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I Deformation of Nucleus

120
100 0.75
a0 0.50
0.25
N 60
0.
49 -0.25
20 -0.50
-0.75

20 40 60 80 100 120 140 160 180

N
120
B3
100 0.15
L'y |o.1o

80
0.05

-0.05
-0.10

-0.15

20 40 60 80 100 120 140 160 180
N

Who saw It?
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Evidence 1: Rotational Bands

514 8" E(4%Y)/E(2") ~ 3.3 for rotors
E(4%Y)/E(2%) ~ 2.0 for harmonic osc.
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Figure 5.15b Theratio E(4*") /E(2*) for the lowest 27 and 4~ states of even-Z,
even-N nuclei. The lines connect sequences of isotopes.

Energy spectrum of rigid body rotation - Existence of deformation



I Evidence 2: Nuclear Fusion Reaction

Hagino, Takigawa, PTEP 128, 1061 (2012)
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I Rough Idea o

Spherical transverse
plane
beam beam
Deformed

Different transverse shapes for the spherical and deformed nuclei.
Distribution is reflected into anisotropic flows in the final state.

High-energy collisions = snapshot of the overlapping region of intrinsic states



Ultra-Central Collisions (UCQ)

UCC = Almost all particles participate in the collisions

Collision of Prolate nuclei

_ mean radius | anisotropy

tip-tip small small

body-body large large

v hydro. evolution

tip-tip large pr / small v,
body-body small py / large v,

=» Inverse correlation of v, & pr

Giacalone, PRL ('20)

Niemi+, PRC87 ('13)

body—body
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tip—tip
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I Experimental Result @STAR

tip-tip

large pr / small v,

body-body small py / large v,

=» Inverse correlation of v, & pr

STAR, Nature 635 ('24)
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Triaxial Deformation

Fig.: Jia, PRC ('22)

Prolate Triaxial Oblate
B2 = 0.25,cos(3y) =1 B2 = 0.25,cos(3y) =0 B2 = 0.25,cos(37) = —

tip+tip body-+body body+body t1p+t1p

eplBi e @ TELT LR L €hLRLT

O v,-p; correlation is sensitive to deform. param. y.

O Other correlations sensitive to 8, and y.
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ATLAS, PRC 107 (2023)

STAR, Nature 635 (2024)
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Further Extension
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I Quantum Surface Vibration  Megino MK PRC(25)

%—

\

=

— Shape of a nucleus is quantumly vibrating
even on the ground state.
— timescale of HIC > surface vibration

) HIC takes a snapshot of shape
fluctuation.

Harmonic Oscillators
ground state

() 4

See also

Zhao, Xu, Zhou, Liu, Song ('24)

Xu, Xu, Zhao, Zhao, Song, Wang ('25)
Liu+, 2509.09376



I Spherical Nucleli Hagino, MK, PRC ('25)

- P0
p(r) = 1+ e(r—R(0.6))/a -

Space-fixed coordinates
R(8,¢) = Ry (1 - ﬁ D e+ mpYL(F))

Harmonic-oscillator model for surface vib.

H=3 3 (Bl + GhlaaP) <Z %2> - (B’ S

A, p
Constraint from low-E exp. of B(EA) More complicated in
_ Ar \/B(E,\) 1 Hagino, Takigawa ('12) body-fixed coordinates
Pr= 3Z R} 2 Hagino, Ogata, Moro ('22)

Treatment of surface vibration is apparent in the space-fixed coordinates.
Deformation params. ; can be constrained from transition probability.



. . . Hagino, MK, PRC (‘25
Transverse Distribution agino L)

Initial Transverse Distr. N Quadrupole 208py, Octupole
droplet full-overlap model 20{ (a) 0 NiL N 6, 0.218 2011 (b) | oospp 4 2pb, 4, 0144 ‘
o0 1 surface vibr. i
:O[Z}(T-L) :/ dz ﬂ(‘?") ":; 16 [1 static deform. "g 16 — surfface vibr.
o N 1 vibration (axial) C [ 1 static deform.
5 / Q [eh]
Jia ('22) 2 12{] 3 12 [ vibration (axial)
_ - -
S (G 2 ;
(22 + y2)™/2)) 3 s
[ €3]
0.0 0.1 0.2 0.3 0.4 20 0.1 0.2 0.3 0.4
|€a] |E3|
mean std. dev. skewness kurtosis

O Distribution differs significantly between the i, o] [sVv | 0.112(1) 0.0554(7) 0.49(3) -0.02(11)
surface vibration and static deformation. SD | 0.119(1) - 0.0500(5) -0.79(3) -0.62(6)
SV-A| 0.090(1) 0.0816(13) 1.22(4) 1.12(20)

