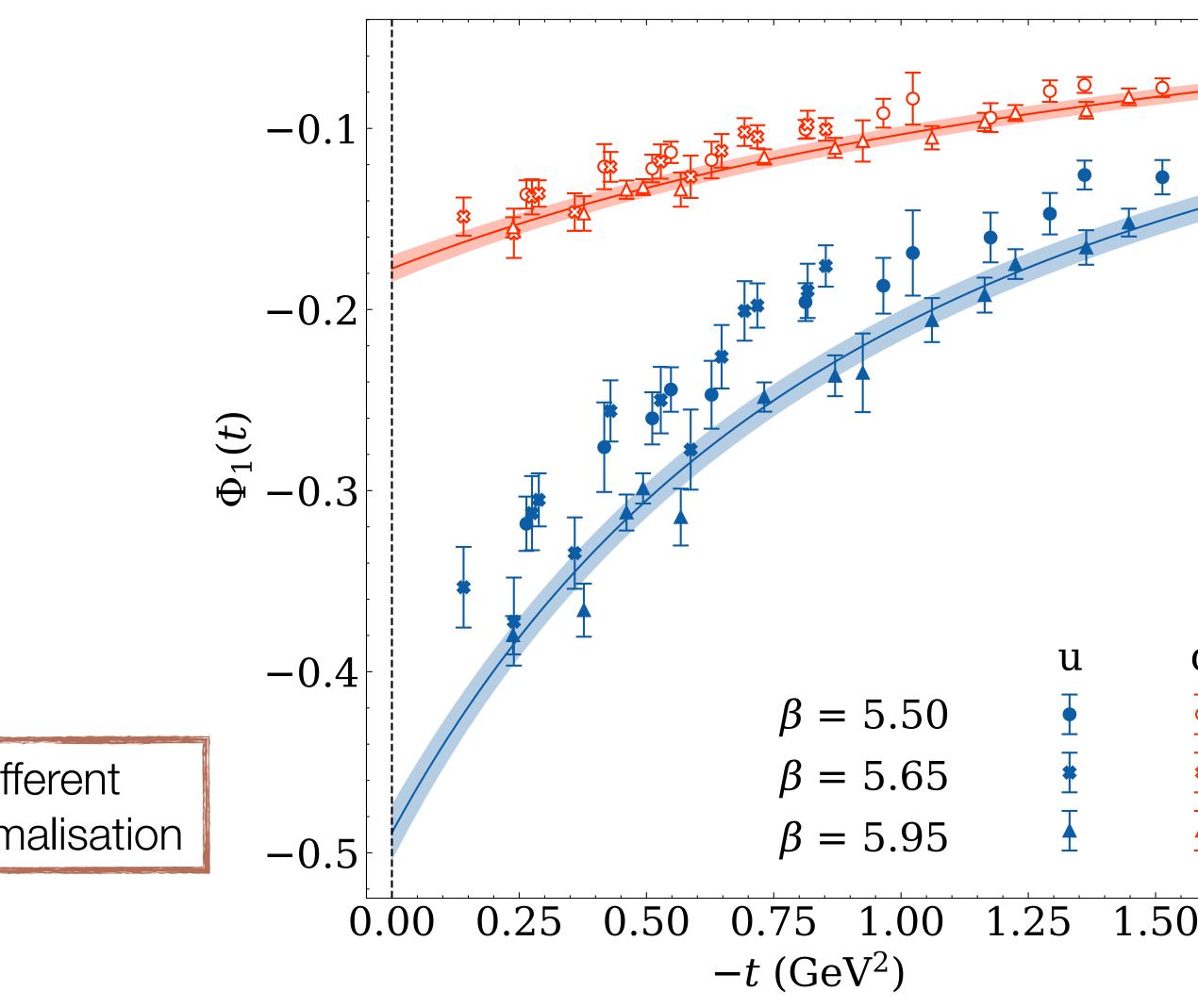
55

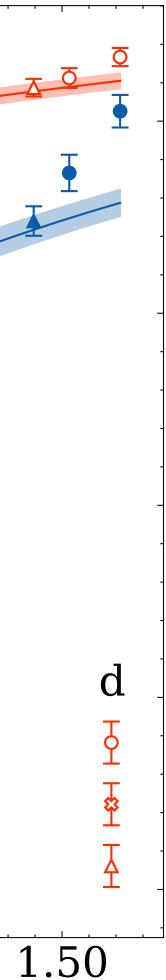
Discretisation effects

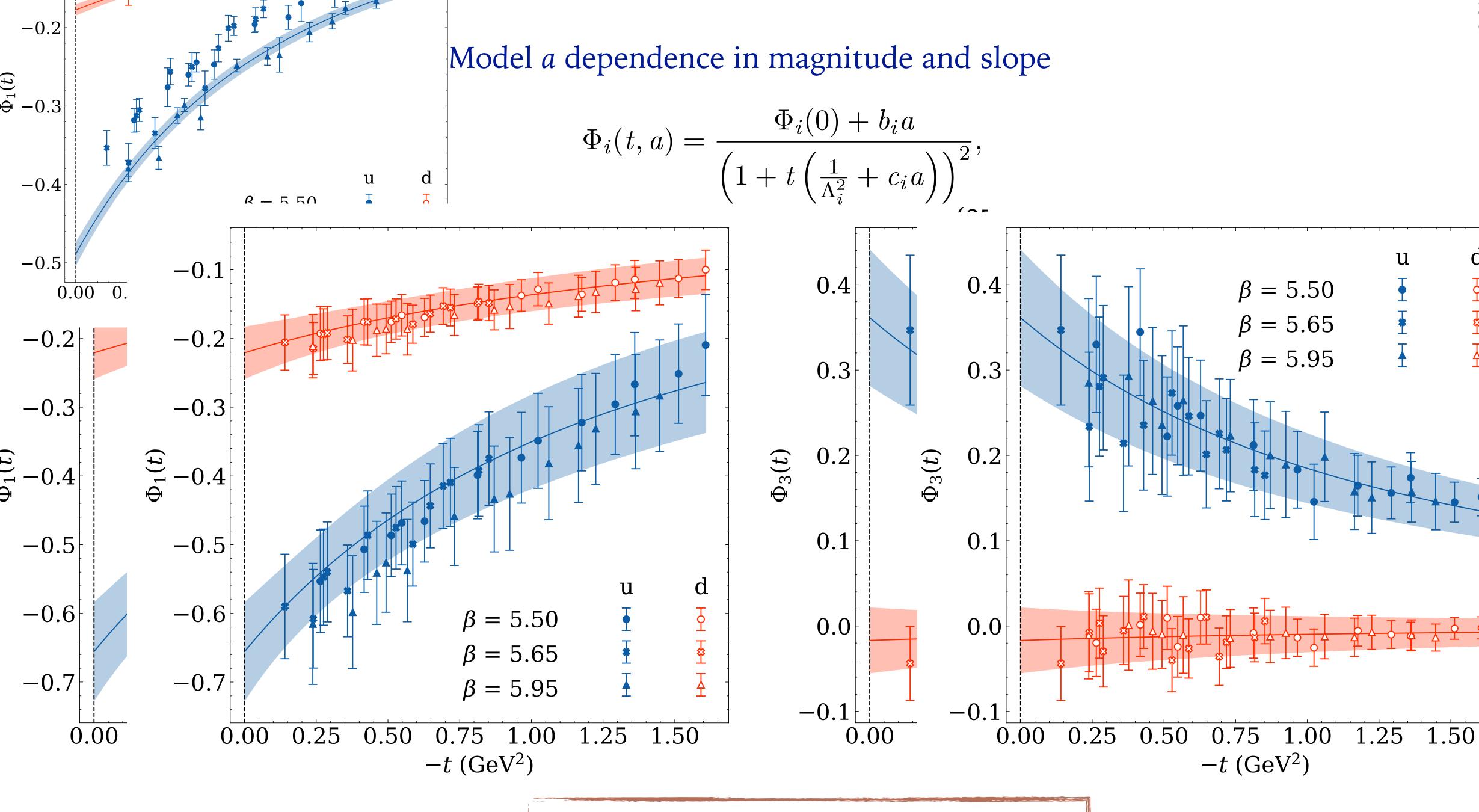
Extract form factors at 3 lattice spacings,

a ~ 0.74, 0.68, 0.52 fm $m_{\pi} \sim 410 \,\mathrm{GeV}$

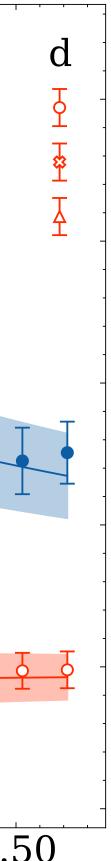
> Some tension between different lattices; mostly in overall normalisation







