Electronics (Taskforce 7)

Main subjects:

* On-detector ASICs
* Links, powering and interconnects

* Trigger and DAQ systems



ASICs in HEP

 We need ASICs mostly for front-end, power management, data
transmission;

* High resolution timing is becoming a must for many detectors;

* Finer granularity (but not so extreme), less power

 In (inner) layers of hadron colliders, life is complicated by radiation
damage, which imposes lengthy technology testing procedure;

 We are adding cold ASICs to the menu;

* Production volumes are, at best, very modest compared to
industry standard,;

 HEP ASICs are very specific systems fabricated in mainstream

technologies built out of very common critical blocks (ADCs, TDCs,
PLLs, DLLs, Power converters, ser-des, etc..)



Some key components in non-HEP world that we can
adapt:

1. ADC:

1. Design based on 7nm FinFET exist. But not really necessary, 28nm o
technology is good enough. K o
Typically with few hundred MS/s rate, 12-14 bits. Sher e B
Core size of ~ 0.01-0.5 mm?. Single side dimension ~130nm.

<10mW.
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3. Data transmission

1. 100 Gb/s Silicon photonic transmission
2. With multi-level digital signal (PAM4).
3. 28nm technology

PAM4
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4. TDC

< 1V supply voltage

~ 1 ps resolution =» precision limit on the detector side.
65 nm technology

Few mW power

0.1 mm? area.

Plenty of different architecture, no problem to adapt.
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5. High density pixel: (from mobile phone camara industry)
1. <1 um CMOS pixel
2. ~1e random noise
3. Requires 3D packaging to interconnect to ProcessQlgym
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Logic Circuits

Pixel array area
32Mp 6560x4928

TSV for row control

TSV for ADC input = A

6. 3D integration technology:

* Moore laws may continue due to 3D integration and new devices.
 TSMC SolC microbonds reaches 10° bonds/mm?

Making a
detector out
of this?




* The negative side of these new developments is the cost,
manpower, more complex development cycle, software.

The increasing complexity in silicon manufacturing is expensive
for low-volume ASICs
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e But technology can coexist:
Two order of magnitudes in transistor gate length (and price):

from 0.7 um (300 euro/mm?) to 12 nm (26000 euro/mm?2)
 And Open source gradually emerge.




Silicon is not the only expensive item:
IC development requires trained people and advanced software
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The round of competences/toolsets needed to design a complex ASIC
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Wrap up on the available technology:

 Much more technology available than we can explore.

* Choose a technology is always a bet.

* No particular concern on performance achievable for key IP blocks.

 What you buy is density, speed and power.

* Key issue is to have enough engineers to work out the best to our
needs.

* Not bein a hurry. What do you want to do with a chip with 20M
transistor at a cost of 200k euros



ASIC Developments within HEP

] Present/near term

KSALT: 128 ch. ASIC for strip readout in LHCb - M. Idzik, TWEPP 2019 ﬁ

128 channels
|28 channcis

Trend:

* Include also TDC for timing
* Higher resolution, flexible ADCs
_—) Full fledge on board DSP
* High granularity on board power
management

Question:

How much intelligence do we need

on chip?

* Exact partitioning between on-
board and off-detector signal
processing may be determine
with detailed detector studies.




Hybrid Pixel detector:

L] Present/near term

TimePix4 RD53 series

K == Timepix4 Pixel Schematic \ (- ¢ \ Trend:

— . ——1L * Reduce Pixel size towards 25um x
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‘ " 0 * Common baseline development ° High time resolution per pixel
1% M e i :"L " * Final chips customised in some details (<100ps)
+ Time resolution 200 ps * 50 x 50 um pixels * New mterconr\ectlon te.:ch nology
* >1GHzlcm2 * More processing on chip.

* 55 micron pixel pitch

* 4 sides buttable with TSV
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Summary on ASICs:

* Requirements in ASICs rather clear even for far future.

* |In terms of technology, only FCC-hh inner detector is a problematic
case — radiation.

* For the rest, it is mostly a question of budget.

* Need to profit more by latest advanced CAD tools, which have been
tuned for more complex chips than we need.

* Collaboration rather than competition ( avoid “parallel development”,
multilateral funding)

* Include realistic ASIC description in detector simulation.

* OpenlIP

* Need a team of ASIC with different sizes.



Part B: Links, powering and interconnects

Links:

e Radiation-hard optical links

* Silicon photonics

* Co-packaging electronics and optics components
* Wireless links.

