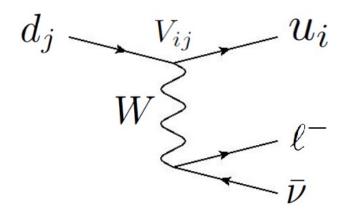


Precision Tests of the Standard Model with Beta Decays

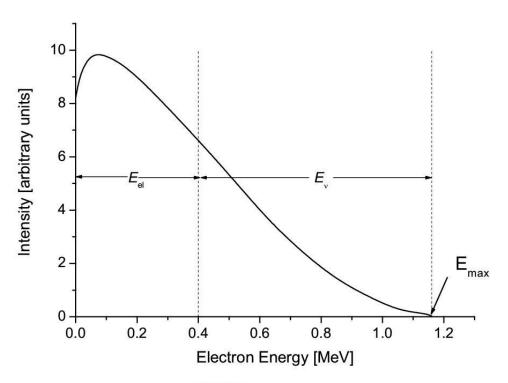

Chien-Yeah Seng

Department of Physics & Astronomy University of Tennessee, Knoxville

cseng@utk.edu

International Joint Workshop on the Standard Model and Beyond 2025, Taipei, Taiwan

Charged weak decay: Decay of strong interaction bound states through the emission of a W-boson

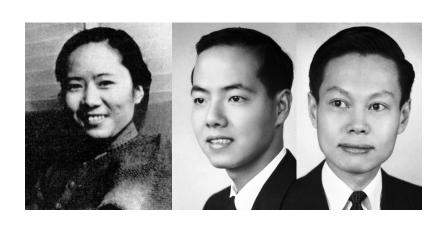


Beta decay:

$$\phi_i \to \phi_f + e + \nu_e$$

Charged weak decay had been crucial in shaping the **Standard Model!**

1930: Neutrino postulated to explain the continuous beta decay spectrum



Namely [there is] the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons, which have spin ½ and obey the exclusion principle, and additionally differ from light quanta in that they do not travel with the velocity of light: The mass of the neutron must be of

Charged weak decay had been crucial in shaping the **Standard Model!**

1956: First discovery of parity violation in ⁶⁰Co decay correlation

SPINNING COBALT NUCLEI

BETA RAYS (ELECTRONS)

MIRROR WORLD

THIS WORLD

1957: Postulation of the V-A structure in the charged weak interaction

Image credit: NIST

Charged weak decay had been crucial in shaping the **Standard Model!**

1963: A 2*2 mixing matrix proposed to explain the strength of strangeness-changing weak decays

1973: Extended to **3*3 matrix** to incorporate **CP-violation**

$$\psi_{d,f} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}_f = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_m$$

The CKM matrix

Now that we have the Standard Model...

Standard Model of Elementary Particles

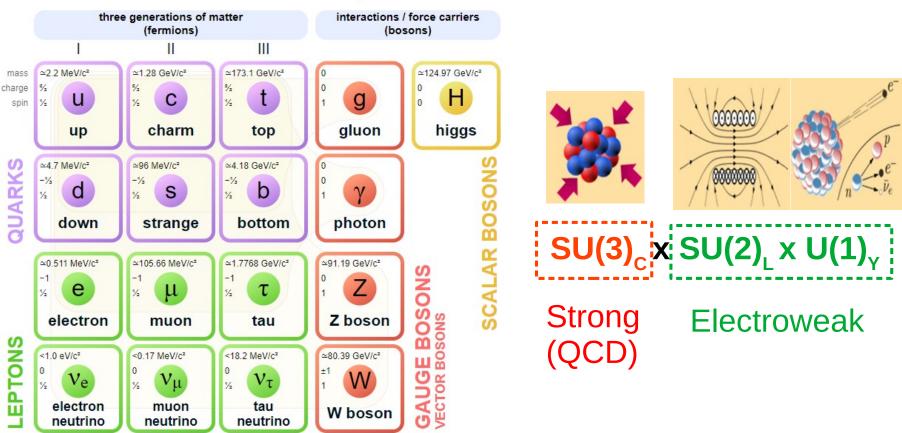
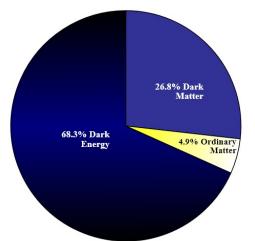