Error bars here include estimate for $a \rightarrow 0$



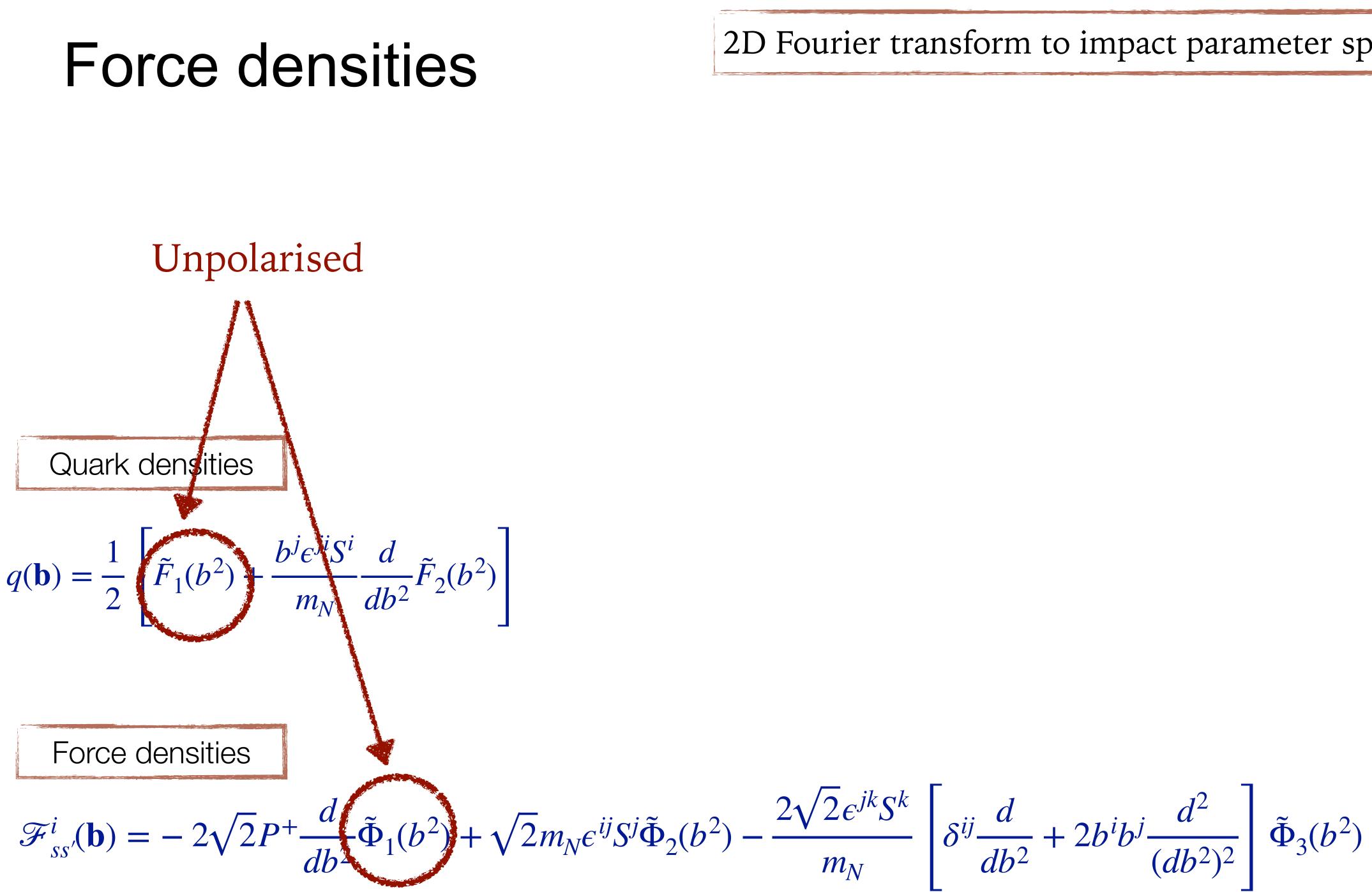
Force densities

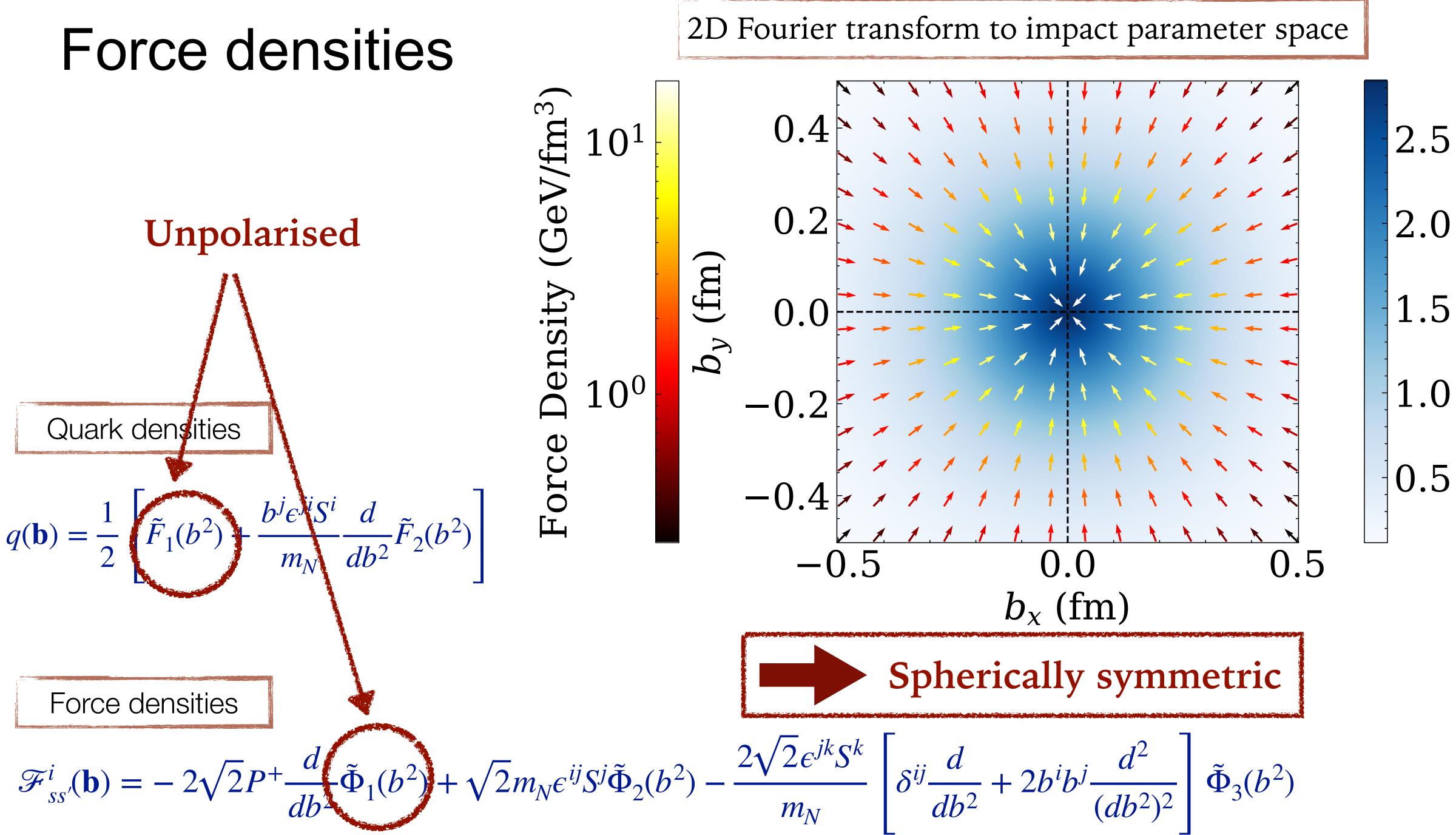
Quark densities

$$q(\mathbf{b}) = \frac{1}{2} \left[\tilde{F}_1(b^2) + \frac{b^j \epsilon^{ji} S^i}{m_N} \frac{d}{db^2} \tilde{F}_2(b^2) \right]$$

Force densities

 $\mathscr{F}_{ss'}^{i}(\mathbf{b}) = -2\sqrt{2}P^{+}\frac{d}{db^{2}}\tilde{\Phi}_{1}(b^{2}) + \sqrt{2}m_{N}\epsilon^{ij}S^{j}\tilde{\Phi}_{2}(b^{2}) - \frac{2\sqrt{2}\epsilon^{jk}S^{k}}{m_{N}}\left[\delta^{ij}\frac{d}{db^{2}} + 