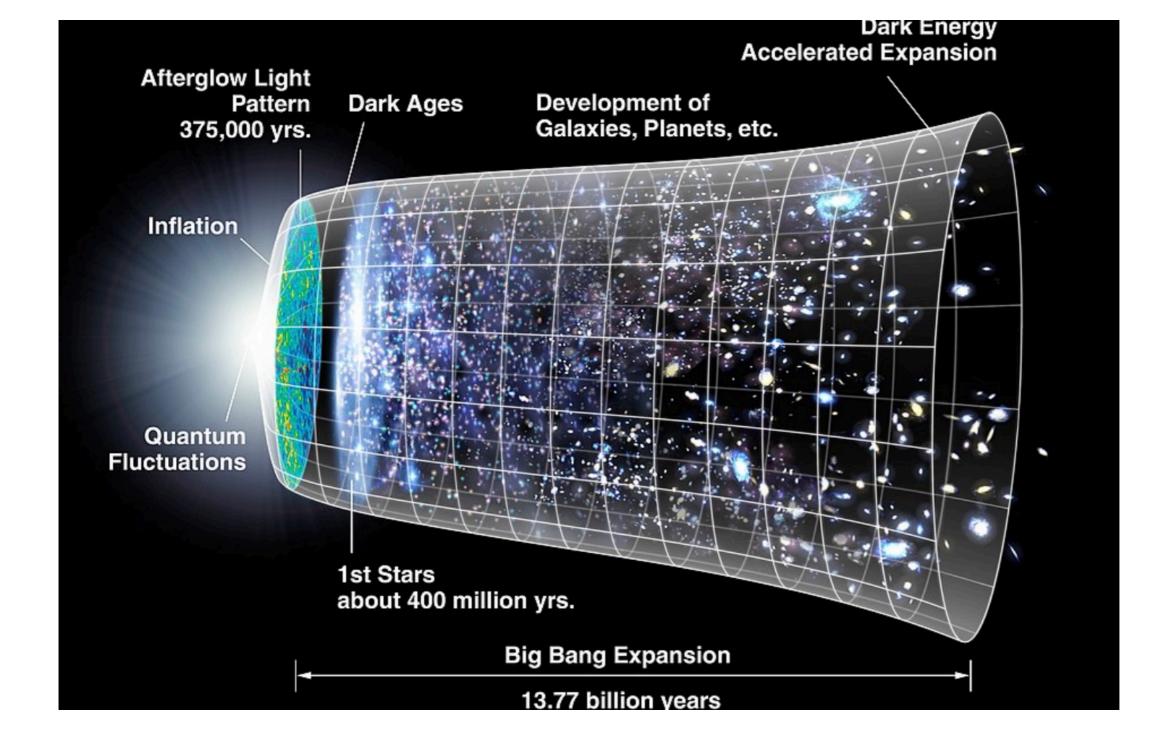
Magnetic helicity, monopoles, and baryon asymmetry

Yuta Hamada (KEK, SOKENDAI)

arXiv:2507.01576, 2509.23858 w/ K. Mukaida (KEK, SOKENDAI), F. Uchida (IBS) arXiv:2509.25734 + H. Fukuda (Tokyo), K. Kamada (UCAS)

2025/12/10

International Joint Workshop on the Standard Model and Beyond 2025



This talk: Cosmological Magnetic Field.

Interplay to baryon asymmetry of universe.

Motivation: hint for InterGalactic Magnetic Fields (IGMF).

Helicity

The cosmological magnetic field is characterized by

- Energy
- Helicity
- Correlation length

I focus on the helicity ${\mathscr H}$ in this talk:

$$\mathscr{H} = \int d^3x \, \overrightarrow{A} \cdot \overrightarrow{B}.$$

Time Evolution of \mathcal{H}

$$\mathscr{H} = \int d^3x \, \overrightarrow{A} \cdot \overrightarrow{B}.$$

Taking time derivative, we get

$$\frac{\partial \mathcal{H}}{\partial t} = \int d^3x \, \overrightarrow{E} \cdot \overrightarrow{B} \qquad \to \qquad \Delta \mathcal{H} = \int F \wedge F \sim \int d^4x \, \overrightarrow{E} \cdot \overrightarrow{B}.$$

However, this is modified in the presence of magnetic monopoles.