Image credit: Wikipedia

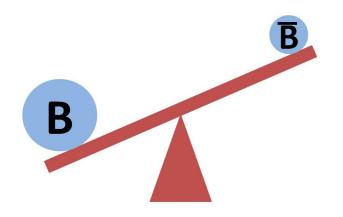
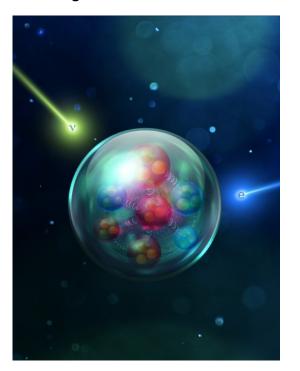
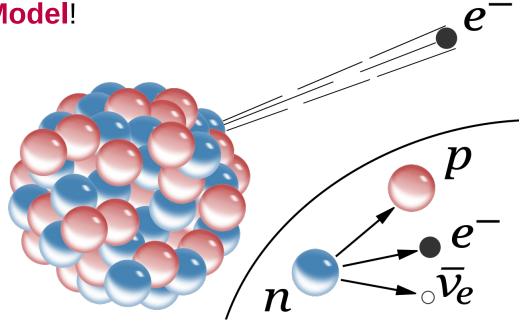

...which we know is incomplete and requires physics beyond the Standard Model (BSM)!

Image credit: Wikipedia



What is the origin of dark energy and dark matter?

Image credit: Jefferson Lab



Why is there much more matter than antimatter in the observed universe?

What is the nature of the neutrino mass?

Beta decay provides a perfect avenue for precision tests of the Standard Model! ρ^{-}

Compare experimental results of:

- (1) Decay lifetime
- (2) Decay correlations

with Standard Model predictions to search for **traces** of new physics!

Beta decay lifetime and Vud

$$d_j \underbrace{V_{ij}}_{W \geq 0} u_i$$
 g^-

Testing CKM unitarity from charged weak decays:

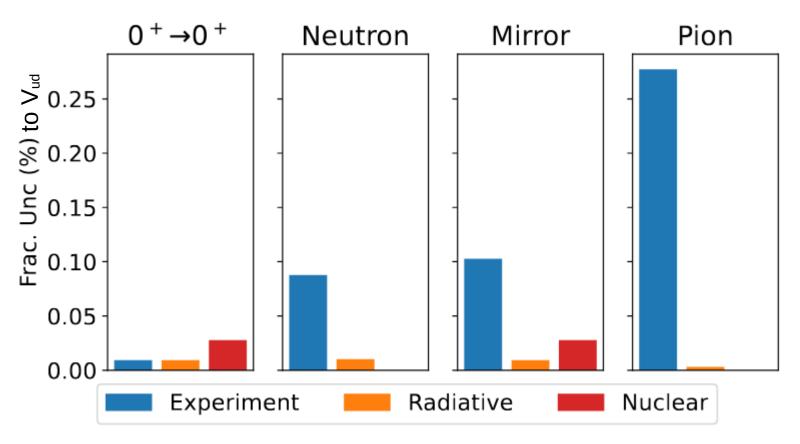
$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"First-row CKM unitarity"

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
~10⁻⁵

$$d_j \underbrace{V_{ij}}_{V_{ij}} u_i$$
 $W \underbrace{\sum_{eta^-}^{eta^-}}_{ar{
u}}$

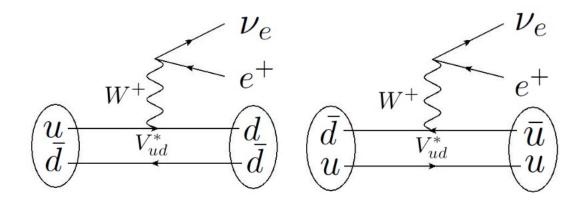
Testing CKM unitarity from charged weak decays:


$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} V_{ud}^* & V_{cd}^* & V_{td}^* \\ V_{us}^* & V_{cs}^* & V_{ts}^* \\ V_{ub}^* & V_{cb}^* & V_{tb}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Can be tested at **0.01%** level! Probes new physics at the scale:

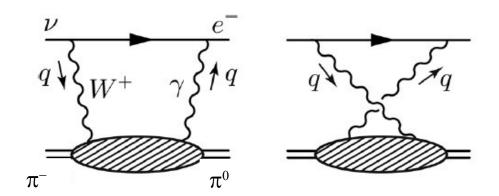
$$\left(\frac{v_{\rm H}}{\Lambda_{\rm BSM}}\right)^2 \sim 0.01\% \implies \Lambda_{\rm BSM} \sim 20 \text{ TeV}$$

Competitive to high-energy experiments!