2b^{i}b^{j}\frac{d^{2}}{(db^{2})^{2}}\right]\tilde{\Phi}_{3}(b^{2})$





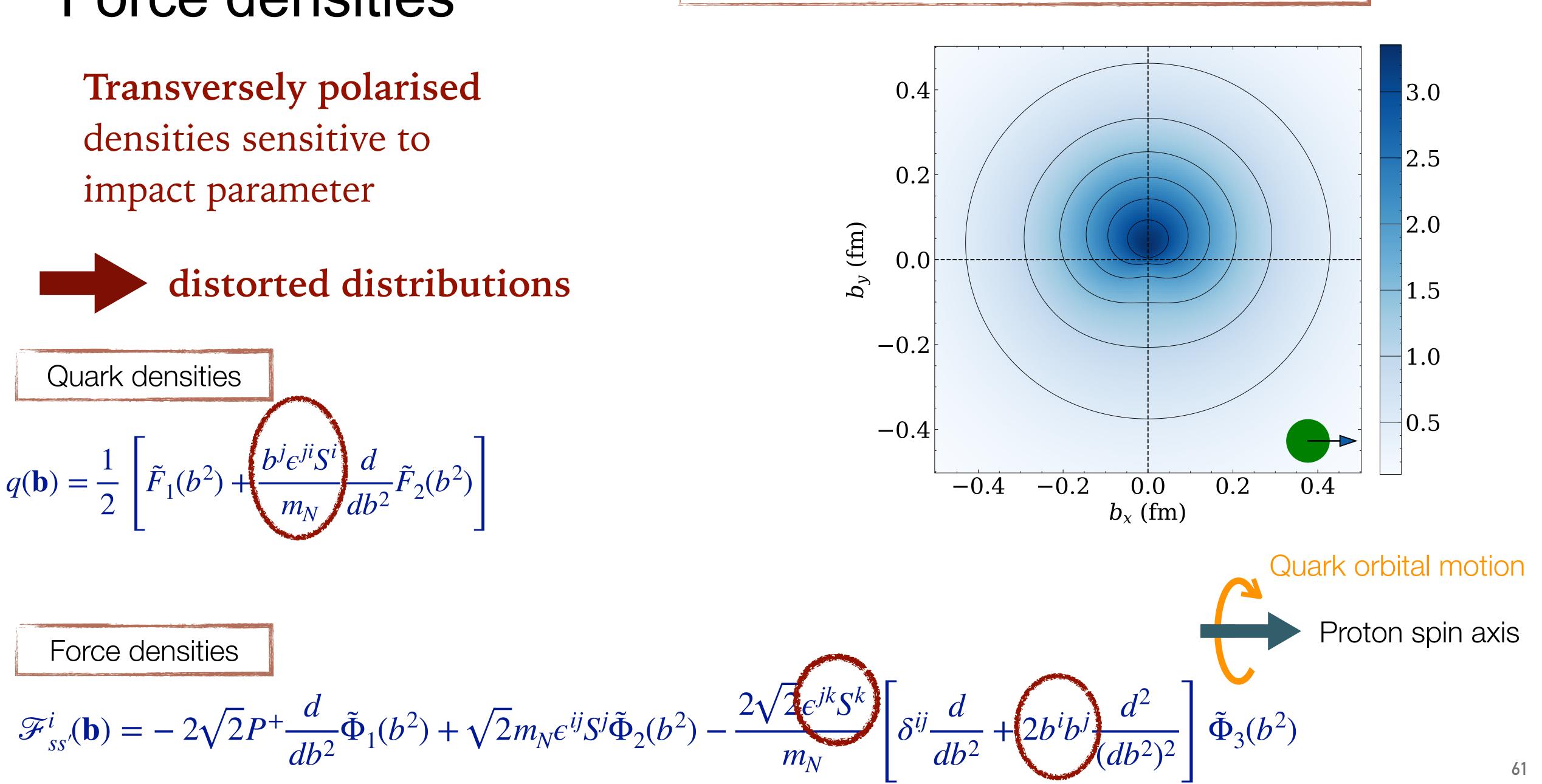
Force densities

Transversely polarised densities sensitive to impact parameter

distorted distributions

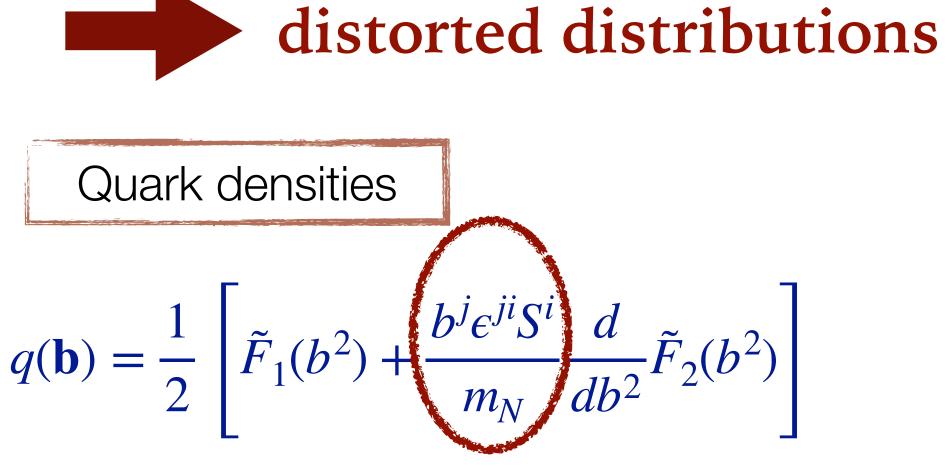
Quark densities $q(\mathbf{b}) = \frac{1}{2} \left[\tilde{F}_1(b^2) + \frac{b^j \epsilon^{ji} S^i}{m_N} \frac{d}{db^2} \tilde{F}_2(b^2) \right]$

