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Kaon Electromagnetic Form Factors
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◆Kaon Electromagnetic Form Factors
The Internal Structure of Hadrons

• how quarks and gluons are distributed inside the kaon

Test Predictions of QCD

Understand Flavor Symmetry Breaking

electron-kaon scattering

Key Motivations

Copy from 
Tanja Horn’s talk 

“electron-kaon elastics experiment data”
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𝐹𝐾(𝑄
2) = ∫ 𝑑𝑥𝑑𝑦 ത𝜙𝐾 𝑥, 𝑄2 𝑇 𝑥, 𝑦, 𝑄2 𝜙𝐾(𝑦, 𝑄

2)

• Hard scattering kernel (𝑇) calculable in perturbative QCD.

• Light-Cone Distribution Amplitudes (𝜙) encoding the non-
perturbative structure.

QCD Factorization

Lattice QCD 
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LCDAs 

➢ Direct calculation of light-cone objects is 
impossible on a Euclidean lattice 

Light-Cone Distribution Amplitudes (LCDAs)

Lattice QCD

A non-perturbative approach to 
studying QCD on a Euclidean space 

• light cone, defined by 𝑥2 = 0

Wick rotation

There is no notion of a light-cone in Euclidean space.

Euclidean space Minkowski space 

LCDA 

Lattice QCD
Directly
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Heavy-quark Operator Product Expansion

Operator Product Expansion

The Moments of LCDA: Mellin moments  

Light-Cone OPE Gegenbauer OPE

Light-Cone Distribution Amplitudes (LCDAs)

Mellin moments provide the bridge between 
light-cone physics and Euclidean LQCD.
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Ω ത𝜓𝐴 𝑧 𝛾𝜇 𝛾5 𝑊 𝑧,−𝑧 𝜓𝐵 −𝑧 |K+(𝑝)⟩ = 𝑖𝑓K 𝑝𝜇න
−1

1

𝑑𝜉 𝑒−𝑖𝜉 𝑝⋅ 𝑧 𝜙K 𝜉, 𝜇2

• 𝑓𝐾 is the pseudoscalar kaon decay constant and 𝑊 is light-like Wilson line

A

B

LCDA can be interpreted as the probability amplitude for a collinear 
quark-antiquark pair with momentum fractions

𝜙𝐾 𝜉, 𝜇2

≠ 𝜙𝐾(−𝜉, 𝜇
2)
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𝜙𝐾(𝜉, 𝜇
2) =

3

4
1 − 𝜉2 ෍

𝑛=0

∞

𝜙𝑛 𝜇2 𝐶𝑛
3/2

𝜉

◆Gegenbauer Operator Product Expansion 

◆Mellin moments:

𝜙0 = 𝜉0 = 1, 𝜙1 =
5

3
𝜉 , 𝜙2 =

7

12
5 𝜉2 − 𝜉0

𝐺𝑒𝑔𝑒𝑛𝑏𝑎𝑢𝑒𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑠: 𝜙𝑛 𝜇 =
2 2𝑛 + 3

3 𝑛 + 1 𝑛 + 2
න
−1

1

𝑑𝜉 𝐶𝑛
3/2

𝜉 𝜙K(𝜉, 𝜇
2)

𝐺𝑒𝑔𝑒𝑛𝑏𝑎𝑢𝑒𝑟 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠: 𝐶0
3/2

𝜉 = 1, 𝐶1
3/2

𝜉 = 3𝜉, 𝐶2
3/2

𝜉 = −3 + 15𝜉2 /2

Mellin moments can be expressed as linear combinations of Gegenbauer moments.

𝜉𝑛 = න
−1

1

𝑑𝜉 𝜉𝑛𝜙K 𝜉, 𝜇2
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𝜙𝜋
2
(𝜉, 𝜇2) =

3

4
1 − 𝜉2 ෍

𝑛=0,𝑒𝑣𝑒𝑛

2

𝜙𝑛 𝜇2 𝐶𝑛
3/2

𝜉

◆Gegenbauer Operator Product Expansion 

[1] William Detmold, Anthony V. Grebe, Issaku Kanamori, C.-J. David Lin, Robert J. Perry,
& Yong Zhao. (2022). Parton physics from a heavy-quark operator product expansion:
Lattice QCD calculation of the second moment of the pion distribution amplitude.

single-humped or double-humped structure
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𝜙𝐾
2
(𝜉, 𝜇2) =

3

4
1 − 𝜉2 ෍

𝑛=0

2

𝜙𝑛 𝜇2 𝐶𝑛
3/2

𝜉

◆Gegenbauer Operator Product Expansion 

The Kaon LCDA asymmetry is clearly visible when ⟨𝜉⟩>0.
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0 ത𝜓𝐴 𝛾
{𝜇0𝛾5 𝑖𝐷𝜇1 … 𝑖𝐷𝜇𝑛} 𝜓𝐵 − 𝑡𝑟𝑎𝑐𝑒 𝐾+ 𝑝

