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I Investigation of the Nuclear Equation of State (EOS)

Nuclear matter EOS Constraints on the symmetry energy E.(p)
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I Pion production in Heavy-ion collisions

»
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ITransport equation for heavy-ion collisions

Transport models are used as the main method to obtain physics information from HICs by
solving the time evolution of the collision reaction
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 Transport equation for one-body distribution function f (r, p, t) (a=n,p, A7, A% A*, A™, n, =¥, )
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- Potentials U, enter in both the mean-field propagation and the collision term (in principle)

Single-particle Hamiltonian (< EOS):  h,(r,p;f) = + U, (r,p; f)




IWhat factors influence pion production, and to what extent?
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Importance of Cluster correlations
and

AMD+JAM Transport model
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R » In the final stage, clusters and fragments

» Decomposition of protons into final products:
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Only about 20-30% of the total protons are emitted as free protons. All the other protons are bound in light
clusters and heavier fragments.

=> Cluster correlations can not be ignored in calculations




I Cluster and comparison with the SnRIT data
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More discussion within AMD M. Kaneko et al. [SRIT], PLB 822, 136681 (2021): M. Kurata-Nishimura et al. [SzRIT], PLB871, 139970 (2025)




N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93(2016) 044612;
PRC97(2018) 069902(E)

ITransport mode]
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- . N. Ilkeno, A. Ono, Y. Nara, A. Ohnishi,
I Cluster effect on the & /TC+ ratio PRC93(2016) 044612; PRC97(2018) 069902(E)
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ITMEP project and comparison with the SzRIT data

- Transport model evaluation project (TMEP) [Before exp. data were available]
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I Box Pion Comparison in Transport Model Evaluation Project (TMEP)

Compared 10 transport codes under controlled conditions A. Ono et al,, [TMEP] PRC 100 (2019)
of a system confined in a box with periodic boundary
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Momentum dependence of the mean-field potentials
and

Improved transport model: AMD+sJAM



I Transport equation with collision term under potentials

In our study (N. lkeno and A. Ono, PRC 108, 044601 (2023)) :
v Improve the AMD+sJAM model to properly take into account such potentials consistently

- Potentials enter both the mean-field propagation and the collision term (in principle)
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Potentials at the space-time point of the collision enter in the energies: Pl
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Assume energy conservation at each collision.
» Threshold effect: 6 =0 when E; (ps=0) > E;. This threshold condition depends on the potentials.
* More generally, we need to know how the cross section o depends on the potentials.




I Momentum dependence of the nucleon potentials
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I NN—-NA cross sections under potentials

Two different momentum dependences of neutrons U (p)
and protons U (p)

Similar EOS for SLy4 and SkM*

SLy4 SkM*

Po 0.16 0.16  fm™
E, -15.97  -15.77 MeV
K 230 217 MeV
m* 0.69 0.79 m,
Sy 32.0 30.0 Mev
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my - m’ -0.18 +0.33  6-m,
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N. Ikeno and A. Ono, PRC108, 044601 (2023)

o(NN — NA) with the initial nucleon momenta £p,,
in nuclear matter, as a function of V5= 2ymj + pi
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o(+p,; environment) ~ p. ~Je* with € = 2,/mj + (zp,)2 - m, - m, +U, (+py) + Uy(-Py) - U5(0) - U,(0)

Strong impact on the isospin dependence of A production by e.g. 2U_(py)- Up(O) - U,(0) 16 .

same as in vaccum

effect of Eotentials




I Modified Model: AMD+sJAM

AMD wave function

|®amMD) = dgt [GXP{—V (”'j - 22?9)2} Xm(i)}-

Effective interaction:
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Collison term with cluster:
Ni+No+ By +DBy, — C1+Cy

do pi p p t
—— =P(C1,C) (= L) ML
ds? v Uf Di

- Energy is conserved precisely
- Cross section naturally depends on potentials

N. Ikeno and A. Ono, PRC108, 044601 (2023)

sJAM: newly developed JAM

Collisions including ...

NN < NN
NN < NA
A < Nr

e.g. NN— NA

dONNNA |M|? py

dma 167s p;

is calculated as a function of
(P1, P2: environment) for
every possible collision.