Force densities



Force densities

Transversely polarised densities sensitive to impact parameter



3eV/fm³ 101 insity 10^{0} Force

Force densities

0.40.2 (fm) $b_{\mathcal{Y}}$ 0.0-0.50.5 b_x (fm) Quark orbital motion Proton spin axis $\mathcal{F}_{ss'}^{i}(\mathbf{b}) = -2\sqrt{2}P^{+}\frac{d}{db^{2}}\tilde{\Phi}_{1}(b^{2}) + \sqrt{2}m_{N}\epsilon^{ij}S^{j}\tilde{\Phi}_{2}(b^{2}) - \frac{2\sqrt{2}\epsilon^{jk}S^{k}}{m_{N}}\left[\delta^{ij}\frac{d}{db^{2}} + (2b^{i}b^{j})\frac{d^{2}}{(db^{2})^{2}}\right]\tilde{\Phi}_{3}(b^{2})$

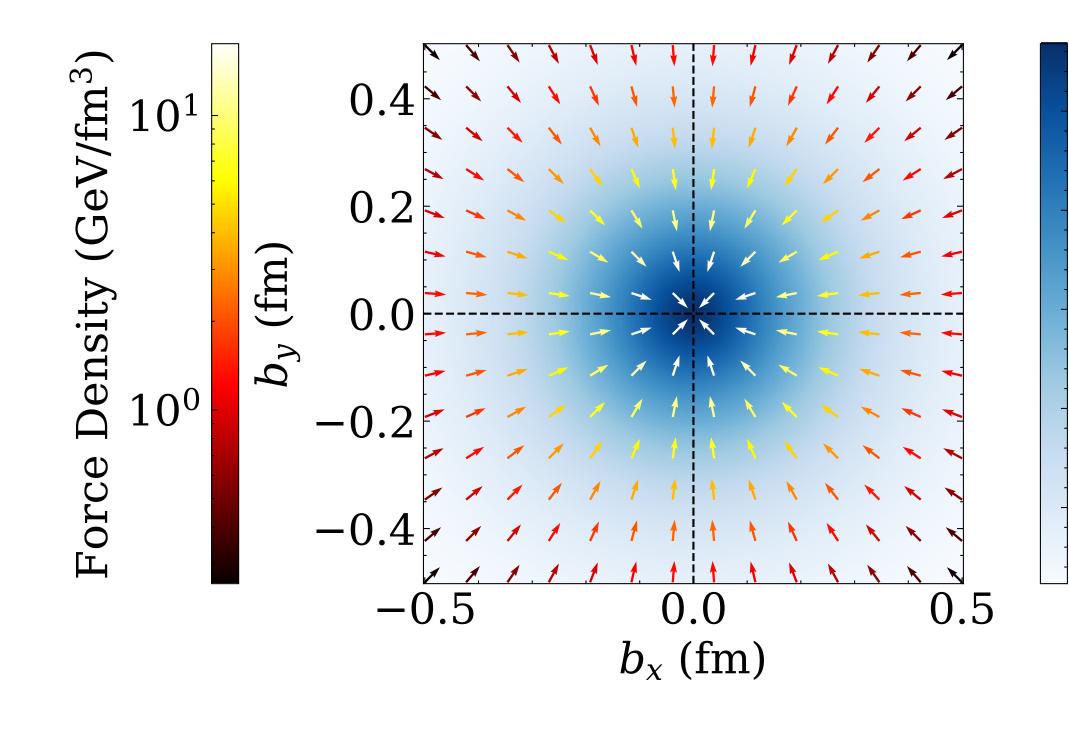
Local forces

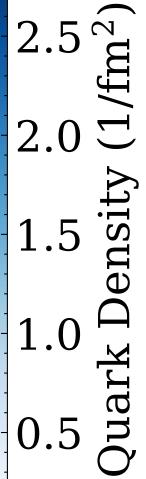
Dividing out the quark densities

Force densities = "quark density" x "force"

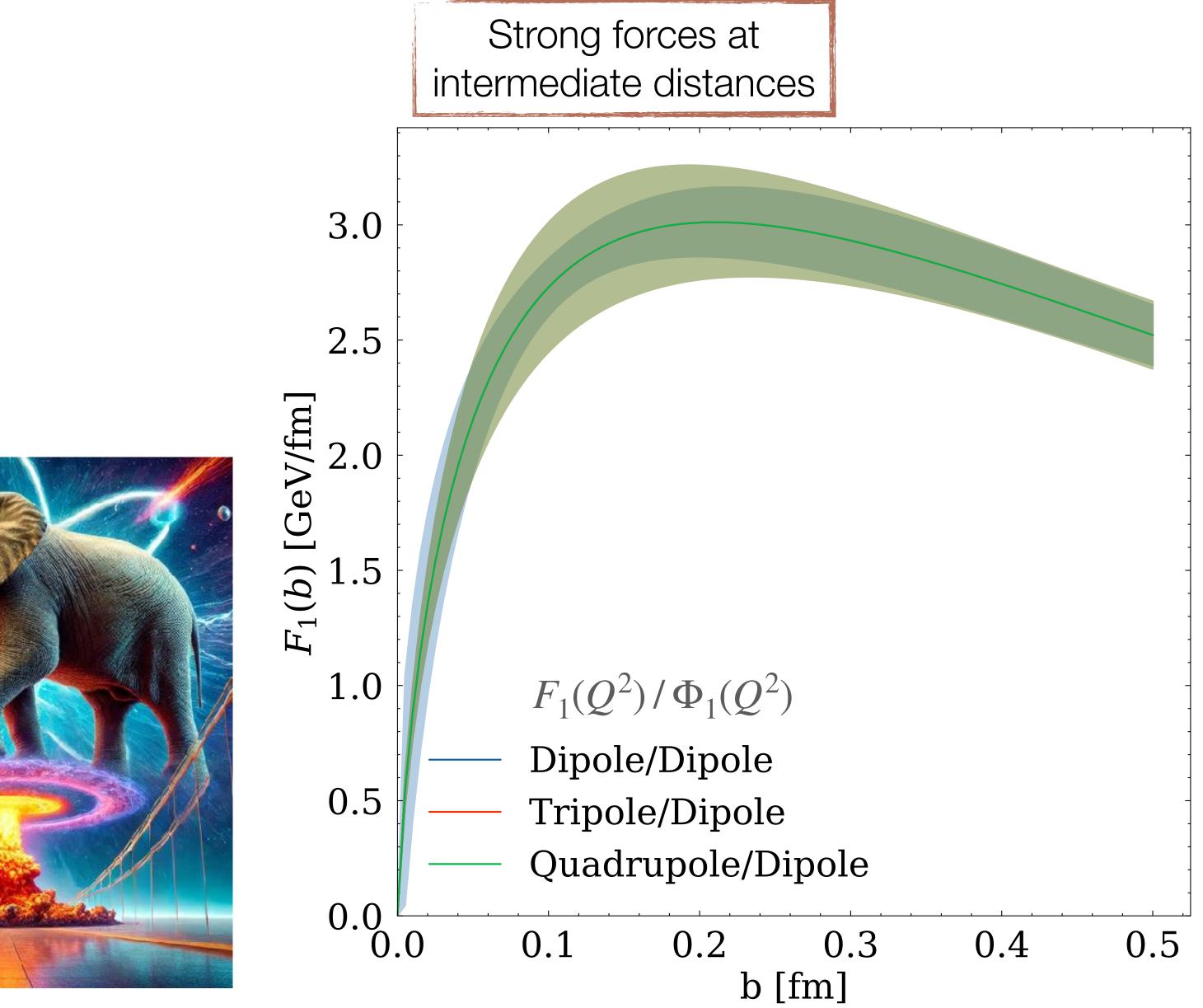
 $\mathcal{F} \sim$

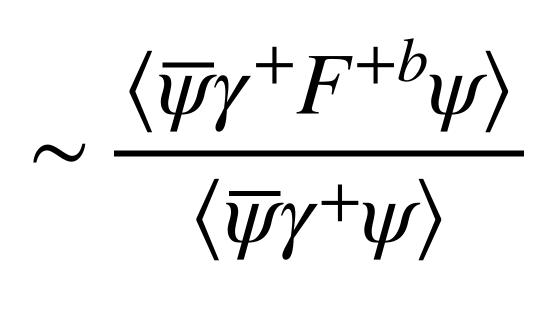
Motivates modelling the local forces as:



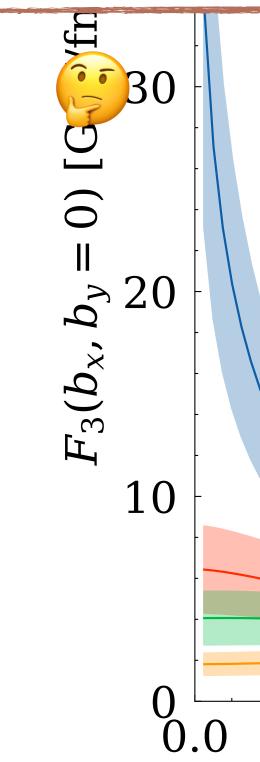


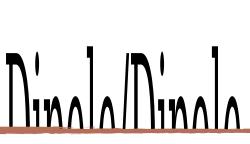
Local forces spin independent Φ_1

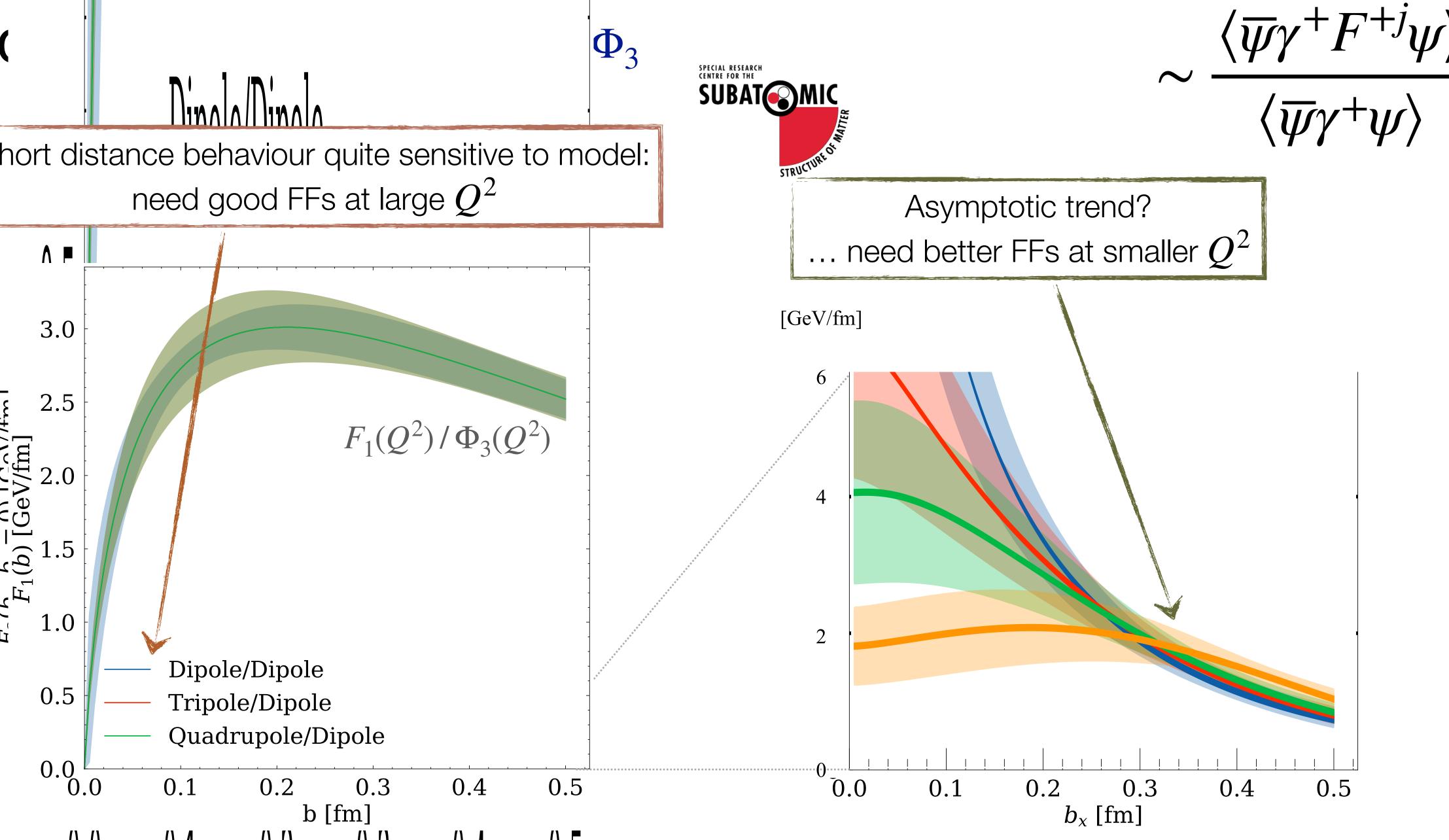


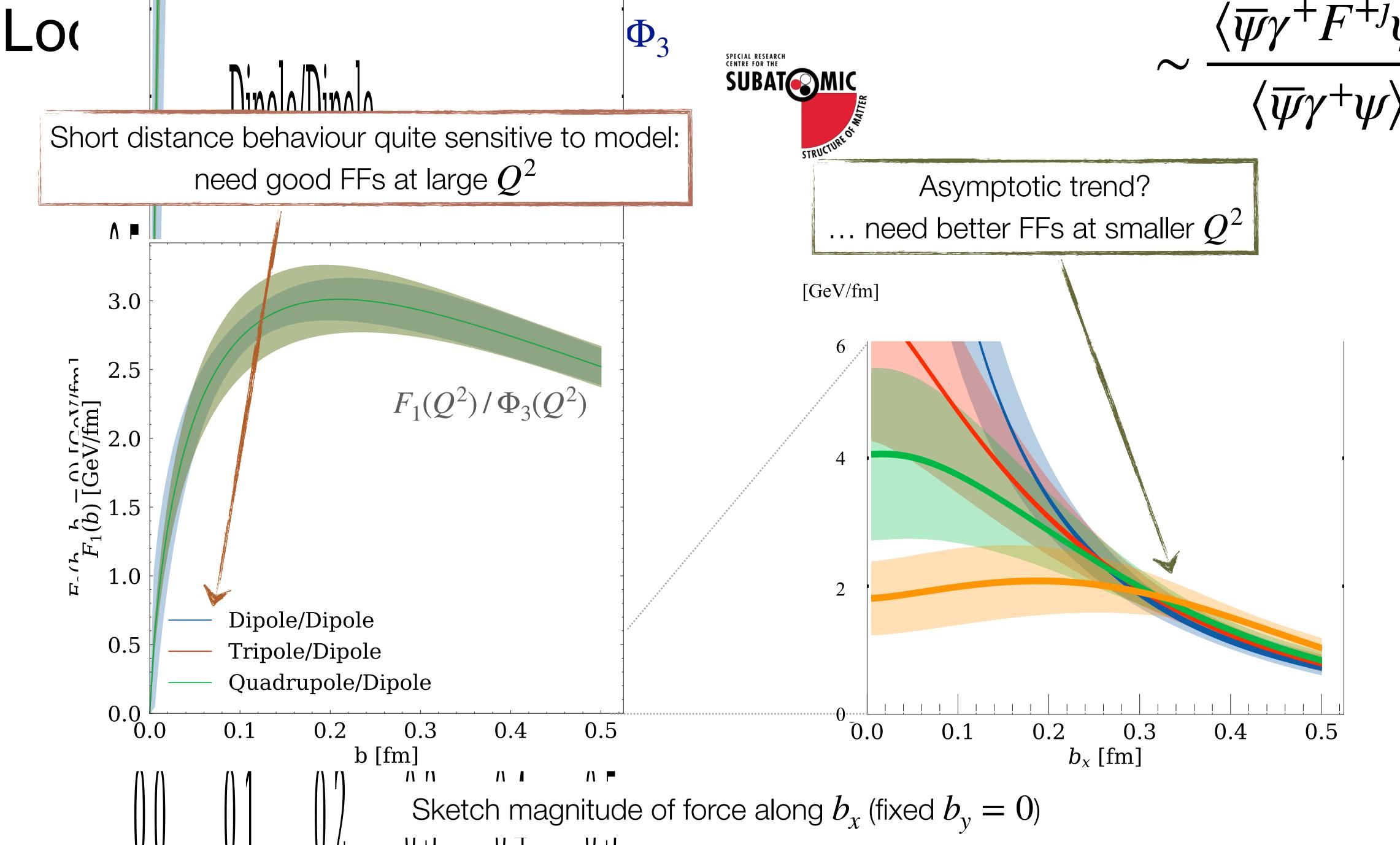