Primary channels for V_{ud} extraction:

Brodeur et al., 2301.03975

(1) Pion beta decay (π_{e3})


$$\pi^+ \to \pi^0 + e^+ + \nu_e$$

Pure Fermi transition + lightest hadron

→ Theoretically cleanest

Theory Input: "Radiative corrections"

Involves **non-perturbative** hadron physics

Chiral Perturbation Theory: 0.1% precision

Cirigliano, Knecht, Neufeld and Pichl, EPJC 2003

Lattice QCD: 0.01% precision

Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL

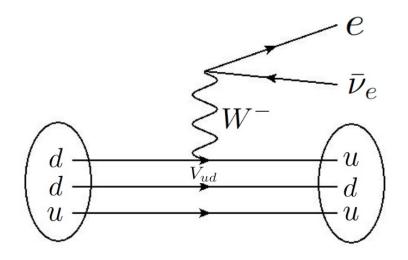
Bottleneck: The π_{e3} branching ratio

$$BR(\pi_{e3}) = 1.036(6) \times 10^{-8}$$

Pocanic et al (PIBETA), 2004 PRL

$$|V_{ud}|_{\pi} = 0.9740(28)_{\text{exp}}(1)_{\text{th}}$$

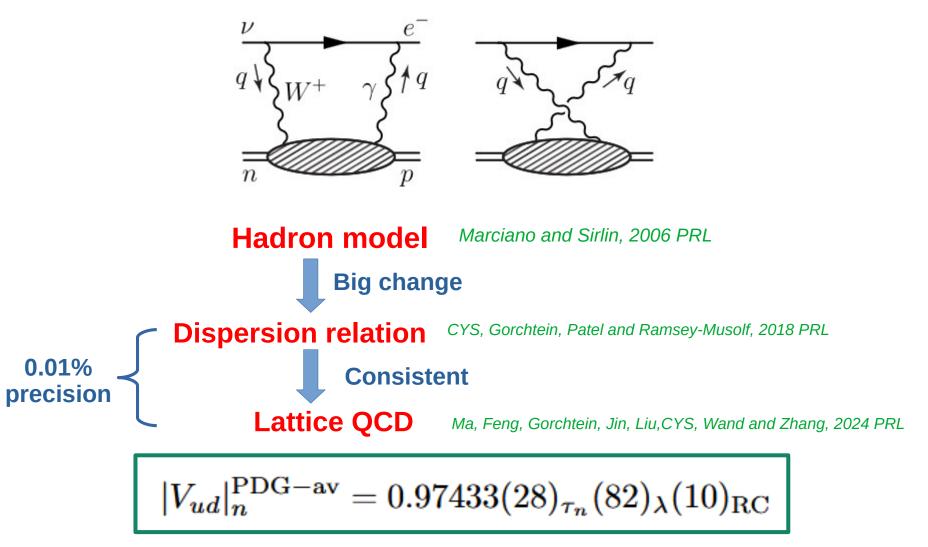
Future experiment: PIONEER at Paul Scherrer Institute (PSI)


Phase I:> yr 2029

Phase II: Improve BR(π_{e3}) precision by a factor 3

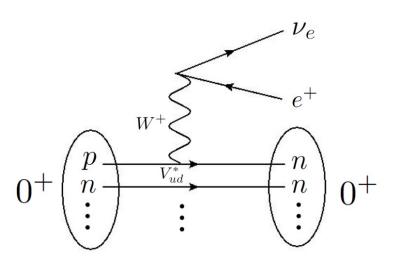
Phase III: Improve BR(π_{e3}) precision by a factor 10

