A recent global extraction of TMD distributions

ART25

Valentin Moos (NYCU) with I. Scimemi, A. Vladimirov, P. Zurita based on: [2503.11201]

PDFs in EIC era

Academia Sinica, June 2025

・ロト ・ 同ト ・ ヨト ・ ヨト

Evolution of Extractions

Transverse Scale I: SIDIS

Semi-inclusive DIS specifies the struck quark's final state. Requires knowledge of 2 hadronic functions

$$l(k) + N(P) \longrightarrow l'(k') + h(p_h) + X$$

Describe process with:

▶ PDF f(x)

► FFs $d(z) \sim$ probability for struck quark f to hadronize into state of energy E_h

 $q_T: q \perp \langle P, q \rangle$

Transverse Scale I: SIDIS

Semi-inclusive DIS specifies the struck quark's final state. Requires knowlegde of 2 hadronic functions

$$l(k) + N(P) \longrightarrow l'(k') + h(p_h) + X$$

Valentin Moos

ART25

Transverse Scale II: DY

A *clean* process:

$$h_A + h_B \longrightarrow e^+ + e^- + X$$

ъ

프 > (프 >

Transverse Scale II: DY

A clean process:

$$h_A + h_B \longrightarrow e^+ + e^- + X$$

- ▶ only PDFs involved
- ▶ measure final state lepton pair

$$q_T: q \perp \langle P_A, P_B \rangle$$

Transverse Scale II: DY

A clean process:

$$h_A + h_B \longrightarrow e^+ + e^- + X$$

Kinematics in DY

$$Q^2 = q^2$$

 $y = rac{1}{2} \ln{(q_+/q_-)}$
 $x_{1,2} = \sqrt{rac{q_+q_-}{s}} e^{\pm y}$

ъ

• 3 >

TMD regime: in a nutshell (or two)

examine events in which the scale $\lambda = \frac{q_T}{Q}$ is **small** [The field modes can be separated (Power counting) and ordered]

$$p_{hc} = Q(1, \lambda^2, \lambda)$$
$$p_{\overline{hc}} = Q(\lambda^2, 1, \lambda)$$

[and the effective current determined] (determines which dirac structures contribute!) (state of the art extractions still in LP factorisation!)

$$J^{\mu}(z)J^{\nu}(0) = \overline{\xi}_n(z_-n+b)\gamma^{\mu}_{\perp}\xi_{\overline{n}}(z_+\overline{n}+b)\overline{\xi}_{\overline{n}}(0)\gamma^{\nu}_{\perp}\xi_n(0) + \dots$$

イロト 不同ト イヨト イヨト

TMD regime: in a nutshell (or two)

 $f(x, b/k_T)$

factorisation: separate high energy modes from slow modes $[\mu]$

 $f(x, b/k_T; \mu_F)$

in TMD case:

require additional factorisation scale $[\zeta]$ to disentangle b and Q

 $f(x, b/k_T; \mu_F, \zeta)$

イロト イボト イモト イモト 三日

TMD DY cross-section (γ^*)

$$\begin{aligned} \frac{d\sigma}{dQ^2 dy dq_T^2} &= \frac{2\pi \alpha_{\rm em}^2(Q)}{3N_c s Q^2} \left(1 + \frac{q_T^2}{2Q^2}\right) \sum_f C_{\rm DY}(Q, \mu_F) \\ &\times \int_0^\infty db \ b \ J_0(bq_T) \left(\frac{Q^4}{\zeta_1 \zeta_2}\right)^{-\mathcal{D}(b, \mu_F)} \\ &\times f_{1,f}(x_1, b; \mu_F, \zeta_1) f_{1,\bar{f}}(x_2, b; \mu_F, \zeta_2) \end{aligned}$$

Phenomenology: what you HAVE to do: model

►
$$f_f(x, b)$$
 at reference scale (μ_F, ζ_i)

$$\blacktriangleright \mathcal{D}(\mathbf{b}, \mu_F)$$

ъ

メロト メポト メヨト メヨト

Evolution equations

$$\mu^2 \frac{d}{d\mu^2} f(x, b; \mu, \zeta) = \frac{\gamma_F(\mu, \zeta)}{2} f(x, b; \mu, \zeta)$$
$$\zeta \frac{d}{d\zeta} f(x, b; \mu, \zeta) = -\mathcal{D}(b, \mu) f(x, b; \mu, \zeta)$$