Does this resemble the static quark potential anyone?

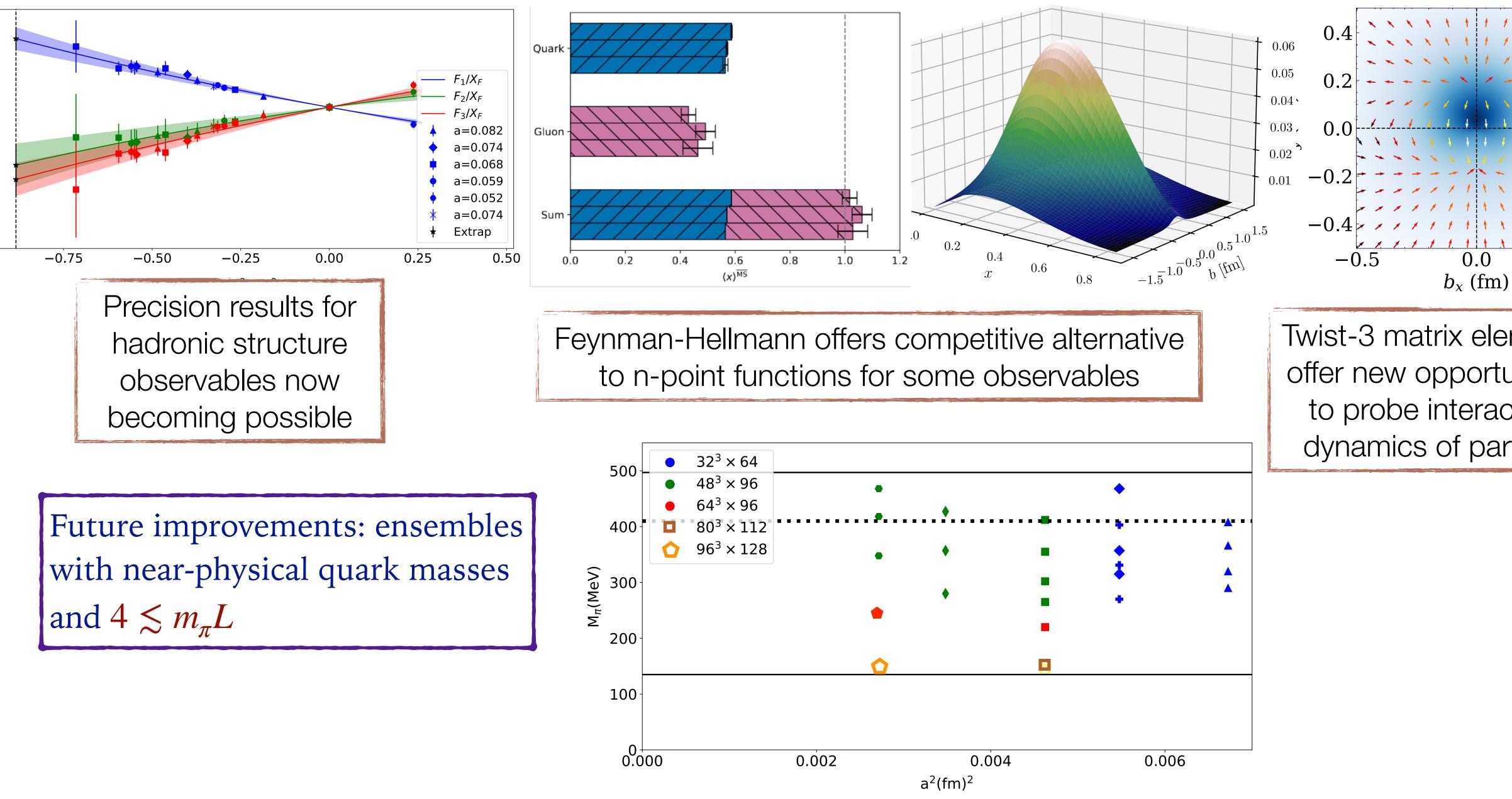




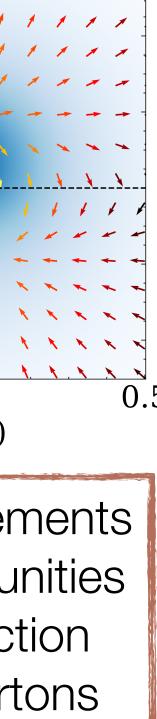




Summary and outlook



Twist-3 matrix elements offer new opportunities to probe interaction dynamics of partons