= 𝑓𝐾 𝜉𝑛 𝑝𝜇0 𝑝𝜇1 … 𝑝𝜇𝑛 − 𝑡𝑟𝑎𝑐𝑒

◆ Light-Cone OPE 

{···} denotes total symmetrization of the Lorentz indices

local & twist-two
𝑂𝜇0𝜇1..𝜇𝑛

Each Mellin moment is related to a matrix element of a local, twist-
two operator in the light-cone OPE.

twist = dim - spin
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Limitations of Traditional OPE on Lattice:
Each Mellin moment corresponds to a local twist-2 operator
Higher moments → higher spin → more derivatives.

On the lattice:
The loss of symmetry on the lattice leads to severe operator mixing, 
power divergences and renormalization challenges, especially for high-
spin (high-moment) operators.

→ Traditional OPE infeasible beyond the first few Mellin moments 

The lattice regularization
breaks the full rotation
group SO(4)

For operators of spin n > 4
they mix with lower
dimension operators and
the mixing coefficients
contain power divergences.

Early lattice results



Heavy-quark Operator Product Expansion (HOPE)

14

Limitations of Traditional OPE on Lattice:
Each Mellin moment corresponds to a local twist-2 operator
Higher moments → higher spin → more derivatives.

On the lattice:
The loss of symmetry on the lattice leads to severe operator mixing, 
power divergences and renormalization challenges, especially for high-
spin (high-moment) operators.

→ Traditional OPE infeasible beyond the first few Mellin moments 

the short-distance operator product expansion (OPE) of a current-current correlator

Heavy-quark Operator Product Expansion (HOPE)

The moments can be extracted through fitting correlator

continuum limit extrapolate

No power-divergent operator mixing

Enables extraction of higher-spin

The lattice regularization
breaks the full rotation
group SO(4)

For operators of spin n > 4
they mix with lower
dimension operators and
the mixing coefficients
contain power divergences.



heavy quark

Heavy-quark Operator Product Expansion (HOPE)
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𝑉𝜇𝜈 𝑝, 𝑞 = ∫ 𝑑4𝑧 𝑒𝑖𝑞⋅ 𝑧 Ω 𝑇{ 𝐽𝐴
𝜇
𝑧/2 𝐽𝐵

𝜈 −𝑧/2 }|𝐾+(𝑝)⟩

𝐽𝐴
𝜇
𝑧 = ഥΨ 𝑧 𝛾𝜇 𝛾5 𝜓𝐴(𝑧) + ത𝜓𝐴 𝑧 𝛾𝜇 𝛾5 Ψ 𝑧

◆Hadronic Tensor

Ψ is the fictitious valence heavy quark

HOPE allows extraction of matrix elements with Wilson coefficients 
& Mellin moment.
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𝑉 𝜇 𝜈 𝑞, 𝑝 =
−2 𝑖 𝜖𝜇𝜈𝜌𝜎 𝑞𝜌 𝑝𝜎

෨𝑄2
𝑓𝐾 ෍

𝑛=0

∞

𝐶𝑊
(𝑛)
( ෨𝑄2, 𝜇2,𝑚Ψ) 𝜉

𝑛
෥𝜔

2

𝑛

QCD perturbation theoryLQCD calculations

LQCD calculations:
3-point correlation functions
→ extract hadronic tensor 

𝑉 𝜇 𝜈 𝑞, 𝑝

QCD perturbation theory:
One-loop Wilson 

coefficients 𝐶𝑊
(𝑛)

Fit parameters:
• 𝜉𝑛 – Mellin moments
•𝑓𝐾 – kaon decay constant
•𝑚Ψ – fictitious heavy quark mass

Fitting

෨𝑄2 = −𝑞2 + 𝑚Ψ
2 ෥𝜔 = (2 𝑝 ⋅ 𝑞)/ ෨𝑄2



Analysis Method & Technics
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➢Generalized Eigenvalue Problem (GEVP)
➢extract energy spectra from correlation matrices.

➢Akaike Information Criterion (AIC)
➢select the one that best balances goodness of fit and model simplicity.

➢Shrinkage Covariance Estimator
➢improves condition number, stability, and invertibility of covariance matrices.



Analysis Method & Technics
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➢Generalized Eigenvalue Problem (GEVP)
• Helps reduce contamination from higher excited states at short time 

separations.