Powering

e Power distribution.

» All stages of DC-DC converters (input stage with large conversion ratio and on-chip power management
* Availability of powering know-how and technologies (for DC-DC and serial powering)

* GaN technology

* Power over data links.

Interconnect:
* Advanced packaging solution and high density interconnects

e Scaling to large-size stitched and tied assemblies
e Cooling technologies for very high-density electronics

In general, pay attention to extreme radiation and noisy environments



Power and links has conflicting requirements

1. Power and links takes up a lot of weight and service volume
 Reduce power with new technology, but increased number of channels at the
same time.
 Reduce data volume by frontend intelligence, but possible higher power and

increased complexity
e Opticsis good, but difficult to avoid electrical interconnections

2. Example:
HL-LHC pixel detetors:
1. Power: ~7000 W/m?2
2. Links capacity: ~3000 Gbps/m?2.
HL-LHC outer tracker
1. Power: ~450 W/m?
2. Links Capacity: 100 (600) Gbps/m?2



Future trend:
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Front-end Links:

Trend:

 Amount of data certainly increase

* May implement intelligence in FE ASICs, but
* Increase power
e Radiation induced errors

* Need to reduce size, power, voltage,

R&D
Simplest: PAM-4 links: Need to be compatible with back-end COTS
Silicon photonics: optical signals directly on FE

* Benefits obvious (lower power, higher rates, small volume. Up to 25Gps/s today.

* Also need to be compatible with COTS
Faster optical links over copper:

* Vialow mass tape, but currently transmission quality not good.
Wireless transmission.

* Hard to go far in a dense detector (acting like a Faraday cage).

 Afew ten’s cm wireless from pixel module to opto-device located a bit further could make sense.
TTC (Tracking, telemetry, control) links:

* Network to distribute timing signal to ~10ps, may need improvements.

* May need large network to broadcast information to ever larger detector




HEP Link paradigm - @/Q’

A .

High radiation doses No or small radiation doses

LHC: up to 100 Mrad (1074 1MeV n/cm?2)
HL-LHC:upto 1 Grad (106 1MeV n/cm?)

Short distance optical links: 50 to 300 m
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COTS for back-end



Speaker’s Summary:

* Higher power and higher data volume to be readout
Radiation (10%°/cm?) and magnetic field to be assumed
Needed developments for powering front-end
* DC-DC converters with high input voltage (24 — 48 V)
e Last stage of DC-DC in the front-end ASICs
* Drop-inblocks
* |Increased compactness
Needed developments for front-end links
e Faster and more “integrated” optical links
* Silicon Photonic seems the best choice
* Faster SERDES to drive them
 SERDES, line drivers, equalizers blocks for fast copper links



Silicon photonics

¢ |[f we want to interoperate with COTS components,
Instructive to see where things are heading
e Speed and level of integration Pluggable Optics
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DAQ and Trigger

The focus is at whether we need to go to Triggerless DAQ, with as much

as possible COTS networking.
* LHCb is doing it now.

 Still many unresolved problem in other detectors
A debate on whether this is desired.
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LHCb: A case study

» This is a challenge LHCb faces now (Run 3)

» Data rate reduction prior to event building would be no better than a prescale.
» Instead: Read-out and build events at 30 MHz

» Symmetric event

building network is
COTS (infiniband).

» EB nodes are
low-cost COTS
servers

Up to 40 PB disk storage =

1Tovs

................

................

Event filter second pass (up to 4000 servers)



The other extreme is to “Move the intelligence to the detector”

* On-chip algorithm

* Al-on-sensor

 Small data volume to send out

 Much lower processing requirement for upper stage.

* Lost the raw information, simulation has to include ASIC functionality
e Radiation induced error

e With high rate data links, this is not necessary



A word about TSMC

There was a (somewhat long) discussion about how to approach TSMC.
Everybody is bothered by the legal issues and the accessibility of TSMC CAD
design. Cost is a problem, and the HEP community is not viewed as a single
legal entity, so every one need to pay to get access.

TSMC is not paying attentions to HEP, because of too small in quantity.

Can we demonstrate to TSMC that our work has industry mass production
application?

TSMS is being criticized a lot! But TSMC seems to be the only large foundry
that is capable of <28nm process, and willing to talk at least.



Not seriously discussed in this symposium:

1. Radiation issues.
2. Electronics for non-accelerator experiments.
3. Cold electronics. (Extremely low noise).