This has implications on baryogenesis scenario from magnetic helicity.

Talk Plan

- 1. U(1) gauge theory
- 2. Georgi-Glashow
- 3. Implications on baryogenesis

Talk Plan

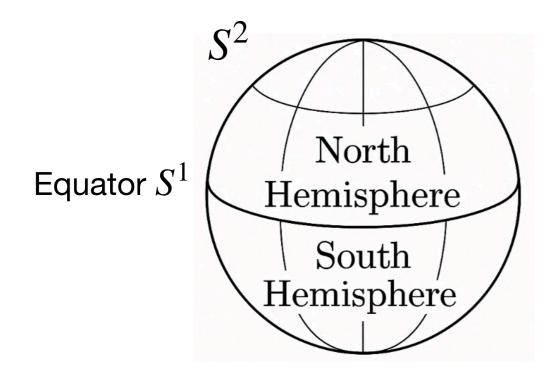
- 1. U(1) gauge theory
- 2. Georgi-Glashow
- 3. Implications on baryogenesis

Monopole

Monopole of U(1) gauge field A,

characterized by configuration of A around monopole.

$$\mathbb{R}^{1,3} = \mathbb{R}^{1,1} \times \mathbb{R}_{\geq 0} \times S^2$$



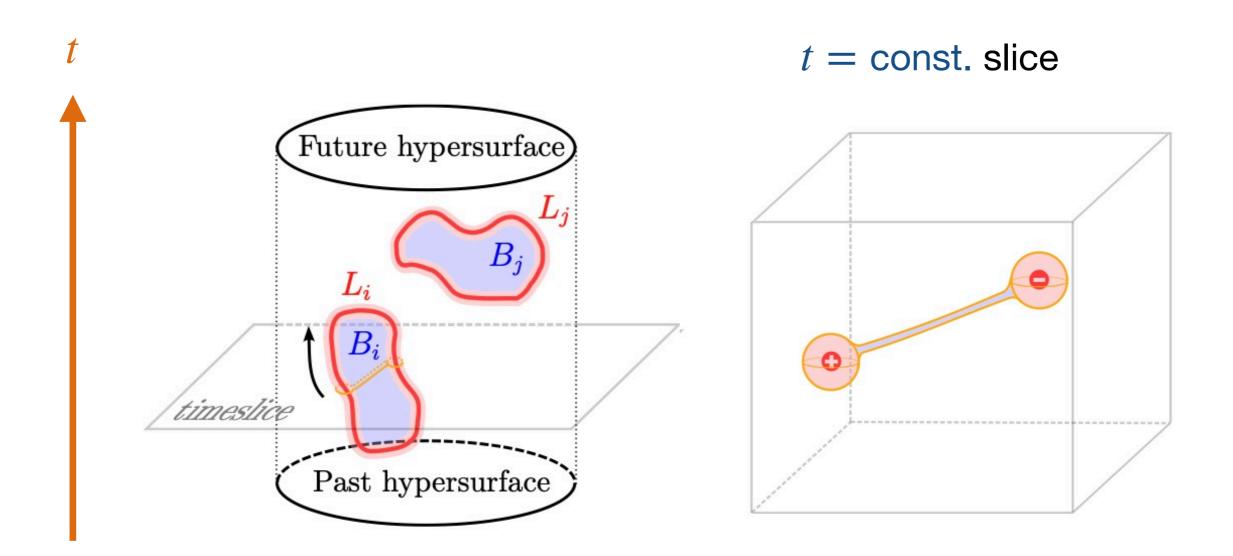
North patch A_N

South patch A_S

 A_N and A_S are related by gauge tr. $A_N - A_S = d\Lambda$.

