Workshop on parton distribution functions in the EIC era

Jun 16–18, 2025 Institute of Physics, Academia Sinica

# **Gravitational form factors**

# of the Nambu-Goldstone bosons from chiral effective models

#### **Hyeon-Dong Son**

Hadron Theory Group, Inha University





# Introduction

## <u>Chiral symmetry breaking and the Nambu-Goldstone bosons</u>

Chiral symmetry of strong interaction is spontaneously broken: eg. N(1/2+, 940) vs N(1/2-, 1535), ...

 $\langle \bar{\psi} \psi \rangle \neq 0 \rightarrow$  massless Nambu-Goldstone boson

Gell-Mann - Oakes - Renner relation

Including strangeness ( $m_s \ll \Lambda$ ), SU(3)<sub>f</sub>:  $\pi, K, \eta$ 

Breaking SU(3)<sub>f</sub> with  $m_{c} \approx 100$  MeV may require significant correction in  $\mathcal{O}(m^{2})$ 

Explicit chiral symmetry breaking should differentiate the kaon and pion quark structure

- Explicit chiral symmetry breaking by current quark masses  $m \to Nambu-Goldstone$  bosons acquire mass M
  - $M^2 F^2 = -m \langle \bar{\psi} \psi \rangle + \mathcal{O}(m^2)$







[Badier et al. *Phys.Lett.B* 93 (1980) 354-356]

- Ratios for  $K^-$  and  $\pi^-$  -induced Drell-Yann cross section Proportional to  $\bar{u}_{K^{-}}(x)/\bar{u}_{\pi^{-}}(x)$
- Dropping at x > 0.6:
- s quark carries more momentum than u quark in a Kaon
- u quark in Kaon is softer than u quark in pion
- + J/ $\psi$  production data can constrain the kaon PDFs
  - Details in Wen-Chen's talk on Tuesday





## New excitement about the pion structure

#### EIC aims to address the hadron mass and spin decomposition puzzles



#### **Generalized parton distributions (GPDs) and gravitational form factors (GFFs)**





#### New excitement about the pion structure

Pion gravitational form factors from s-t channel crossing relation between GDAs and GPDs



**Belle data**  $\gamma \gamma^* \rightarrow \pi^0 \pi^0$  [Masuda et al, PRD 93 (2016)]



FIG. 20. Spacelike gravitational form factors normalized to their values at t = 0. [Kumano, Song, Teryaev, PRD97 (2018)]





#### New excitement about the pion structure

#### Accessing pion GPDs from Sullivan-DVCS process



[Amrath et al. *Eur.Phys.J.C* 58 (2008) 179-192]

#### Gluonic GFFs in pion via Sullivan - J/ $\psi$ photoproduction at threshold [Hatta and Schoenleber, arXiv:2502.12061v1]

[Chavez et al., *Phys.Rev.Lett.* 128 (2022) 20, 202501]





FIG. 4. Expected beam-spin asymmetries as function of  $\phi$  with  $\mathcal{H}^{NLO}$  (top) and  $\mathcal{H}_{0g}^{NLO}$  (bottom) from EicC for  $x_B^{\pi} \in [0.1; 0.5]$  and three different  $Q^2$ -bins: black circles for  $Q^2$  between 1 and 2 GeV<sup>2</sup>, blue squares between 2 and 4 GeV<sup>2</sup>, and red triangles between 4 and 12  $\text{GeV}^2$ .



How does explicit chiral symmetry breaking within the pion and kaon?

## affect the 3D quark structure and mechanical properties



# QCD energy-momentum tensor and hadron matrix elements

#### Energy-momentum tensor

Hilbert-Einstein action of a curved space-time (g) with matter (M) (+ - - )

$$S = -\frac{1}{16\pi G} \int d^4x \sqrt{-g} R + \int d^4x \sqrt{-g} R$$

Variation of the matter-action (M) with respect to the metric tensor g

$$T^{\mu\nu}(x) = \frac{2}{\sqrt{-g}} \frac{\delta S_M}{\delta g_{\mu\nu}(x)}$$
 Flux of  $\mu$  mot

Conservation of the EMT  $\partial_{\mu}T^{\mu\nu} = 0$  : space-time translational invariance (Poincaré)