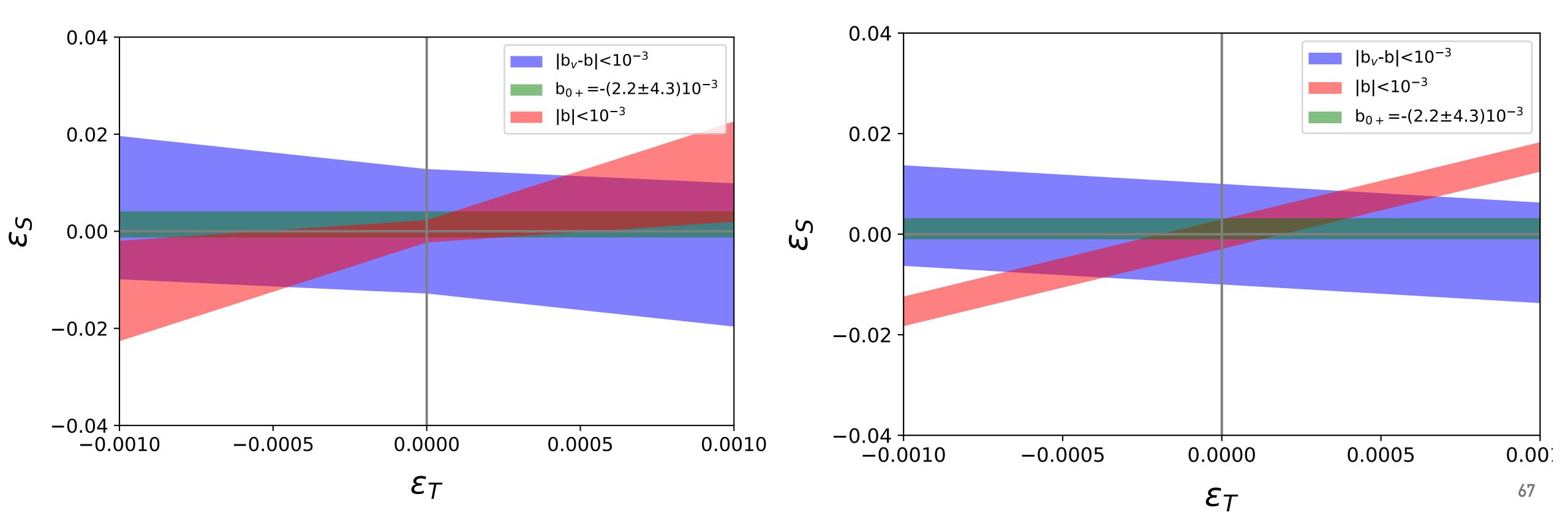
BACKUP

Impact on phenomenology

Experimental rates sensitive to product of

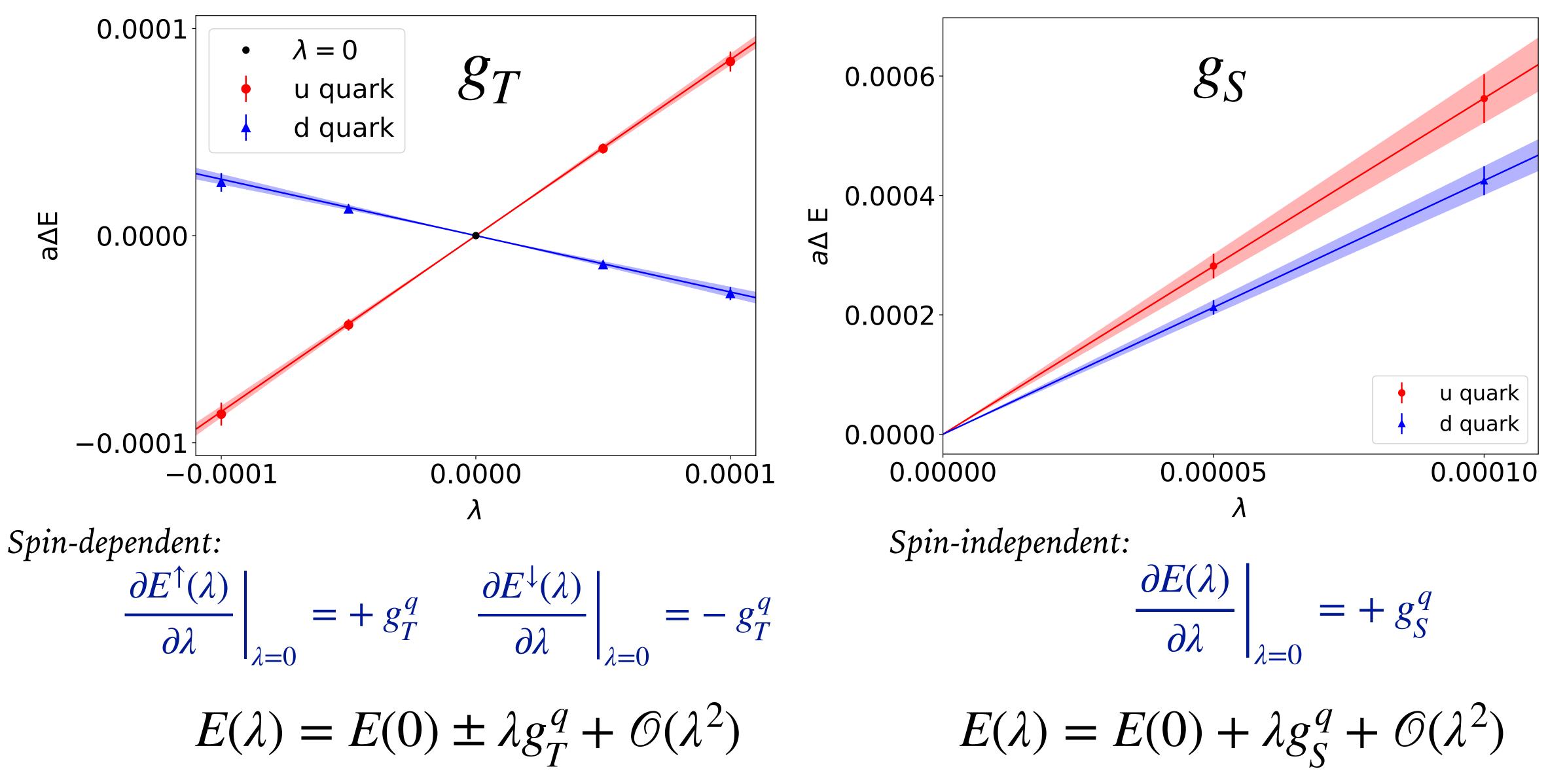
(Tensor and scalar charges: g_T/g_S) X (new-physics effective couplings: ϵ_T/ϵ_S)

<u>Current and projected experimental limits with g_T/g_S (this work)</u> With $g_T = g_S = 1$ (no error)



Following Bhattacharya et al., PRD, 2012

Lambda dependence



 $m_{\pi} \approx 265 \,\text{MeV}, a = 0.068 \,\text{fm}, V = 48^3 \times 96$

Global fits

Want result

- ► in continuum and infinite volume limits
- ► at physical quark masses

Global fit

- ► Include O(a) or $O(a^2)$ terms in X (singlet) and slope parameters $X_{D,F} = X_{D,F}^* (1 + c_1 \frac{1}{3} [f_L(m_\pi) + 2f_L(m_\pi)]) + c_2 a + c_3 a$
- ► Free parameter to encode leading finite-volume correction on singlet:

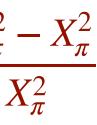
$$f_L(m) = \left(\frac{m}{X_{\pi}}\right)^2 \frac{e^{-mL}}{\sqrt{mL}}$$