$$\pi_1(U(1)) = \mathbb{Z}.$$

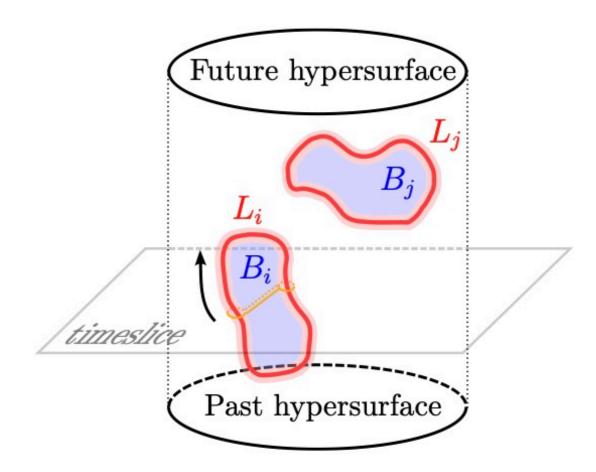
In the presence of monopoles, A is not defined globally.



 L_i : world line of monopole.

A is well defined in spacetime without L_i and B_i .

M'': Spacetime without L_i and B_i .



$$\int_{M''} F \wedge F = \mathcal{H}_{\text{future}} - \mathcal{H}_{\text{past}} + \sum_{i} \int_{S_i} A \wedge F$$

Contribution from additional bry.

[Fukuda, YH, Kamada, Mukaida, Uchida '25]

Example: Helicity Change in Higgs Phase

Let us assume that U(1) is Higgsed, and flux tube is formed.

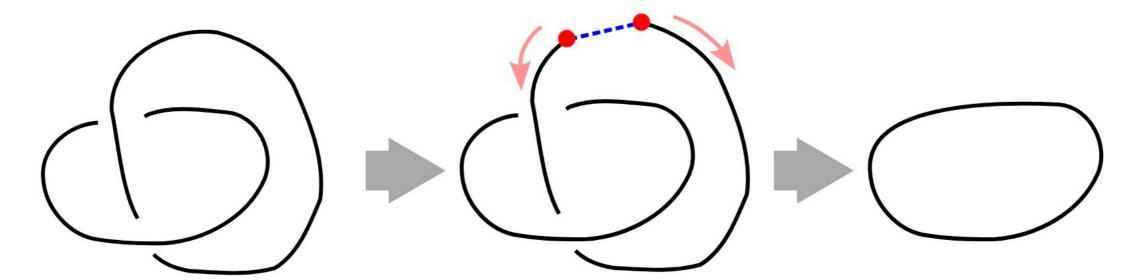
Configuration has helicity
$$\mathcal{H}_{past} = 2\left(\frac{2\pi}{e}\right)^2$$



Example: Helicity Change in Higgs Phase

Let us assume that U(1) is Higgsed, and flux tube is formed.

Configuration has helicity
$$\mathcal{H}_{past} = 2\left(\frac{2\pi}{e}\right)^2$$



Tube may disappear by monopole pair creation.

Example: Helicity Change in Higgs Phase

During this process, $F \wedge F = 0$ as there are no electric field in Higgs phase.

On the other hand,
$$\int_{S_i} A \wedge F = -\frac{4\pi}{e}$$
.

$$\mathcal{H}_{\text{future}} = \mathcal{H}_{\text{past}} + \int_{M'} F \wedge F + \frac{4\pi}{e} \int_{\Sigma} F$$
$$= 2\left(\frac{2\pi}{e}\right)^2 - 0 - \frac{4\pi}{e} \cdot \frac{2\pi}{e} = 0.$$

Talk Plan

- 1. U(1) gauge theory
- 2. Georgi-Glashow
- 3. Implications on baryogenesis

Georgi-Glashow

SU(2) gauge theory with adjoint Higgs field, Φ .