(2) Neutron beta decay


$$n \to p + e + \bar{\nu}_e$$

Mixed (Fermi + Gamow-Teller) transition: Needs measurements of both

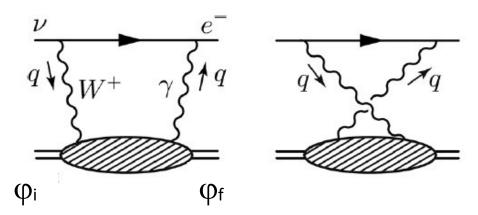
- (i) Decay lifetime
- (ii) Axial coupling strength


Single-nucleon radiative corrections:

Gorchtein and CYS, 2023 Universe

(3) "Superallowed" nuclear beta decay

$$i(0^+) \to f(0^+) + e^+ + \nu_e$$

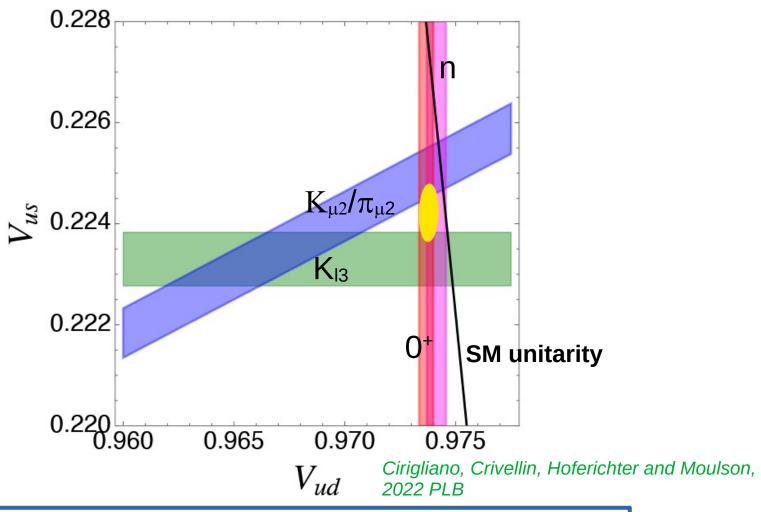

- Pure Fermi transition
- 23 measured transitions,
 15 with lifetime precision better than 0.23%

$^{10}_{6}{ m C} \rightarrow ^{10}_{5}{ m B}$
$^{14}_{8}\mathrm{O} \rightarrow^{14}_{7}\mathrm{N}$
$^{18}_{10}\text{Ne} \rightarrow ^{18}_{9}\text{F}$
$^{22}_{12}\text{Mg} \rightarrow^{22}_{11}\text{Na}$
$^{26}_{14}\text{Si} \rightarrow^{26}_{13}\text{Al}$
$^{30}_{16}S \rightarrow ^{30}_{15}P$
$^{34}_{18}\text{Ar} \rightarrow ^{34}_{17}\text{Cl}$
$^{38}_{20}{\rm Ca} \rightarrow^{38}_{19}{\rm K}$
$^{42}_{22}\text{Ti} \rightarrow ^{42}_{21}\text{Sc}$
$^{46}_{24}\text{Cr} \to ^{46}_{23}\text{V}$
$^{50}_{26}\text{Fe} \rightarrow ^{50}_{25}\text{Mn}$
$^{54}_{28}\text{Ni} \rightarrow ^{54}_{27}\text{Co}$

$T_z = 0$
$^{26m}_{13}\text{Al} \rightarrow^{26}_{12}\text{Mg}$
$^{34}_{17}\text{Cl} \rightarrow ^{34}_{16}\text{S}$
$^{38m}_{19}\text{K} \to ^{38}_{18} \text{Ar}$
$^{42}_{21}{\rm Sc} \to ^{42}_{20}{\rm Ca}$
$^{46}_{23}\text{V} \rightarrow ^{46}_{22}\text{Ti}$
$^{50}_{25}\text{Mn} \to ^{50}_{24}\text{Cr}$
$^{54}_{27}\text{Co} \rightarrow ^{54}_{26}\text{Fe}$
$^{62}_{31}\text{Ga} \rightarrow^{62}_{30}\text{Zn}$
$^{66}_{33} \text{As} \rightarrow ^{66}_{32} \text{Ge}$
$^{70}_{35} \text{Br} \to ^{70}_{34} \text{Se}$
$^{74}_{37}{ m Rb} \to ^{74}_{36}{ m Kr}$