Symmetry  $\mu \leftrightarrow v$  (no torsion)

Matter part of the Einstein eq. as source of curvature (+cosmological constant term)



mentum across a surface of constant v



#### **Energy-momentum tensor operator of QCD**

$$\begin{aligned} \text{Quark} \quad \hat{T}_{q}^{\mu\nu} &= \frac{1}{4} \bar{\psi}_{q} \left( -i\overleftarrow{\mathcal{D}}^{\mu}\gamma^{\nu} - i\overleftarrow{\mathcal{D}}^{\nu}\gamma^{\mu} + i\overrightarrow{\mathcal{D}}^{\mu}\gamma^{\nu} + i\overrightarrow{\mathcal{D}}^{\nu}\gamma^{\mu} \right) \psi_{q} - \eta^{\mu\nu} \bar{\psi}_{q} (i\overleftarrow{\mathcal{D}}/2 - m_{q})\psi_{q} \end{aligned}$$

$$\begin{aligned} \text{Gluon} \quad \hat{T}_{g}^{\mu\nu} &= -F^{\mu\alpha}F_{\alpha}^{\nu} + \frac{1}{4}\eta^{\mu\nu}F^{\alpha\beta}F_{\alpha\beta} \end{aligned}$$

Symmetric ( $\mu \leftrightarrow \nu$ ), gauge invariant (not in the canonical derivation) Not conserved separately (renormalization scale dependent), but total operator  $\hat{T}^{\mu\nu} = \hat{T}^{\mu\nu}_{q} + \hat{T}^{\mu\nu}_{g}$  is conserved Trace anomaly: renormalized trace operator  $\hat{T}^{\mu}_{\ \mu} = \frac{\beta(g)}{2g}F^2 + (1 + \gamma_m)m\bar{\psi}\psi$  non-vanishing in the chiral limit Hadronic matrix elements of the energy-momentum tensor (EMT) follow physical interpretation of the EMT



## **Gravitational form factors of the spin-0 hadron**

$$\langle p' | \hat{T}^{a}_{\mu\nu}(0) | p \rangle = 2P_{\mu}P_{\nu} A^{a}(t) + \frac{1}{2}(\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}) D^{a}(t) + \eta^{\mu\nu}2M^{2}\bar{c}^{a}(t)$$

$$A^{a}(t)$$

Mass distribution of the quarks and gluons inside the pion and kaon At t=0, second Mellin moment of the unpolarized PDF Normalization  $A^q(0) + A^g(0) = 1$ 

 $D^{a}(t)$  (D-term)

Dispersion relation of the DVCS (and DVMP) amplitudes (GPD model independent)

Fundamental, but not related to an obvious symmetry [Polyakov, Shuvaev hep-ph/0207153] Internal pressure and shear distributions [Polyakov PLB555 (2003)] [Polyakov, Schweitzer IJMPA33 (2018)] Negative for hadrons to satisfy the stability conditions

 $\bar{c}^{a}(t)$ 

Non-conservation of quark and gluon parts of EMT ~  $\eta_{\mu\nu}$ 

Contributes to the mass(00) and the pressure(ii)

Mass decomposition can constraint this quantity at t=0, pQCD,  $\bar{c}_{\pi}^{q}(0) = -0.04 \pm 0.02$  ( $\mu = 1 \text{ GeV}$ ) [Tanaka, JHEP03 (2023)]]  $\sum_{a} \bar{c}^{q} + \bar{c}^{g} = 0$ , Smallness of  $\sum \bar{c}^{q}(0)$  at low scale, suppressed by instanton packing fraction (in tension with other studies) [M. Polyakov, HDS, JHEP 156 (2018)]

$$\begin{split} P &= (p+p')/2\\ \Delta &= q = p'-p, \, t = -\,\Delta^2 \end{split}$$





## Gravitational form factors of the pion and kaon from a chiral effective model



## **Quark one-loop effective action in the large Nc limit**

$$\mathcal{S}_{\rm eff} = \int \frac{d^4k}{(2\pi)^4} \bar{\psi}(k) (\not\!\!\!/ - \hat{m}) \psi(k) - \int \frac{d^4k}{(2\pi)^4} \frac{d^4p}{(2\pi)^4} \bar{\psi}_f(p) \sqrt{M_f(p)} U_{fg}^{\gamma_5}(p-k) \sqrt{M_g(k)} \psi_g(k)$$
$$M(k) = MF^2(k), \quad U^{\gamma_5}(x) = \exp\left[\frac{i}{F_{\mathcal{M}}} \gamma^5 \lambda^a \mathcal{M}^a\right], \quad \hat{m} = \operatorname{diag}(m_u, m_d, m_s).$$