► Work to $O(\delta m_l^2)$ in flavour expansion

$$\delta m_l \to \delta m_l = \frac{m_\pi^2 - X_\pi^2}{X^2}$$

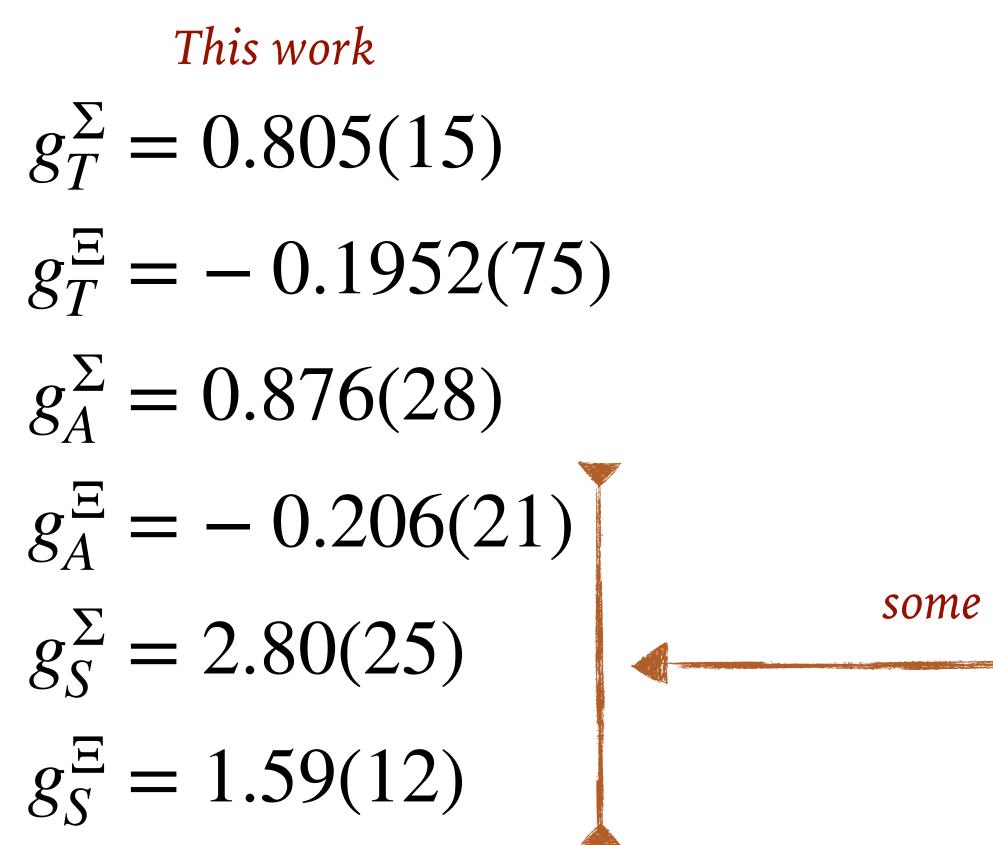
$$\delta m_l^2$$
 e.g. $\tilde{D}_1 = 1 - 2(\tilde{r}_1 + \tilde{b}_1 a)\delta m_l + \tilde{d}_1 \delta m_l^2$

[functional form from chiral EFT, see Beane & Savage PRD(2004)]



Results - Hyperon charges

Not in FLAG, but recent results by RQCD [PRD108(2023)]



RQCD $g_T^{\Sigma} = 0.798(26)$ $g_T^{\Xi} = -0.1872(72)$ $g_A^{\Sigma} = 0.875(49)$ $g_A^{\Xi} = -0.267(18)$ $g_{S}^{\Sigma} = 3.98(33)$ $g_S^{\Xi} = 2.57(16)$

some tension

Momentum fractions extra

In quenched QCD with heavy quark masses reveals for both π and $N \langle x \rangle_q \sim 0.5 - 0.6$, $\langle x \rangle_g \sim 0.4 - 0.5$

Currently generating dynamical ensembles with:

> $n_f = 2$ NP Clover fermions with $m_{\pi} \sim 600$ MeV

> 3 values each of λ_q and λ_g

► Z matrix more complicated:

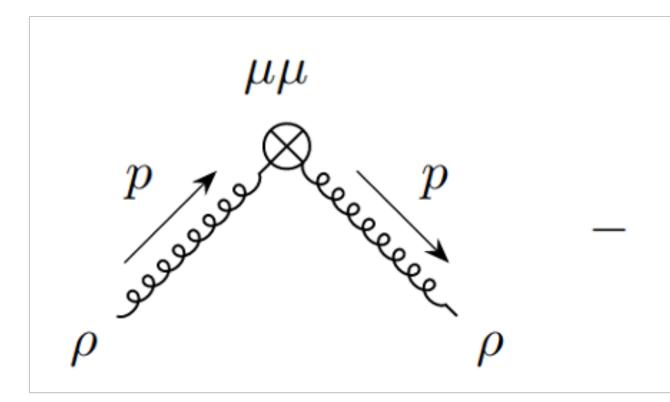
$$\begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_u^{con} \\ \langle x \rangle_d^{con} \\ \langle x \rangle_d^{dis} \\ \langle x \rangle_u^{dis} \end{pmatrix}^R = \begin{pmatrix} Z_{gg} & Z_{gq} \\ 0 & Z_a - Z_b \\ 0 & 0 & Z_a \\ Z_{qg} & Z_b \\ Z_{qg} & Z_b \\ Z_{qg} & Z_b \end{pmatrix}$$

 $\begin{pmatrix} Z_{gq} & Z_{gq} & Z_{gq} \\ 0 & 0 & 0 \\ Z_a - Z_b & 0 & 0 \\ Z_b & Z_b & Z_b \\ Z_b & Z_b & Z_b \\ \end{pmatrix} \begin{pmatrix} \langle x \rangle_g \\ \langle x \rangle_u^{con} \\ \langle x \rangle_d^{dis} \\ \langle x \rangle_u^{dis} \\ \langle x \rangle_d^{dis} \\ \langle x \rangle_d^{dis$

TROUBLE WITH THE GLUE

We can write out the gluon 3-point function from the EMT,

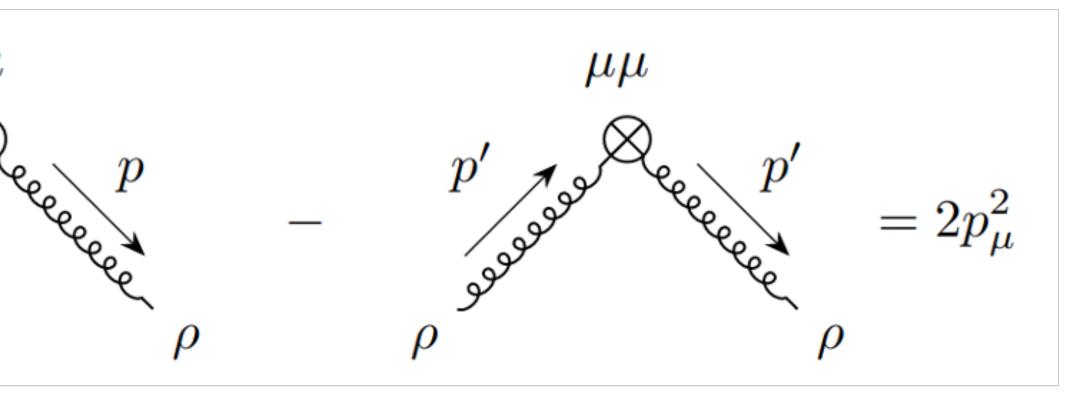
 $\langle A_{\sigma'} | \overline{T}^g_{\mu\nu} | A_{\sigma} \rangle = D_{\sigma'\rho}(p) \times$ $\left(2p_{\mu}p_{\nu}\delta_{\rho\tau} - p_{\mu}p_{\rho}\delta_{\nu\tau} - p_{\tau}p_{\nu}\delta_{\rho\mu}\right) - p_{\rho}p_{\nu}\delta_{\mu\tau} + p^{2}(\delta_{\rho\nu}\delta_{\nu\tau} + \delta_{\mu\tau}\delta_{\rho\nu}) + \delta_{\mu\nu}(p_{\rho}p_{\tau} - p^{2}\delta_{\rho\tau})\right)D_{\tau\sigma}(p)$



(slide from T.Howson, Cairns, Australia, 2022)

Gauge Dependent Terms, Will Mix

Will want to extract the gauge independent term, vanish all other terms.



$$egin{aligned} &
ho
eq \mu, \ &p_\mu
eq 0, \ &p_\mu' = 0, \ &p_
ho' = p_
ho, \ &p_
ho^2 = p^{\prime 2} \end{aligned}$$