Bottleneck: Nucleus-dependent theory inputs

(1) Radiative corrections:


(2) Isospin-symmetry-breaking corrections:

$$\left| \langle f | \tau_+ | i \rangle \right|^2 = 2 \left(1 - \delta_{\mathcal{C}} \right)$$

Averaging over 15 superallowed transitions:

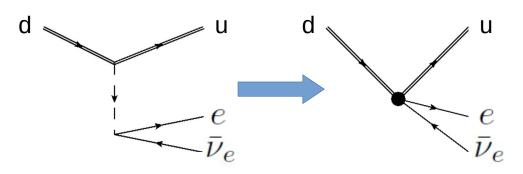
$$|V_{ud}|_{0+}^{\text{avg}} = 0.97367(11)_{\text{exp}}(13)_{\Delta_R^V}(27)_{\text{NS}}$$

Current status of V_{ud} and V_{us}

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.00148(53)$$

20

BSM interpretation, assuming new physics are heavy:



MeV-scale effective Lagrangian:

$$\mathcal{L}_{LY} = -\bar{p}\gamma^{\mu}n\left(C_{V}^{+}\bar{e}\gamma_{\mu}\nu_{L} + C_{V}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right) - \bar{p}\gamma^{\mu}\gamma_{5}n\left(C_{A}^{+}\bar{e}\gamma_{\mu}\nu_{L} - C_{A}^{-}\bar{e}\gamma_{\mu}\nu_{R}\right)$$
$$-\bar{p}n\left(C_{S}^{+}\bar{e}\nu_{L} + C_{S}^{-}\bar{e}\nu_{R}\right) - \frac{1}{2}\bar{p}\sigma^{\mu\nu}n\left(C_{T}^{+}\bar{e}\sigma_{\mu\nu}\nu_{L} + C_{T}^{-}\bar{e}\sigma_{\mu\nu}\nu_{R}\right)$$
$$+\bar{p}\gamma_{5}n\left(C_{P}^{+}\bar{e}\nu_{L} - C_{P}^{-}\bar{e}\nu_{R}\right) + \text{h.c.}$$

GeV-scale effective Lagrangian:

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[\left(\delta^{ab} + \epsilon_L^{ab} \right) \ \bar{e}_a \gamma_\mu (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right]$$

$$+ \epsilon_R^{ab} \ \bar{e}_a \gamma_\mu (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d$$

$$+ \epsilon_S^{ab} \ \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} d$$

$$- \epsilon_P^{ab} \ \bar{e}_a (1 - \gamma_5) \nu_b \cdot \bar{u} \gamma_5 d$$

$$+ \epsilon_T^{ab} \ \bar{e}_a \sigma_{\mu\nu} (1 - \gamma_5) \nu_b \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

22

Cabibbo angle anomaly favors a non-zero BSM right-handed current:

$$|\bar{V}_{ud}|_{0+\to 0^{+}}^{2} = |V_{ud}|^{2} \left(1 + 2\epsilon_{R}\right)$$

$$|\bar{V}_{ud}|_{n\to pe\bar{\nu}}^{2} = |V_{ud}|^{2} \left(1 + 2\epsilon_{R}\right)$$

$$|\bar{V}_{us}|_{Ke3}^{2} = |V_{us}|^{2} \left(1 + 2\epsilon_{R}\right)$$

$$|\bar{V}_{ud}|_{\pi_{e3}}^{2} = |V_{ud}|^{2} \left(1 + 2\epsilon_{R}\right)$$

$$|\bar{V}_{us}|_{K\mu_{2}}^{2} = |V_{us}|^{2} \left(1 - 2\epsilon_{R}\right)$$

$$|\bar{V}_{ud}|_{\pi\mu_{2}}^{2} = |V_{ud}|^{2} \left(1 - 2\epsilon_{R}\right)$$

$$|\bar{V}_{ud}|_{\pi\mu_{2}}^{2} = |V_{ud}|^{2} \left(1 - 2\epsilon_{R}\right)$$