Gauge symmetry breaking:

$$SU(2) \rightarrow U(1)$$
 by $\langle \Phi \rangle \neq 0$.

by
$$\langle \Phi
angle
eq 0$$
.

The low energy theory is U(1) gauge theory with 't Hooft Polyakov monopole.

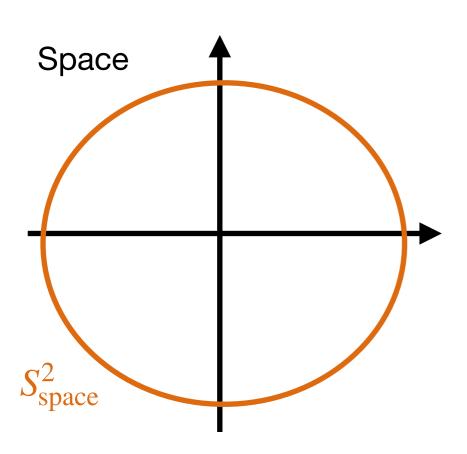
Viewed as a UV completion of U(1) gauge theory.

't Hooft Polyakov monopole

Higgs potential is $V = \lambda (\Phi^2 - v^2)^2$.

The minimum is at $\Phi^2 = (\Phi_1^2 + \Phi_2^2 + \Phi_3^2)^2 = v^2$.

Labelled by the map: $S_{\mathrm{space}}^2 \to S_{\mathrm{min}}^2$

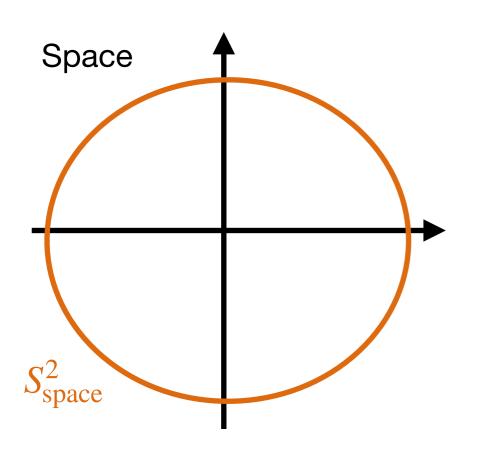


't Hooft Polyakov monopole

Higgs potential is $V = \lambda (\Phi^2 - v^2)^2$.

The minimum is at $\Phi^2 = (\Phi_1^2 + \Phi_2^2 + \Phi_3^2)^2 = v^2$.

Labelled by the map: $S_{\mathrm{space}}^2 \to S_{\mathrm{min}}^2$



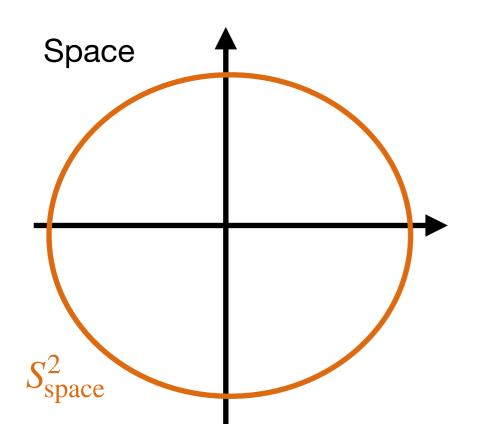
Potential minimum is S_{\min}^2

't Hooft Polyakov monopole

Higgs potential is $V = \lambda (\Phi^2 - v^2)^2$.

The minimum is at $\Phi^2 = (\Phi_1^2 + \Phi_2^2 + \Phi_3^2)^2 = v^2$.

Labelled by the map: $S_{\mathrm{space}}^2 \to S_{\mathrm{min}}^2$



Potential minimum is S_{\min}^2

Topological class of map $S_{\rm space}^2 \to S_{\rm min}^2$ is classified by integers (magnetic charge).

't Hooft tensor

How can be define low energy U(1) field strength?