 μ evolution is perturbative \checkmark ζ evolution is not: Parametrisation Collins-Soper kernel (\mathcal{D})

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu) + \mathcal{D}_{\text{NP}}(b)$$

A B N A B N

< 🗇 🕨

Form of TMDPDF

Parametrisation of TMDPDF:

$$f_{1,f}(x,b) = \int_x^1 \frac{dy}{y} \sum_{f'} C_{f \to f'}(y, \mathbf{L}, a_s) q_{f'}\left(\frac{x}{y}\right) f_{\mathrm{NP}}^f(x, b)$$
$$\lim_{b \to 0} f_{\mathrm{NP}}^f(x, b) = 1$$

Phenomenology: what you CAN do: use boundary condition for TMDs & PDFs

2

Scale dependence of TMDs: in a plane

$$\mu^{2} \frac{d}{d\mu^{2}} f(x, b; \mu, \zeta) = \frac{\gamma_{F}(\mu, \zeta)}{2} f(x, b; \mu, \zeta)$$
$$\zeta \frac{d}{d\zeta} f(x, b; \mu, \zeta) = -\mathcal{D}(b, \mu) f(x, b; \mu, \zeta)$$

To evolve $(\mu, \zeta) \to (Q, Q^2)$

- ▶ define TMDPDF at saddle point
- \blacktriangleright evolve in μ
- \blacktriangleright evolve in ζ

- E - F

TMD DY cross-section (γ^*)

$$\begin{cases} \frac{d\sigma}{dQ^2 dy dq_T^2} = \frac{2\pi \alpha_{\rm em}^2(Q)}{3N_c s Q^2} \left(1 + \frac{q_T^2}{2Q^2}\right) \sum_f C_{\rm DY}(Q) \\ \times \int_0^\infty db \ b \ J_0(bq_T) \left(\frac{Q^2}{\zeta(b)}\right)^{-2\mathcal{D}(b,Q)} \\ \times f_{1,f}(x_1, b) f_{1,\overline{f}}(x_2, b) \end{cases}$$

- $\blacktriangleright \ \mu_F = Q$
- ► $f_f(x, b)$ at saddle point scale $(\mu(b), \zeta(b))$
- ▶ decouple PDF and evolution

2

Evolution of Extractions

Perturbative input

"Quark and gluon form factors in four-loop QCD" [2202.04660] $\rightarrow C(Q^2)$

Rapidity anomalous dimension at N4LL [2205.02242] $\rightarrow \mathcal{D}_{pert}(b,\mu)$

Splitting functions at N3LL [1908.03831] $\rightarrow C_{f \rightarrow f'}(y, \mu_{\text{OPE}})$

< 4 P ►

Kinematic range of included data, datasets

ART25

- - E - F

Parametrisation: SV19

PDF

$$f_{\rm NP}^f(x,b) = \exp\left(-\frac{(\lambda_1 \overline{x} + \lambda_2 x + \lambda_3 x \overline{x})}{\sqrt{1 + \lambda_4 x^{\lambda_5} b^2}} b^2\right)$$

$$\mathbf{FF}$$

 $d_{\mathrm{NP}}^{f}(z,b) = \exp\left(-\frac{\left(\eta_{1}z + \eta_{2}\overline{z}\right)}{\sqrt{1 + \eta_{3}\left(b/z\right)^{2}}}\frac{b^{2}}{z^{2}}\right)\left(1 + \eta_{4}\frac{b^{2}}{z^{2}}\right)$

RAD

$$\mathcal{D}_{\text{model}}(b,\mu) = \mathcal{D}_{\text{resum}}(\mu, b^*) + c_0 b b^*$$

$$f_{\rm NP}^f(x,b) \sim e^{-\alpha b} \quad \text{for} \quad b \gg 1$$

Valentin Moos

ъ

イロト 不同ト 不同ト 不同ト

CS kernel

Parametrisation of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{ ext{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} rac{d\mu'}{\mu'} \Gamma_{ ext{cusp}}(\mu') + \mathcal{D}_{ ext{NP}}(b)$$

▶ Ansatz for NP part:

$$\mathcal{D}_{\mathrm{NP}}(b) = c_0 b b^* + c_1 b b^* \ln\left(rac{b^*}{B_{\mathrm{NP}}}
ight)$$

log term brings sensitivity to moderate b region, determined by high energy DY data!