$$0.228$$

$$0.224$$

$$0.222$$

$$0.222$$

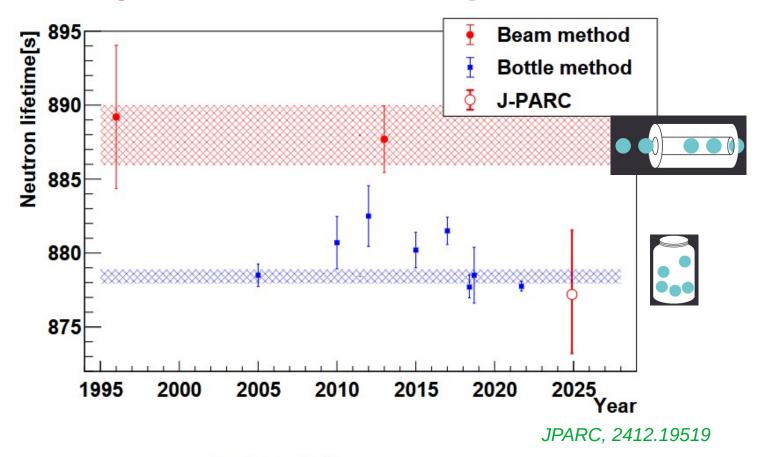
$$0.220$$

$$0.960$$

$$0.965$$

$$0.970$$

$$0.975$$

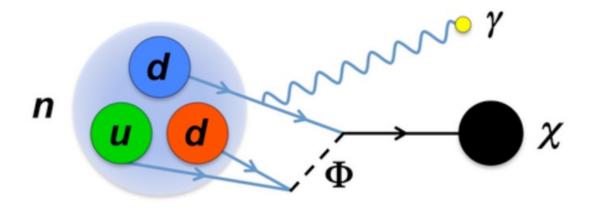

$$V_{ud}$$

$$\epsilon_R = -0.69(27) \times 10^{-3}$$
 $\epsilon_R^{(s)} - \epsilon_R = -3.9(1.6) \times 10^{-3}$

Cirigliano, Dekens, de Vries, Mereghetti and Tong, 2024 JHEP

...but **NOT** all the anomalies can be explained in this way!

E.g. "Neutron lifetime puzzle":



PDG: $\tau_n = 878.4(5) \text{ s}$ (bottle only)


Examples of proposed explanations:

Dark decay mode:

Fornal and Grinstein, 2018 PRL

n – n' (mirror) oscillation: Berezhiani, 2019 EPJC

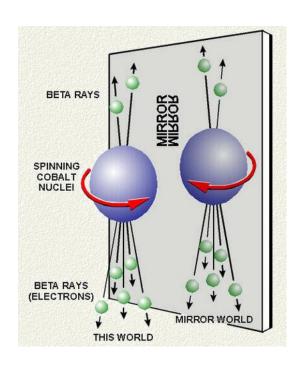
... and so on.

Some ongoing/future **neutron lifetime** experiments:

	Los Alamos NATIONAL LABORATORY
\sim	NATIONAL LABORATORY

Experiment	Method	Projected precision
UCNτ+	Bottle	0.1 s
BL2	Beam	1 s
BL3	Beam	0.3 s
UCNProBe	Bottle + Beam (detect e)	1-2 s

•

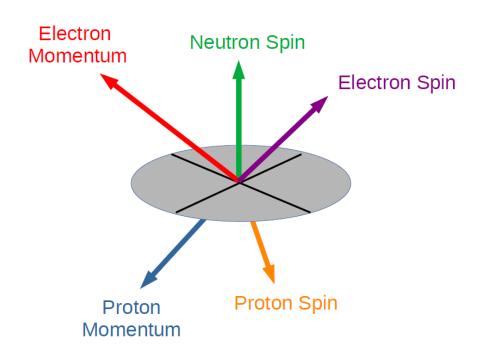

•

•

Beta decay correlations

Differential decay rate:

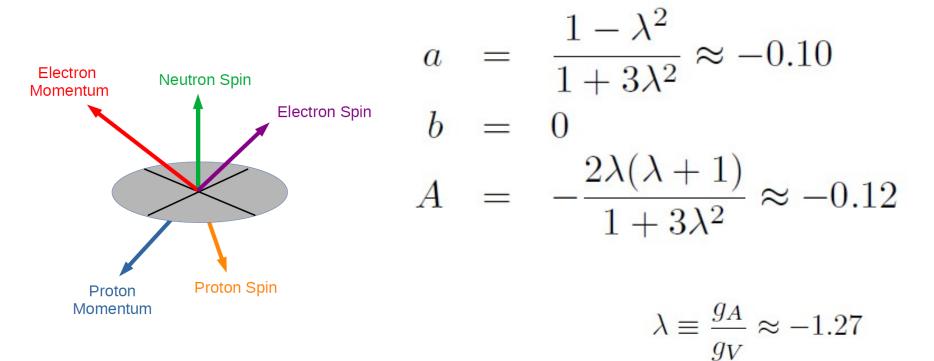
$$d\Gamma \propto 1 + \frac{a}{E_e E_{\nu}} \frac{\vec{p}_e \cdot \vec{p}_{\nu}}{E_e} + \frac{b}{E_e} \frac{m_e}{E_e} + \hat{\sigma} \cdot \left[\frac{A}{E_e} \frac{\vec{p}_e}{E_e} + \frac{B}{E_{\nu}} \frac{\vec{p}_{\nu}}{E_{\nu}} + \dots \right]$$



First evidence of parity violation comes from the measurement of A in ⁶⁰Co decay

Decay correlations probe the **most general** weak interaction couplings: Jackson, Treiman and Wyld, 1957 PR

$$\begin{split} \xi &= |M_F|^2 (|C_S|^2 + |C_V|^2 + |C_{S'}|^2 + |C_{V'}|^2) + |M_{GT}|^2 (|C_T|^2 + |C_A|^2 + |C_{T'}|^2 + |C_{A'}|^2), \\ a\xi &= |M_F|^2 (-|C_S|^2 + |C_V|^2 - |C_{S'}|^2 + |C_{V'}|^2) + \frac{|M_{GT}|^2}{3} (|C_T|^2 - |C_A|^2 + |C_{T'}|^2 - |C_{A'}|^2), \\ b\xi &= \pm 2 \operatorname{Re} \left[|M_F|^2 (C_S C_V^* + C_{S'} C_{V'}^*) + |M_{GT}|^2 (C_T C_A^* + C_T C_{A'}^*) \right], \\ c\xi &= |M_{GT}|^2 \Lambda_{J'J} (|C_T|^2 - |C_A|^2 + |C_{T'}|^2 - |C_{A'}|^2), \\ A\xi &= 2 \operatorname{Re} \left[\pm |M_{GT}|^2 \lambda_{J'J} (C_T C_{T'}^* - C_A C_{A'}^*) \right. \\ &+ \delta_{J'J} |M_F| |M_{GT}| \left(\frac{J}{J+1} \right)^{\frac{1}{2}} (C_S C_{T'}^* + C_S' C_T^* - C_V C_{A'}^* - C_{V'} C_A^*) \right] \\ B\xi &= 2 \operatorname{Re} \left\{ |M_{GT}|^2 \lambda_{J'J} \left[\frac{m}{E_e} (C_T C_{A'}^* + C_T' C_A^*) \pm (C_T C_{T'}^* + C_A C_{A'}^*) \right] - \delta_{J'J} |M_F| |M_{GT}| \left(\frac{J}{J+1} \right)^{\frac{1}{2}} \right. \\ &\times \left[(C_S C_{T'}^* + C_S' C_T^* + C_V C_{A'}^* + C_V' C_A^*) \pm \frac{m}{E} (C_S C_{A'}^* + C_S' C_A^* + C_V C_{T'}^* + C_V' C_T^*) \right] \right\} \end{split}$$


Free neutron decay $n o pe ar{ u}_e$,

Standard Model weak current:

$$\langle p|J_W^\mu|n\rangle \propto \bar{u}_p \gamma^\mu (g_V+g_A\gamma_5) u_n$$
 Vector Axial coupling coupling

Standard Model prediction of neutron decay correlations:

Measurements of the beta decay correlations determines the fundamental parameter λ !