Inspired by the liquid instanton model at low-renormalization point  $\mu \sim 1/\bar{\rho}$ M(0) = 350 MeV, computed by the gap equation from the instanton vacuum Analytic continuation to Minkowski space is assumed, with n-pole type quark form factor:  $F(k) = \left(\frac{1}{1 - k^2/\Lambda^2}\right)$ 

EMT operator: 
$$\hat{T}_{\mu\nu} = \bar{\psi}(-i\overleftarrow{\partial}_{\mu}\gamma_{\nu} - i\overleftarrow{\partial}_{\nu}\gamma_{\mu} + i\overrightarrow{\partial}_{\mu}\gamma_{\nu} + i\overrightarrow{\partial}_{\nu}\gamma_{\mu})\psi$$

- Nonlinear chiral field for SU(3)<sub>f</sub> is introduced as well as the current quark masses ( $m_u = m_d = 5$  MeV, ms = 100 MeV)
  - [Praszalowicz and Rostworowski]

$$\left(\frac{1}{2}-i\epsilon\right)^n$$
, (instanton form factor n = 3/2)



## <u>Meson matrix elements of the EMT operator</u>



Divergences: Quadratic

#### Quadratic divergences cancel out, leaving physical quantities logarithmically divergent!



## von Laue stability condition of the pion

**Conservation of the EMT operator requires** 

$$P = \sum_{i=1}^{3} \langle \pi(p) | T^{ii}(0) | \pi(p) \rangle = 0$$

**Analytic expression for P obtained (F(k)=1)** 

$$\begin{split} P/3 &= -\frac{2}{F^2} \frac{N_c M m}{4\pi^2} \int_0^\infty du \, \frac{1}{u^2} e^{-u\bar{M}^2} - \frac{2}{F^2} (p^2) \frac{N_c M^2}{4\pi^2} \int_0^1 dx \, x \int_0^\infty \frac{du}{u} e^{-u[x(1-x)p^2 + \bar{M}^2]} \\ &\sim \frac{2}{F^2} \left[ m \langle \bar{\psi}\psi \rangle + m_\pi^2 F_\pi^2 + \mathcal{O}(m^2) \right] \end{split}$$

von Laue condition is guaranteed by the Gell-Mann – Oakes – Renner relation + correction constraining the value of m









$$\begin{split} P/3 &= -\frac{1}{F^2} \frac{N_c M m_s}{4\pi^2} \int_0^\infty du \; \frac{1}{u^2} e^{-u\bar{M}_s^2} \\ &- \frac{1}{F^2} \frac{N_c M m_q}{4\pi^2} \int_0^\infty du \; \frac{1}{u^2} e^{-u\bar{M}_q^2} \\ &- \frac{1}{F^2} (p^2 + (m_s - m_q)^2) \frac{N_c M^2}{4\pi^2} \int_0^1 dx \; x \int_0^\infty \frac{du}{u} e^{-u[x(1-x)p^2 + x\bar{M}_q^2 + (1-x)\bar{M}_s^2]} \\ &- \frac{1}{F^2} (p^2 + (m_s - m_q)^2) \frac{N_c M^2}{4\pi^2} \int_0^1 dx \; x \int_0^\infty \frac{du}{u} e^{-u[x(1-x)p^2 + x\bar{M}_s^2 + (1-x)\bar{M}_q^2]} \end{split}$$

**GMOR relation for Kaon**:  $F_K^2 m_K^2 = (m_s + m_q) \langle \bar{s}s + \bar{u}u \rangle / 2$ ,  $P \propto 0 \text{ (GMOR)} + \mathcal{O}(\Delta m_{su}^2/m_K^2, m_u/m_s, m_s/M)$ Numerically, the correction deviates ~10% from exact GMOR relation for the kaon the model parameter  $m_s$  can be constrained