The JAM code (without pot.) in the AMD+JAM model has been replaced by the new sJAM code (with pot.).

a

X fify — Ax(ma)



I Effect of nucleon potential on pion production . ieno and a. ono, prci0s, 044601 (2023

(my<mp)  SLy4 (Soft) SkM* (my, > mp) Data: J. Estee et al. [SnRIT],
R PRL26,162701(2021).
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Nuclear dynamics are discussed
SnRIT data within AMD:
v’ Sly4 vs. SkM*: Momentum dependence of U, and U, has a strong effect on pion production M. Kurata-Nishimura et al. [SzRIT],
PLB871, 139970 (2025)
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Effect of nucleon potential on pion production

SLy4:L108 (Stiff)  m;,<m} SlLy4 (Soft)

SkM* (m} > m})

N. lkeno and A. Ono, PRC108, 044601 (2023)

J. Estee et al. [SnRIT],

' ' ' ' PRL26,162701(2021).
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Nuclear dynamics are discussed
SwRIT data within AMD:
v Sly4 vs. SkM*: Momentum dependence of U, and U, has a strong effect on pion production M. Kurata-Nishimura et al. [SrRIT],
n P PLB871, 139970 (2025)

v" SlLy4 vs. SLy4:L108: Relatively small dependence of symmetry energy (L) on pion production

19.




I From nucleons to pion ratios N. Ikeno and A. Ono, PRC108, 044601 (2023)

8.0 Representative ratios:
1.0y . ggj }‘:ﬂfg Dl (N)2 Jo N(t)2dt A~ [T (i — pAT)dt
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0.0 SLy4:L108, yy =1 =i 4 Jo Z(t)2dt AT [ (pp — nAT)dt
5.0 SLy4:L108, yy =3~ N(t), Z(t) : Numbers of nucleon which satisfy the conditions
SKM*, yp=1 =

40r SkM*, yp=3 -]
o > Without consideration of potential effects
= 307 i N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93 (2016) 044612 PRC97(2018)
€ 25L {(N)2 069902(E)
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20 .
3t |
15F 132Sn+124Sn, - 25 ///(N/Z “system
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1

NzP,  N2P,, At @ Py,

v" L dependence (SLy4 vs SLy4:L108) in N/Z is inverted in the A production.
v’ Effect of the symmetry energy L (SLy4 vs SLy4:L108) : Relatively small on pion production

v’ Effect of the momentum dependence of U, and U, (SLy4 vs SkM*): Strong * Pion potential is NOT
v m/n* carries strong information on the momentum-dependence of U, and U, included here 20 .




E, [MeV]

I Pion potential effect on pion production

Low-density and low-momentum region: s-wave potential is well-known

E.E. Kolomeitsev, N. Kaiser, W. Weise, PRL90(03)092501: D. Jido, T. Hatsuda, T. Kunihiro,

Exp. data and chiral perturbation theory PLB670(08)109, K. Kwon, D. Jido et al, arXiv:2507.01398 [nucl-th], ete:
ex) Deeply bound pionic atom, Recent Experimental Results @ RIKEN/RIBF i)
T. Nishi, K. Itahashi, .., N. Ikeno, et al. [piAF], Nature Phys. 19 (2023) 788. %325*
S. Hirenzaki and N. lkeno., 'Handbook of Nuclear Physics’, Springer (2022), 515
“Theoretical study of Deeply Bound Pionic Atoms with an Introduction to Mesonic Nuclei”. " wp

Fit region
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High-density (>2p,) and high-momentum region: p-wave potential includes large uncertainties

[an example of theory]: A-hole model in HIC, p-wave interaction: attractive
C.M. Ko, L. Xiong, V. Koch. PRC.47.788(1993): Z. Zheng, C.M. Ko, PRC 95, 064604 (2017) ...

: . 2 2 2 . .
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I Pion spectra for different p-wave pion potentials SLy4 case
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Effect of p-wave potentials (high-p and high-p) on high-momentum pion yield
-> Does this uncertainty affect the final result?