Naively,
$$A_\mu^{\,U(1)}=A_\mu^{\,a}n^a$$
,
$$F_{\mu\nu}^{\,U(1)}=\partial_\mu A_\nu^{\,U(1)}-\partial_\nu A_\mu^{\,U(1)},$$
 where $n^a=\Phi^a/\sqrt{\|\Phi\|^2}$.

However, $F_{\mu\nu}^{U(1)}$ is NOT gauge invariant.

The invariant definition is known as 't Hooft tensor:

$$\mathcal{F}_{\mu\nu}^{U(1)} = \partial_{\mu}(n^{a}A_{\nu}^{a}) - \partial_{\nu}(n^{a}A_{\mu}^{a}) - \frac{1}{g}\epsilon^{abc}n^{a}\partial_{\mu}n^{b}\partial_{\nu}n^{c}.$$

This satisfies Bianchi identity: $\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}\mathcal{F}^{U(1)}_{\mu\nu}=0$.

Definition of helicity

Using 't Hooft tensor, we can define

$$\mathcal{H}_{U(1)} = \int \mathcal{A} \wedge \mathcal{F}.$$

In low energy (massless excitation only), we find

$$\mathcal{H}_{U(1)} = \frac{16\pi^2}{g^2} (N_{\text{CS}} + N_H)$$

 $N_{\rm CS}$: SU(2) Chern Simons Number.

$$N_H$$
: Higgs winding. Define U by $UnU^\dagger=T^3$, and then $N_H=\frac{1}{24\pi^2}\int {\rm Tr}(UdU^\dagger\wedge UdU^\dagger\wedge UdU^\dagger)$.

Talk Plan

- 1. U(1) gauge theory
- 2. Georgi-Glashow
- 3. Implications on baryogenesis

Baryon Asymmetry

The conversion of magnetic field is from chiral to non-chiral.

High $T: U(1)_Y$ is massless. Low $T: U(1)_{\rm em}$ is massless. SSB of $U(1)_{\rm M}^{[0]} \to {\rm NG}$ mode in 3d.

ABJ anomaly tells us
$$\Delta Q_{B+L} = 6 \left(\Delta N_{\mathrm{CS}}^{\mathrm{SU}(2)_{\mathrm{L}}} - \Delta H_{Y} \right)$$
.

Primordial magnetic field leads to baryon asymmetry [Kamada, Long '16].

non-zero for chiral magnetic field zero for non-chiral magnetic field

Toy Model

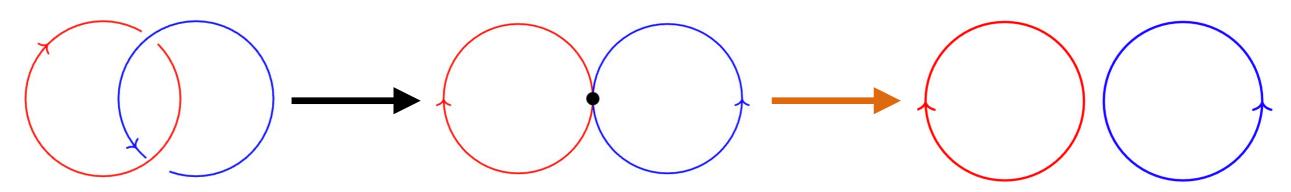
U(1) gauge theory with massless fermion and Higgs boson.

$$\Delta Q_{\rm chi} = 2\Delta N_{\rm CS}$$
.

SSB: $U(1) \xrightarrow{\text{Higgs VEV}}$ Nothing.

Suppose there is U(1) magnetic field before SSB.

After SSB, we have



Loops of Massive magnetic fields.