#### **Gravitational form factors of the Kaon**

$$\left\langle K^{+}(p') \, | \, \hat{T}_{\mu\nu}(0) \, | \, K^{+}(p) \right\rangle = \left[ 2P_{\mu}P_{\nu} \, A(t) + \frac{1}{2} (\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}) \, D(t) \right]$$

 $\chi PT result (O(p^2))$  [Donoghue and Leutwyler, ZPC52 (1991)]

$$\begin{aligned} A(t) &= 1 - 2 L_{12}^{r} \frac{t}{F^{2}} & \text{'Gravitational' LECs: L_{11}, L_{12}, L_{13}} \\ -D(t) &= 1 + 2 \frac{t}{F^{2}} (4L_{11}^{4} + L_{12}^{r}) \\ &- 16 \frac{m_{K}^{2}}{F^{2}} (L_{11}^{4} - L_{13}^{r}) + \frac{3t}{4F^{2}} I_{\pi}(t) + \frac{3t}{2F^{2}} I_{K}(t) + \frac{9t - 8m_{K}^{2}}{12F^{2}} I_{\eta}(t) & I(q^{2}) = \frac{1}{48\pi^{2}} \left[ \ln \frac{\mu^{2}}{m^{2}} - 1 + \frac{q^{2}}{5m^{2}} \right] + \mathcal{O}(q^{4}) \end{aligned}$$

A + D at zero momentum transfer proportional to meson mass corrections (0 in the chiral limit)

$$A(0) + D(0) = \frac{16m_K^2}{F^2} (L_{11}^{\mu} - L_{13}^{\mu}) + \frac{m_K^2}{72\pi^2 F^2}$$

Leading Nc result in the quark model, magnitude is amplified by larger kaon mass (vs. A+D=0.03 for the pion)



 $\frac{1}{F^2} \left[ \ln \frac{\mu^2}{m_{\eta}^2} - 1 \right] + \dots \approx 0.23 \pm 0.15$ [Hudson and Schweitzer, Phys. Rev. D 96, 114013 (2017)]



## **Results in various theoretical studies**

|                                             | $A_{\pi}(0) + D_{\pi}(0)$ | $A_K(0) + D_K(0)$ | $A_{\bar{s}/K^+}(0)/A_{u/K^+}(0)$ | $D_{\bar{s}/K^+}(0)/D_{u/K^+}(0)$ |
|---------------------------------------------|---------------------------|-------------------|-----------------------------------|-----------------------------------|
| ChQM<br>[Son & Hutauruk, 2025]              | 0.04                      | 0.36              | 1.26                              | 1.10                              |
| <b>ChPT</b><br>[Donoghue & Leutwyler 1991]  | 0.03                      | 0.23              | _                                 | _                                 |
| <b>LFWFS</b><br>[Raya et al, 2021]          | _                         | _                 | 1.1                               | 1.25                              |
| <b>BSE-NJL</b><br>[Adhikari et al., 2021]   | _                         | _                 | 1.32                              | _                                 |
| <b>DSE</b><br>[Y. Xu et al. 2023]           | 0.03                      | 0.23              | 1.56                              | 1.25                              |
| <b>BSE-NJL</b><br>[P. Hutauruk et al. 2016] | —                         | _                 | 1.38                              | —                                 |
| MIT-Lattice<br>[Hackett et al. 2023]        | ~0.10                     | _                 | _                                 | _                                 |
| ETMC-Lattice<br>[Delmar et al. 2024]        | —                         | —                 | ~1.3                              | _                                 |



## <u>Valence quark GPDs at $\xi = 1$ and explicit chiral symmetry breaking</u>



Size of  $A(O)+D(O) \sim size$  of asymmetry in  $xH(x,\chi=1,t=O) \sim O(m^2)$ 

1.00

#### Chiral symmetry requires H(x, $\xi$ =1,t=0) to be even in x

[M. Polyakov and C. Weiss, Phys.Rev.D 60 (1999) 114017]

..... Pion ( $m_{\pi} = 0$ ): exactly symmetric

---- Pion ( $m_{\pi} = 140$  MeV): slightly distorted

-----  $\bar{s}$  in  $K^+$  — u in  $K^+$ 

Second Mellin moment: Gravitational form factors  $dx \ x \ 2H(x,\xi=1,t=0) = A(0) + D(0) = 0 + \mathcal{O}(m_{\pi,K}^2)$ Correction:  $m_K^2/m_\pi^2 \approx 12$ 