I Pion potential effect on pion production

8.0
L SLy4, free m ===
7.0 SLy4, My, —&-
6.0 - SLy4, Ms + Mp(x=1) ~O- g
SkM*, free I s
5.0 SkM*, My ==
SkM*, Mg+ My(x=1) >
4.0 i

@)

= 3.0r -

((v]

o 25L |
2.0 - i
15+ |
10 | \ | | \

(N/Z)3. 5, (NIZ)Z. 5, A-/A* n~/n*t n/n?t
p > 480 pr>0 pr>200

A~/AT = (nn—=pA7)/(pp—nAtY)

N2
(?)Sys

* A production ratio (A~/A*") is reduced by mainly I1, not by IT,
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Symmetry energy Nucleon J A Particle Pion
I S umma ry [ soft / stiff ] — { N/Z D SN -ﬂ;/n+

(Nucleon dynamics) (NN <> NA) (A <> Nm)
* Pion production in HICs and High-density symmetry energy Bor ot =]
Or SLy4:L108, yp=3 -
« Transport models: AMD+sJAM " V 2'&3"'5“:%'2'
. Y yp=3 o]

v" Cluster correlation

30r
25¢F

Ratio

(Ny2
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v" Collision term under potentials
- Strong influence on the NN <> NA process (SLy4 vs. SkM*)
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 Pion ratios are more sensitive to the momentum dependence of U,
and U, than other factors p> e

pr>0 pr>200

» Better observables and ways to determine the symmetry energy?
=> Pions combined with nucleon fragments and other observables

New experimental data: Different systems and energies
=> Comprehensive studies are expected







I How to understand the effects in Nucleon dynamics
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I How to understand the effects in Nucleon dynamics
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I How to understand the effects in Delta and pion
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I How to understand the effects in Delta and pion
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I Nucleon and A potentials
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I Delta potential (isoscalar and isovector)

a® =15 MeV, o2 =15 MeV, I'2 = 60 MeV

 Effects of the isovector part of U, 60 | |
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v Effect of the isospin splitting of the A potential (y,=1 vs. y,=3) is of the same order

as that of the nuclear symmetry energy (SLy4 vs SLy4:L108).




I Delta potential (isoscalar and isovector)

v
v
v

Effects of the isoscalar part of U, and spreading width '
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Results are similar qualitatively
Effect of the symmetry energy (SLy4 vs SLy4:L108) is now stronger
Effect of the difference in the momentum dependence of U, and U, (SLy4 vs SkM*)
is always the most significant
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I Delta potential (isoscalar and isovector)

ay =15 MeV, a2 = 15

Effects of the isoscalar part of U, and spreading width I'* |
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« Low momentum region of the spectra is significantly affected by T2
» Pionyield is overestimated due to the lack of the repulsive terms in U,




I Interactions: SLy4, SLy4:1L.108, SkM* ki

« Energy density:

Eina (1) = D _{UL%pa(1)ps(r) + ULty pa(r)ps (r) [p(e)]

af
dp

Densities: Pn(?‘)Z/(%h)afa(ﬂP)z

with p(r) = <3 [ GHpfutr).

The coefficients are related to
the Skyrme parameters
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In the case of cut-off parameter Amd = 00,
interaction is equivalent to the Skyrme type
interaction
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I Interactions: SLy4, SLy4:L108, SkM* P
 Momentum-dependent potential (in AMD):

r _ -3 0 _ A p— iﬁ( )J? %
Ug(r,p) = (270) 57 (D) /Emt(r)d“r._ A, )1+ P~ p(IP/AZ, + Cql(r).
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« Relativistic version (in sJAM):
Nucleon single-particle energy E,(r,p) = /(mny +35(1)2 + (p — Za(r))2 + 20 (7).

Parametrization from Skyrme interaction: equivalent up to O(p?):
2
o 0 c.f. Zhen Zhang and Che Ming
I +4a(p—p)° +Catmy x\/(my +35)2+ (p— o) + 3, Ko, PRC 98 (2018) 054614
Yo =my —my with the nucleon effective mass m, = (m Evl +2A4,)71
3, = 444(1""”;,5: 2m;, Z Uiy b
dp ,
Jy(r)= | ——pfi(r.
YW=, — 25 + Ap° —Sm* A2p? =C, — 35 — = o) /(QFTT?)SPIIJ(T )
a=C P 2m dp
m(r) = ——p>fu(r.p).
(27h)3

Ura(p) = V(my +25)2 +p2 + 20 — \/m L+ P
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