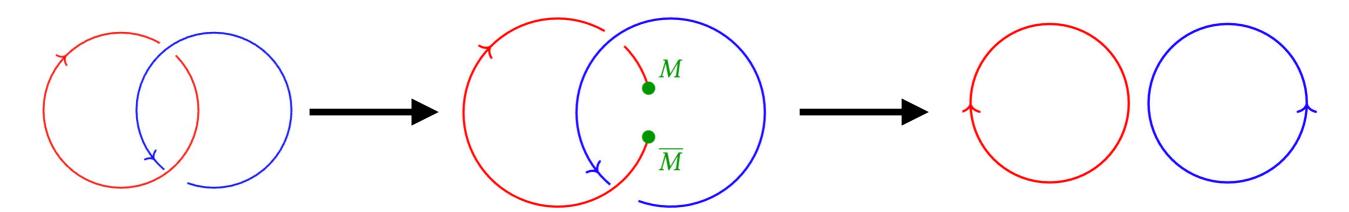
Chirality is generated through $\Delta N_{\rm CS} \neq 0$.

Subtlety

Helicity:
$$\mathcal{H}_{U(1)} = \frac{16\pi^2}{g^2} (N_{CS} + N_H),$$

Asymmetry generation: $\Delta Q_{\rm chi} = 2\Delta N_{\rm CS}$

Monopole production



No asymmetry.

Helicity can relax from nonzero to zero w/o changing $N_{\rm CS}$.

Standard Model case

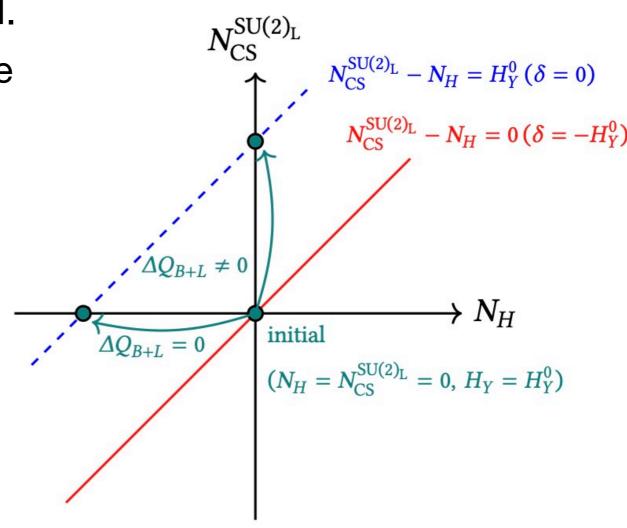
Similar argument applies to SM. Two ways to disappear massive magnetic field.

(1) $N_{\rm CS}^{{\rm SU}(2)_{\rm L}}$ changes.

Baryon is generated.

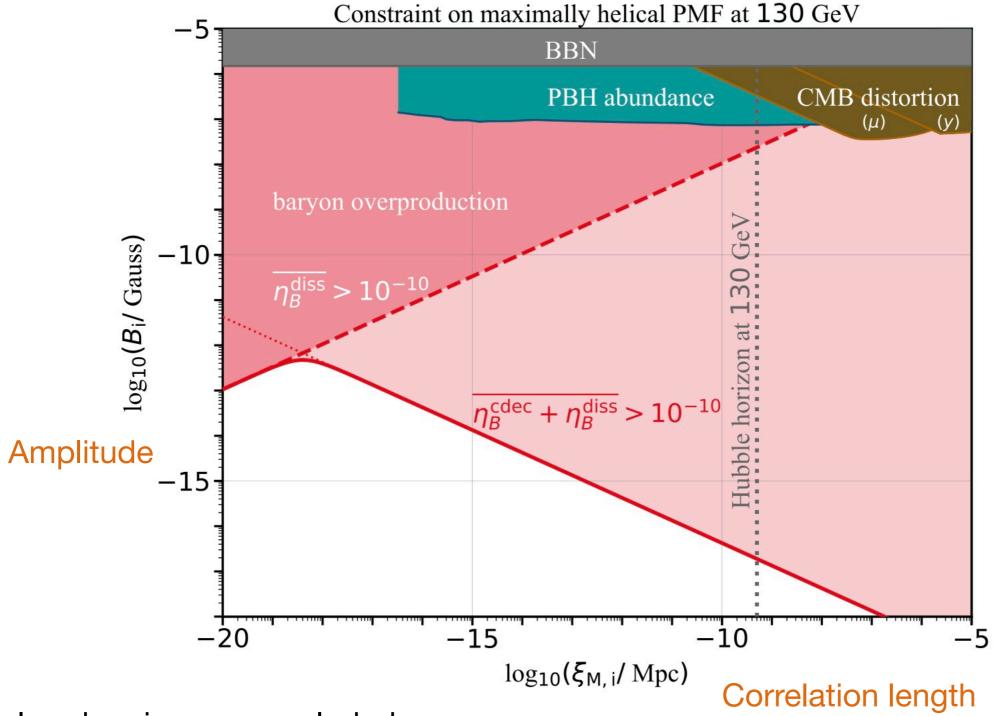
(2) N_H changes.