## $\bar{c}^q$ of the pion and kaon

**pQCD (N<sub>f</sub>=3, MS-bar, NNLO)** [Tanaka, JHEP03 (2023)]]

 $\bar{c}_{\pi}^{q}(t=0,\,\mu=1\,\,{\rm GeV})=-\,0.04\pm0.02$ 

Isospin & charge symmetry:  $\bar{c}^{u}_{\pi} = \bar{c}^{\bar{d}}_{\pi} = \bar{c}^{\bar{d}}_{\pi} = \bar{c}^{d}_{\pi}$ 

In a constituent quark model:  $\bar{c}^{u}_{\pi} = \bar{c}^{\bar{d}}_{\pi} = \bar{c}^{d}_{\pi} = \bar{c}^{d}_{\pi} = 0$ 

**Kaon:**  $\bar{c}_{K+}^{s}(t) + \bar{c}_{K+}^{u}(t) = 0$  (constituent quark picture)

But  $\bar{c}_{K+}^{s}(t) \neq \bar{c}_{K+}^{u}(t) \neq 0$  in general



## $\bar{c}^{u}(t), \bar{c}^{d}(t), \text{ and } \bar{c}^{s}(t) \text{ of proton}$

Nucleon as a quark-soliton in the large Nc meanfield:

(constituent) quarks are only effective degrees of freedom

- $\sum_{q} \bar{c}^{q}(t) = 0$  is a mandatory condition  $\int_{q}^{q}$  for the conserved quark EMT operator.
- Nontrivial cancellation between the  $\bar{c}^{u}(t)$  and  $\bar{c}^{d}(t)$ + $\bar{c}^{s}(t)$  is observed.

(vs. in  $\pi^+$ ,  $\bar{c}^u(t) = \bar{c}^{\bar{d}}(t) = 0$ , due to isospin symmetry)

• Contribution to the pressure distribution  $\bar{c}^q$  is sizable

[H. Won, H.-Ch. Kim, and J. Kim, 2307.00740]





# Summary and outlook



#### **Observations**

Pion and kaon EMT matrix elements and GFFs from a chiral quark model Stability of the pion and kaon relies on the pattern of chiral symmetry breaking (GMOR) Quark D-terms in Kaon  $D_{\bar{s}/K^+}(0)/D_{\mu/K^+}(0) = 1.1, D_{\bar{s}/K^+}(0) + D_{\mu/K^+}(0) = 0.64$ can be compared with the ChPT prediction ~0.77 Questions Kaon Sullivan-DVCS process in EIC? Gravitational form factors of the kaon,  $\bar{c}_{K^+}^{u,s}(t)$ ?

- Explicit chiral symmetry breaking differentiates D-term of kaon and pion ~ ERBL region of GPDs







#### vs D-term of Baryon octet from xQSM

| B $\varepsilon^B(0)$ $\langle r_{\varepsilon}^2 \rangle_B$ $2J^B(0)$ $g_A^{0,B}$ $2L^B$ $p^B(0)$ $(r_0)_B$ $D^B(0)$ GeV/fm³fm²GeV/fm³fmN2.850.311.000.480.520.420.57-3.08 $\Lambda$ 3.120.261.000.400.600.440.57-3.22 $\Sigma$ $2.40$ $0.20$ $1.00$ $0.57$ $0.47$ $0.46$ $0.57$ $0.27$ |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                  | $\langle r_{ m r}^2$ |
| N2.850.311.000.480.520.420.57-3.08 $\Lambda$ 3.120.261.000.400.600.440.57-3.22 $\Sigma$ 2.400.201.000.520.470.460.572.22                                                                                                                                                               |                      |
| $\Lambda \qquad 3.12 \qquad 0.26 \qquad 1.00 \qquad 0.40  0.60 \qquad 0.44 \qquad 0.57  -3.22$                                                                                                                                                                                         | (                    |
|                                                                                                                                                                                                                                                                                        | (                    |
| $\Sigma = 3.40 = 0.20 = 1.00 = 0.53 = 0.47 = 0.46 = 0.57 = -3.37$                                                                                                                                                                                                                      | (                    |
| $\Xi \qquad 3.53 \qquad 0.17 \qquad 1.00 \qquad 0.38  0.62 \qquad 0.47 \qquad 0.57  -3.45$                                                                                                                                                                                             | (                    |
| SU(3) sym. 1.89 0.54 1.00 0.46 0.54 0.35 0.57 -2.60                                                                                                                                                                                                                                    | (                    |