→ Ξ →

► 3 parameters for TMDPDF scale evolution

TMDPDF model: ART23/5

Parametrisation of TMDPDF:

$$f_{\rm NP}^f(x,b) = \cosh^{-1}\left(\left(\lambda_1^f(1-x)^{\lambda_3} + \lambda_2^f x\right)b\right)$$
$$f \in \left\{u, \overline{u}, d, \overline{d}, sea\right\}$$

ART23

ART25

 $\lambda_3 = 1 \qquad \qquad \lambda_1^q = \lambda_1^{\overline{q}}$

10 indep. parameters for PDFs

$$f_{\rm NP}^f(x,b) \sim e^{-\alpha b}$$
 for $b \gg 1$

(日)(周)((日)(日)(日)(日)

TMDFF model: ART25

Parametrisation of TMDFF:

$$d_{\rm NP}^{f,h}(z,b) = \cosh^{-1}\left(\eta_0^h \frac{b}{z}\right)\left(1 + \eta_1^{h,f} \frac{b^2}{z^2}\right)$$
$$h \in \left\{\pi^{\pm}, K^{\pm}\right\}$$
$$f \in \left\{u, \overline{d}, \overline{u}, sea\right\} \text{ for } h = \pi^+$$

10 indep. parameters for FFs

$$\left[\begin{array}{c|c} d_{\rm NP}^{f,h}(x,b) \sim e^{-\alpha b} & {\rm for} & b \gg 1 \end{array} \right]$$

Valentin Moos

Evolution of Extractions

Extracted function: CS kernel

ъ

Extracted function: TMDPDF

2

Extracted function: TMDPDF

2

Extracted function: TMDPDF

Valentin Moos

25/36

2

Evolution of Extractions

Problem I: Uncertainty processing fit replica of data + replica of PDF $\xrightarrow{\text{fit}}$ TMDPDF replica

ensemble of replicas

average value and $68\%~{\rm CI}$

Valentin Moos

Problem I: collinear PDF choice

Param.	MSHT20	HERA2.0	NNPDF3.1	CT18
κ_1^u	0.12	0.11	0.28	0.05
κ_2^u	0.32	8.15	2.58	0.9

- obtained parameters stronly depend on PDF
- collinear PDF is base layer of TMDPDF
- ► we choose MSHT20 as the strongest candidate in JHEP 10 (2022) 118

Problem I: Consistency and Limitations

Effect of collinear PDF on the extraction:

Extractions using MSHT20 and NNPDF3.1

▶ impact of PDF is significant!

- \blacktriangleright even CS kernel is affected at moderate b
- additional, systematic uncertainty: estimate?
- Solution(?): independent TMDPDF fit w.o. constraint due to PDF

3 1 4 3 1

▶ at this precision core hours become a problem.

Problem II: fixed target DY (&Pion induced DY)

Table of χ^2 results for fixed target DY data

Experiment	$\sigma_{ m norm}$	$\chi^2/N_{ m pt}$	sys. shift	#dat
E228-200	25%	0.547	20%	43
E228-300	25%	0.683	26 %	53
E228-400	25%	1.241	29 %	79
E772	10%	1.233	20 %	35
E605	15%	0.357	38 %	35
PHE200	12%	0.386	-5%	3
A13-norm	0%	1.274	0 %	5

Origin: Higher Twist corrections?

Also for pi-DY $(Q \sim 10 \text{ GeV}, \text{ fixed target})$ predictions without shift

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What do I want from the EIC

 $\blacktriangleright\,$ SIDIS data $\sim\,Q\gg1$

▶ access polarised distributions

2

・ロト ・四ト ・ヨト ・ヨト

Kinematic range of included data, datasets

ART25

- (E)

8 TMD distributions

quark polarization

Parametrised forms of TMDs include 8 functions.

Polarisation of quark \sim spinor operator (Γ)

Polarisation of hadron \sim exterior state

→ ∃→ 3 ×

Evolution of Extractions

Valentin Moos

ART2

35 / 36

Valentin Moos

ART25

36 / 36