O Axial deformation is insufficient to describe 20550, 1l ISV | 0.0822(8) 0.0416(3) 0.55(4) 0.15(11)

the surface vibration. SD | 0.0821(8) 0.0461(4) -0.38(3) -1.29(3)
SV-A|0.0650(12) 0.0649(11) 1.35(5) 1.49(22)




. . . Hagino, MK, PRC (‘25
Transverse Distribution 2 agino 12

58Ni, Quadrupole, g, = 0.218

Surface Vibration Static Deform.
0. - U.Uuu
0 (a) surface vibration (b) static deformation
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& s N .
o V@) (2)
0.00 =078 05 0322 0024
d (fm ?)
Inverse mean radius
Short Summary 0 Surface vibration and static deformation are

discriminable through the distributions of ¢, d.
O Space-fixed prescription is more convenient in
treating the surface vibration of spherical nuclei.



I Uroboros in Nuclear Physics

Uroboros of Physics

1030 ¢cm

Glashow (1982)

O High-Energy HIC provides us with info. of nuclear structure.
O Nuclear structure is necessary for understanding Relativistic HIC.



Uroboros in Nuclear Physics

Uroboros of Physics
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OHigh-Energy HIC provides us with insights into nuclear structure.
O Nuclear structure is necessary for understanding relativistic HIC.

P Workshop at YITP, April 2026
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I Detector Efficiency

true
total value:

(Sr)

~n particles

Detector
not .
X
— N particles observed :
S .
¢ ))ptN
modified ‘.'
observed .
Pi
» total value; << Z >>

1€ (obs)

Real detectors lose some particles

Observed results are modified.
Effects must be corrected to obtain the true result.



I Efficiency Correction: Total Number

Detector
771 (—Dh > pl
—X" 3 x
~ N particles : o] R . ~n particles
i} > 4
xTN 82' > pN

modified ‘.'

true
e e (p » chsered (3= 1)
: Pi
Correction Formula: <Zp7;> = << Z r—z>>




I Moments (Cumulants) of Total Number

(Zr))



I Moments (Cumulants) of Total Number

(Zr))

Correction Procedure:

Use factorial moments/cumulants
<(Z"pz) >f B <<(Z’L 1’3_) >>f

Assumption: efficiencies of individual
particles are independent

Nonaka, MK, Esumi ('17)
Asakwa, MK, PPNP (‘16); MK, Luo ('17)



(Zr))

Correction Procedure:

Use factorial moments/cumulants
<(Z"pz) >f B <<(Z" %) >>f

Assumption: efficiencies of individual
particles are independent

Nonaka, MK, Esumi ('17)
Asakwa, MK, PPNP (‘16); MK, Luo ('17)

Moments (Cumulants) of Total Number

Note

Search for QCD-CP using
conserved-charge fluctuations

Long history of efficiency correction:
MK, Asakawa ('12); Bzdak, Koch (‘12,"15);
Luo ('14); MK ('16); Nonaka+ ('16); Bzdak,
Holtzman, Koch ('16); MK, Luo ('17); Nonaka,
MK, Esumi (‘17); ...



I Particle-Averaged Quantities

<% i pi>v <(% Zipi)n>a <N(]\}—1) Zi;éj pz(‘l)Pg'2)>




I Particle-Averaged Quantities

<% i pi>v <(% Zipi)n>a <N(]\}—1) Zi;éj pz(‘l)P§'2)>

Many fundamental observables in HIC are of this form!

mean py, flow anisotropy v,{m}, v, — p correlation, etc.

v {2} = <N(N1— 0 Zein(¢i_¢j)>

1 #]




I Particle-Averaged Quantities
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I Particle-Averaged Quantities

" 1) (2
<%Zipi>a <(%Zzpz) >a <N(]\}—1) Zi;éjpfg )p§)>

Many fundamental observables in HIC are of this form!

“Conventional” Correction Formulas

1 2
(o= 2Pt p? ) = Yigi PPy /1Ty
N e 2 ity 1/TiT;

e.g. ATLAS, PRC107, 054910 ('23); STAR, Nature 635, 67 ('24)

Question: Are these formulas correct?



Correction is Necessary!!

A
o
-
L
—
o
>
pr
pr-dependent efficiency Azimuthally nonuniform efficiency
alter mean p; produce unphysical v, {m}

More serious effects on higher-order correlations!