 $\boldsymbol{x}$ 



# Thoughts on $\bar{c}(t)$

## $\bar{c}^{u}(t), \bar{c}^{d}(t), \text{ and } \bar{c}^{s}(t) \text{ of proton}$

Nucleon as a quark-soliton in the large Nc meanfield:

(constituent) quarks are only effective degrees of freedom

- $\sum_{q} \bar{c}^{q}(t) = 0 \text{ is a mandatory condition}$
- Nontrivial cancellation between the  $\bar{c}^{u}(t)$  and  $\bar{c}^{d}(t)$ + $\bar{c}^{s}(t)$  is observed.

(vs. in  $\pi^+$ ,  $\bar{c}^u(t) = \bar{c}^{\bar{d}}(t) = 0$ , due to isospin symmetry)

• Contribution to the pressure distribution  $\bar{c}^q$  is sizable

[H. Won, H.-Ch. Kim, and J. Kim, 2307.00740]





#### $\bar{c}$ from instantons and force btw quark and gluon subsystems

**QCD** equation of motion & Effective operator from instantons  $\rightarrow \bar{c}^q(0)$  is suppressed by small instanton packing fraction ~  $\mathcal{O}(\bar{\rho}^4/\bar{R}^4)$ 

 $\rightarrow$  Estimation of the form factor at zero momentum transfer

$$: \bar{c}^{Q}(0) \equiv \sum_{q} \bar{c}^{q}(0) \approx 1.4 \times 10^{-2} \, (\mu = 1/\bar{\rho} = q)$$

 $\rightarrow \bar{c}^Q(t)$  contribution to the pressure inside the nucleon ~ up to 20% that of D(t)

- Other studies  $\bar{c}^q(0) = -1/4$ (MIT) bag model [Ji, Melnitchouk, Song, PRD56 (1997)]  $-0.14 \ (\mu = \infty) \ pQCD \ [Hatta \ JHEP12 \ (2018)]$ 
  - $-0.124(6)(\mu = 2 \text{ GeV})$  [Liu, PRD104 (2021)]
  - $-0.18(3)(\mu = 1 \text{ GeV})$  NNLO pQCD [Tanaka, JHEP03 (2023)]]

Renormalization scheme dependence [Metz, Pasquini, Rodini, PRD102 (2021)]

- [Polyakov, HDS, JHEP156 (2018)]
- 600MeV)



#### <u>Contribution of $\overline{c}$ to the pressure</u>



Smaller in size compared to the contribution of the D-term (right figure) If large, contribution of  $\bar{c}$  > D-term to the pressure distribution. Constituent quark picture at the low energy? [K. Kumericki, Nature 570 (2019)] Smallness assumed by phenomenological studies, eg. [Burkert, Elouadrhiri, Girod, Nature 557(2018)]



#### **Pressure distribution of the proton?**





In Fig. 2 the results of the D(t) form factor extraction are displayed, and the fit to the multipole form:

$$D(t) = D\left[1 + \frac{-t}{M^2}\right]^{-\alpha},$$

where D,  $\alpha$  and  $M^2$  are the fit parameters. Our fits result in the following parameters:

$$\begin{array}{rcl} D &=& -1.47 \pm 0.06 \pm 0.14 \\ M^2 &=& +1.02 \pm 0.13 \pm 0.21 \ {\rm GeV^2} \\ \alpha &=& +2.76 \pm 0.23 \pm 0.48 \ , \end{array}$$

[Burkert, Elouadrhiri, Girod, Nature 557(2018)]

```
[Pasquini, Polyakov, Vanderhaeghen, PLB739 (2014)]
```

#### Some remarks on the systematics of this analysis

- [K. Kumericki, Nature 570 (2019)]
  - [Dutrieux, Lorce, et al. (2021)]