Baryon is **NOT** generated.



Light colored region: Excluded if N_H change is inefficient.

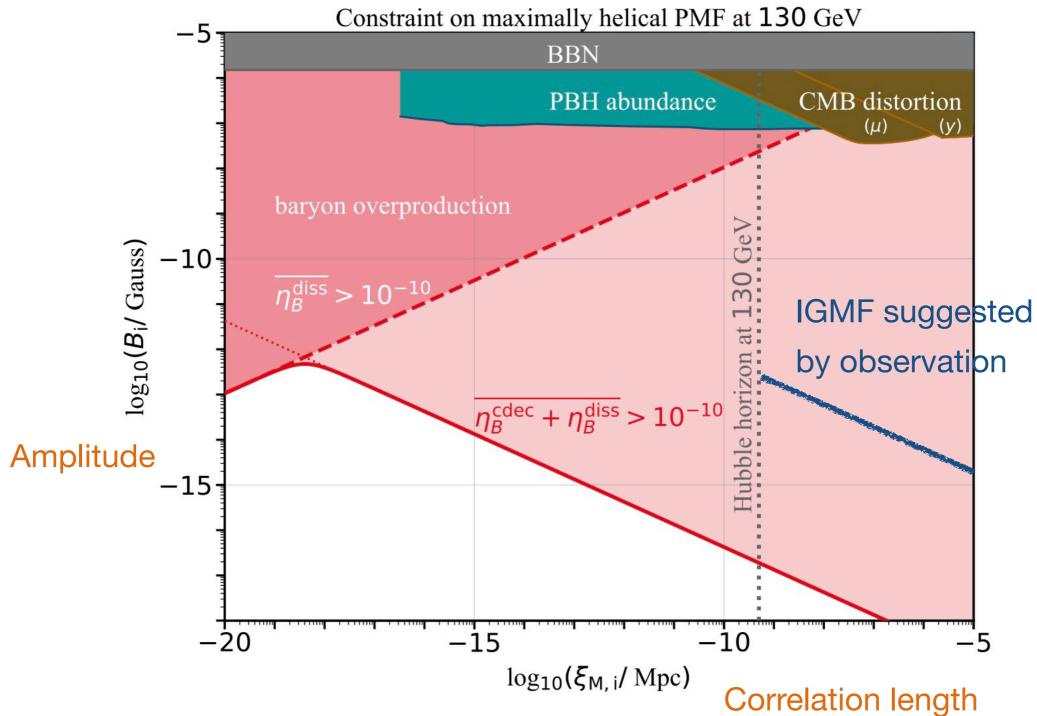
Dark colored region: Excluded if N_H change is efficient.



Colored regions are excluded.

Light colored region: Excluded if N_H change is inefficient.

Dark colored region: Excluded if N_H change is efficient.



Colored regions are excluded.

If N_H change is inefficient, IGMF is inconsistent with baryon asymmetry. If N_H change is efficient, IGMF is consistent with baryon asymmetry.

More detailed study is necessary to settle the situation.

Summary

- Hint of cosmological magnetic field.
- Helicity change in the presence of monopoles.
- Implications for baryon asymmetry.