I Check in a Simple Model

2N: fixed for all events

-~ N particles

-~ N particles

efficiency
r =l }

efﬁaency }

MK, Esumi, Niida, Nonaka,
arXiv:2510.13838

n particles
- .
Q= Z 93
1€ (obs)




MKf Esumi, Niida, Nonaka,
CheCk in e Simple Model arXiv:2510.13838

2N: fixed for all events

_ N particles  efficiency ) .
r = n particles
—1 ~ o~ ~
~ N particles  efficiency Q= ). g
r = } 1€ (obs)
- =P
Mean: ) . N=w
107! 4 = N=20
= A e N=50
True result <Q> =0 < IR .
N = e, Conventional formula
> qi/Ti S " R does not reproduce the
Reconstructed < S 1/, > - " * |correct result even for
i /1 10-2 ] I
the mean!!

0.0 0.2 0.4 0.6 0.8 1.0
p



I Derivation of Correction Formulas

B W =

Particle production is described by a classical prob. distr. func. P(N; pr).
Probs. to observe individual particles are independent.
For each observed particle, the value of efficiency r; can be specified.

Other detectors’ effects are not considered.

True distr. func.

—

P(N;¢)

~ N particles




I Connecting True/Observed Distr. Funcs.

True distr. func. Observed distr. func.
P(N;¢) ” P(n; q)

* n: observed particle number
* g = Zjg(obs)Si: Observed sum

Probability Distr. of Observed Quantities (uniform r)

!

P(n;q) Z /dgz [ —r)—tirt ]57,),21 b, 0(q — ;b &) P(N

{b;} 1=1

&)

Iy

bi — 0,1



I Generati ng Fu nction MK, Esumi, Niida, Nonaka, arXiv:25010.13838

00 N
Prob. distr. func: P(n; q) = Z /dgz [H(l _ r,a)l—bif,abi} On, 5, 5:0(q — Zz-bz-&-)P(N;f)
N=1

{bip =1

Generating func: G(s, t) = Z/dqﬁsntq = Z/dg’p H(1 — 7+ rsté)
n N )

Represent the quantity that you want to express by the
derivative of the generating function.
Then, represent it in terms of the observed variables.

<ZJ<;@ >true = [: dsg [Oté(s,t)hzl _ <ZT@L§'L (1 B an)>0bs el ; 1

Note: <Z’i & >t + <Zi f"'> _ a™term compensates the n = 0 contribution.



I Results: Correction Formulas
MK, Esumi, Niida, Nonaka, arXiv:25010.13838

Mean 2nd Order
<%> - <<Z &ki»n#n <AE%’Q—21)> - <<Zq'*i@’jkzﬂ'*o)n;en,l

1 o+ ricy;
ko = — d % ki = /d / d 7 )

j#i #a #3

— Correction formulas are written in forms {QuiQua} =Yg
Including integral. 7

— This formula can reproduce the correct 1 -

a; —

result for the previous simple model. T



I Summary

Efficiency Correction Formulas

<Q> - <<i&ki>>n7é(l < {QIQJ} > <<th zqz;ku:»n#”

1 O+ i g'
e d SO ot _ a )
i T /[; C"H k?zj ritj / dO’ / do —|— ]

A I7£ i;&;

These formulas reproduce the true value in simple models.
They will play crucial roles in experimental studies in HIC.

What | have not Understood

Relation of these formulas with the conventional ones.
More simplified formula / unified understanding of mathematical structure.



I Should Self-correlations be Eliminated?
i(Ppi—adj)
Flow correlations: v2 = <Z‘@ZD€ >

N(N —1)

The “self correlation” terms are usually neglected. Why?

Argument 1: Argument 2:
Emission of 2 independent particles

Dap: random Emission of a particle
take away density
a N
suppress probability

to emit particles to

same direction
) v, > 0 ratherv, =0



I Simpler Example: Particle Number Fluc.

Injected particles N Observed particles n
Detector ~
P(N) efficiency r P(’I’Z)

How can we obtain the cumulants of the true distribution
only from observed information on P(n)?

MK, Asakawa, 2012



MK, Asakawa, 2012;2012

I Slot Machine Analogy

Fixed # of coins

P@EN)

PQEN)




Reconstructing Total Coin #

-

\_

Pe (Ng FE@: Pg (Ng )B12(Ng :Ng )

~N

J

COExample
B ne !,EI‘- -------- 1-r1-e ------- : 1 ne
2((BNFV)?) =5 ((ONE"™)?) i+ FUENE)) treo

net)\3y |, B /s prlme
((ON")?) o+ HENE) e

e -

genuine info. Poisson noise

Note: Higher order cumulants are more fragile.

MK, Asakawa, 2012;2012
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