• Multiple operators in the correlation matrix improves statistical precision

Isolates excited states more cleanly
than single-operator



Analysis Method & Technics
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➢Shrinkage Covariance Estimator

inv

Where S is the sample covariance and T is the identity scaled by average variance. 
The optimal shrinkage parameter λ∗ minimizes mean squared error (MSE) to the covariance.

improves stability and invertibility



Hadronic Tensor
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◆ Fourier transform

• Separated by real and image parts 

𝛾5-Hermiticity

s l

(a)

l s

(b)



Hadronic Tensor
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◆ Fourier transform

Statistical Noise Cancellation by Symmetrization

Correlated difference 
→ needs delicate cancellation 
→ works better if terms are highly correlated 
→ use t>0 and t<0 at same current insertion times 
→ enhanced stability.



Hadronic Tensor
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◆ Separated by even and odd Mellin moments

up to order ෥𝜔3

෥𝜔 = (2 𝑝 ⋅ 𝑞)/ ෨𝑄2

෥𝜔2𝑛: even function of q 
෥𝜔2𝑛+1: odd function of q

• Antisymmetric (odd under q → −q) – Even Mellin Moments

• Symmetric (even under q → −q) – Odd Mellin Moments

𝑉 𝜇 𝜈 𝑞, 𝑝 =
−2 𝑖 𝜖𝜇𝜈𝜌𝜎 𝑞𝜌 𝑝𝜎

෨𝑄2
𝑓𝐾 ෍

𝑛=0

∞

𝐶𝑊
(𝑛)
( ෨𝑄2, 𝜇2 , 𝑚Ψ) 𝜉

𝑛
෥𝜔

2

𝑛



Hadronic Tensor
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◆ Separated by even and odd Mellin moments

• Symmetric (even under q → −q) – Even Mellin Moments

Leading order of Image part

Leading order of real part

This dataset shows a strong
signal, allowing us to fit
stable parameters (𝒇𝑲, 𝐦𝚿).



Hadronic Tensor
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◆ Separated by even and odd Mellin moments

• Symmetric (even under q → −q) – Even Mellin Moments

Leading order of Image part

Leading order of real part

This dataset shows a strong
signal, allowing us to fit
stable parameters (𝒇𝑲, 𝐦𝚿).

Step 1 
– Fit from Imaginary Part (Even Moments):
→ extract the parameters 𝒇𝑲, 𝐦𝚿

Step 2 
– Fit from Real Part (Even Moments):
With 𝒇𝑲 ​ and 𝐦𝚿 ​ fixed from Step 1

→ fit the second Mellin moment 𝝃𝟐

fit the first and third Mellin moment  



One Loop OPE Fitting
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Imaginary Part 



One Loop OPE Fitting

2626

Real Part 



One Loop OPE Fitting

2727

Imaginary Part Real Part 

first Mellin moment
is comparable



Continuum Limit Extrapolation
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contaminated by both lattice artifacts and higher-twist corrections

where 𝜉2 , A, B, C, and D are the fit parameters

𝑎 = 0.049𝑓𝑚

+ 𝐸𝑎2𝑚𝜋
2



Continuum Limit Extrapolation
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contaminated by both lattice artifacts and higher-twist corrections

where 𝜉2 , A, B, C, and D are the fit parameters

+ 𝐸𝑎2𝑚𝜋
2



Summary
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Future Work
• Implement one-loop Wilson coefficient fitting in time-

momentum space
• Incorporate more lattice ensembles to improve continuum

and chiral control

Summary
• We use the Heavy-Quark Operator Product Expansion (HOPE)

to access the moments of kaon LCDAs from Lattice QCD
calculations.

• The extracted second moment is comparable to recent
lattice studies, validating the method.

• This framework connects Euclidean Lattice calculations to
light-cone physics via perturbative OPE and matching.

•The extracted second moment ⟨ξ2⟩\langle \xi^2 \rangle⟨ξ2⟩ is comparable to recent lattice studies, validating the method.

•This framework connects Euclidean correlators to light-cone physics via perturbative OPE and matching.



Heavy-quark Operator Product Expansion (HOPE)
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LQCD calculations:→ extract hadronic tensor 𝑉 𝜇 𝜈 𝑞, 𝑝

2-point correlator is saturated with the contribution of the lowest-lying hadronic state

→ extract: Overlap factor 𝒁𝑲 & Kaon energy 𝑬𝑲



Heavy-quark Operator Product Expansion (HOPE)
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[Appendix a.]

HOPE allows extraction of matrix elements with Wilson coefficients.

𝑉 𝜇 𝜈 𝑞, 𝑝 =
−2 𝑖 𝜖𝜇𝜈𝜌𝜎 𝑞𝜌 𝑝𝜎

෨𝑄2
𝑓𝐾 ෍

𝑛=0

∞

𝐶𝑊
(𝑛)
( ෨𝑄2, 𝜇2,𝑚Ψ) 𝜉

𝑛
෥𝜔

2

𝑛

෨𝑄2 = −𝑞2 + 𝑚Ψ
2 ෥𝜔 = (2 𝑝 ⋅ 𝑞)/ ෨𝑄2
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