Comparison with **lattice QCD** result may probe new physics!

$$N_f = 2 + 1 + 1$$
 : $|g_A^{\text{QCD}}| = 1.263(10)$
 $N_f = 2 + 1$: $|g_A^{\text{QCD}}| = 1.265(20)$

$$N_f = 2 + 1 : |g_A^{QCD}| = 1.265(20)$$

2024 FLAG review

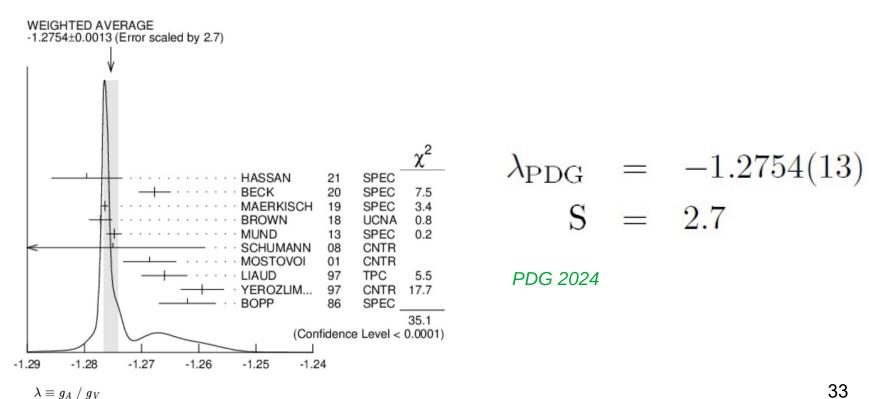
$$\lambda = g_A^{\text{QCD}} \Big(1 + \delta_{\text{RC}}^{(\lambda)} - 2 \text{Re}(\epsilon_R) \Big)$$

BSM right-handed current

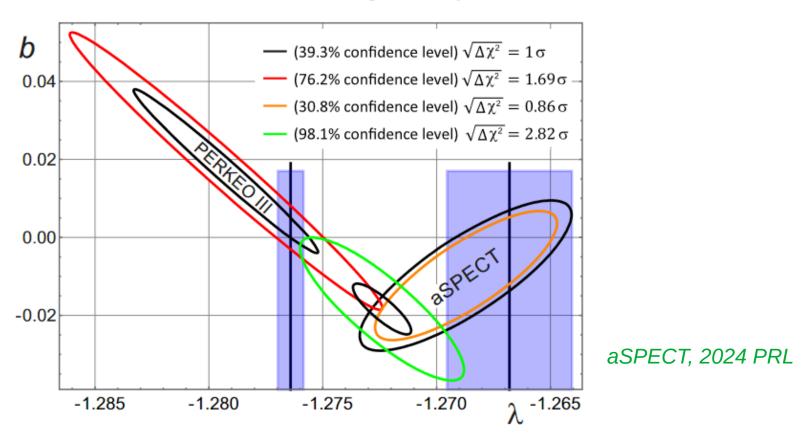
nature > letters > article

A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics

C. C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D. A. Brantley, H. Monge-Camacho, C. J. Monahan, C. Bouchard, M. A. Clark, B. Joó, T. Kurth, K. Orginos, P. Vranas & A. Walker-Loud ☑


Nature **558**, 91–94 (2018) | Cite this article

"λ - discrepancy"


 λ obtained from different decay correlations disagree (~3.5 σ)!

$$\lambda_A = -1.27641(56)^{PERKEO-III, 2019 PRL} \ \lambda_a = -1.2668(27)^{aSPECT, 2024 PRL}$$

33

"λ - discrepancy"

Incompatible with upper limits of Fierz term by individual experiment!

PERKEO-III, 2020 PRL

$$\lambda_a - \lambda_A = \mathcal{O}(C_{\mathrm{BSM}}^2)$$
 assuming heavy new physics

Signature of light new physics?

Some ongoing/future **neutron correlation** experiments:

Experiment	Correlation	Projected precision
Nab	a	0.1%
	b	3 x10 ⁻³ (abs)
UCNA+	А	0.2%
	a	0.1%
PERC	Α	0.01%
	b	~10 ⁻³ (abs)

•

•

•

Summary

- Beta decays of pion, neutron and nuclei provide sensitive probe for new physics
- \bullet Decay lifetime determines V_{ud} ; beta decay correlations probe most general EFT coupling
- ~3σ tension in the first-row CKM unitarity favors righthanded current
- Discrepancies in neutron lifetime and λ -measurement suggest possible light new physics
- Upcoming experiments on beta decay lifetimes and correlations may further improve the discovery potential for new physics