

Nuclear Collision Dynamics and Pion Production

Natsumi Ikeno (Kobe University)

Akira Ono, Yasushi Nara, Akira Ohnishi, Che Ming Ko

- Heavy-ion collisions at intermediate energies (Sn+Sn at $E/A \sim 300$ MeV, neutron-rich systems)
- Nuclear equation of state (EOS) and constraints on the symmetry energy
- Cluster and Pion production within AMD+(s)JAM transport model

- N. Ikeno, A. Ono, Y. Nara and A. Ohnishi, PRC93, 044612 (2016), PRC97, 069902(E) (2018), PRC101, 034607 (2020)
- N. Ikeno and A. Ono, PRC 108, 044601 (2023)
- N. Ikeno, A. Ono, and C. M. Ko, in preparation
- TMEP collaboration (Review paper), Prog. Part. Nucl. Phys. 125, 103962 (2022)

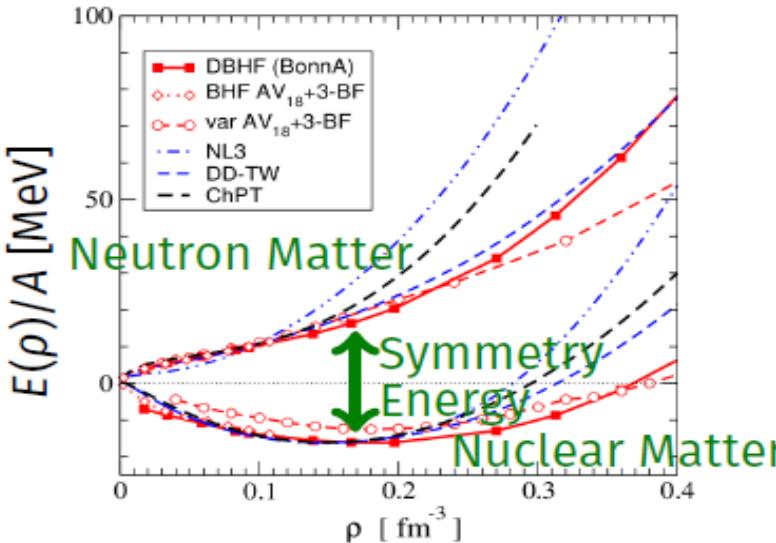
Investigation of the Nuclear Equation of State (EOS)

Nuclear matter EOS

$$\frac{E}{A}(\rho_p, \rho_n) = \left(\frac{E}{A}\right)_0(\rho) + E_{\text{sym}}(\rho)\delta^2 + \dots$$

$$\rho = \rho_p + \rho_n, \quad \delta = (\rho_n - \rho_p)/\rho$$

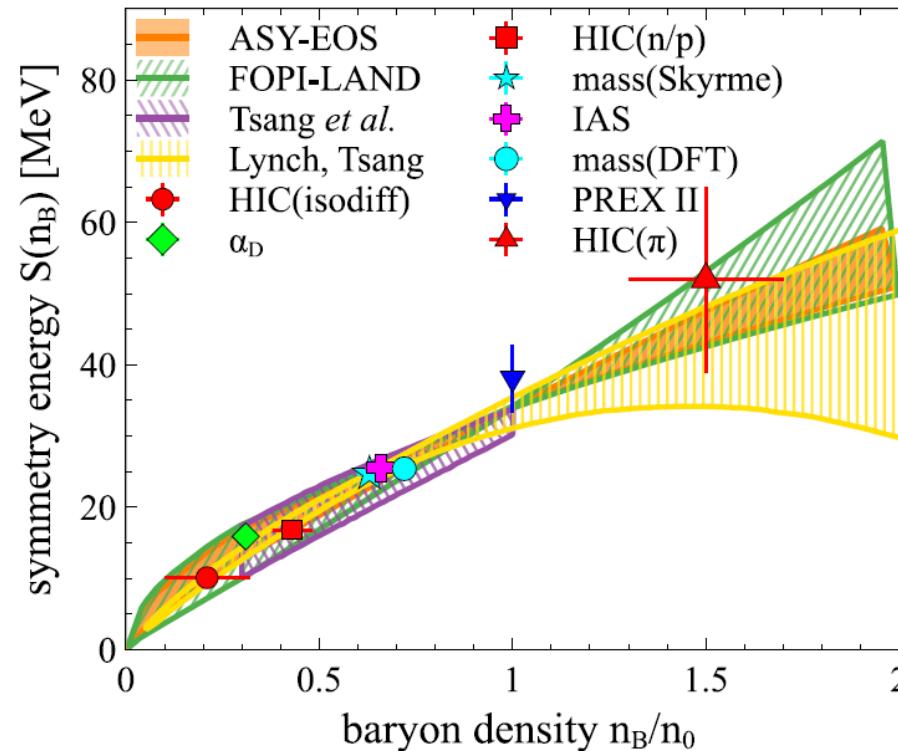
$$S_0 = E_{\text{sym}}(\rho_0), \quad L = 3\rho_0(dE_{\text{sym}}/d\rho)_{\rho=\rho_0}$$



Fuchs and Wolter, EPJA 30, 5 (2006)

Constraints on the symmetry energy $E_{\text{sym}}(\rho)$

A. Sorensen *et al.* Prog. Part. Nucl. Phys. 134, 104080 (2024)



- Low-density region: Many constraints
- High-density region ($\rho_0 < \rho$) Still large uncertainties

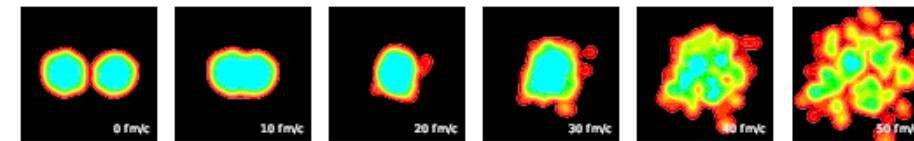
How can we constrain $E_{\text{sym}}(\rho)$ at $\sim 2\rho_0$?

- **Pion production in HICs (This talk)**
- Isospin dependence of collective flow

Pion production in Heavy-ion collisions

$^{132}\text{Sn} + ^{124}\text{Sn}$, $E/A = 300 \text{ MeV}$, $b \sim 0$

AMD calculation



Symmetry energy
soft / stiff

Nucleon
N/Z

Δ Particle
 Δ^-/Δ^{++}

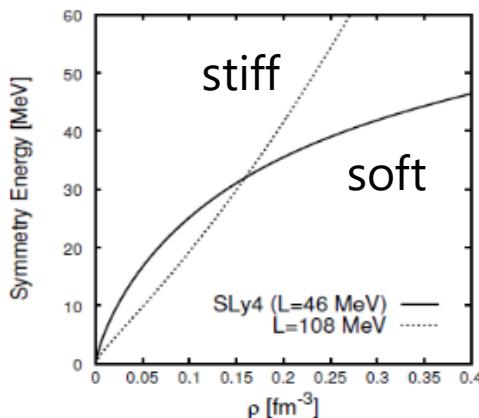
Pion
 π^-/π^+

\longleftrightarrow
(Nucleon dynamics)

\longleftrightarrow
($\text{NN} \leftrightarrow \text{N}\Delta$)

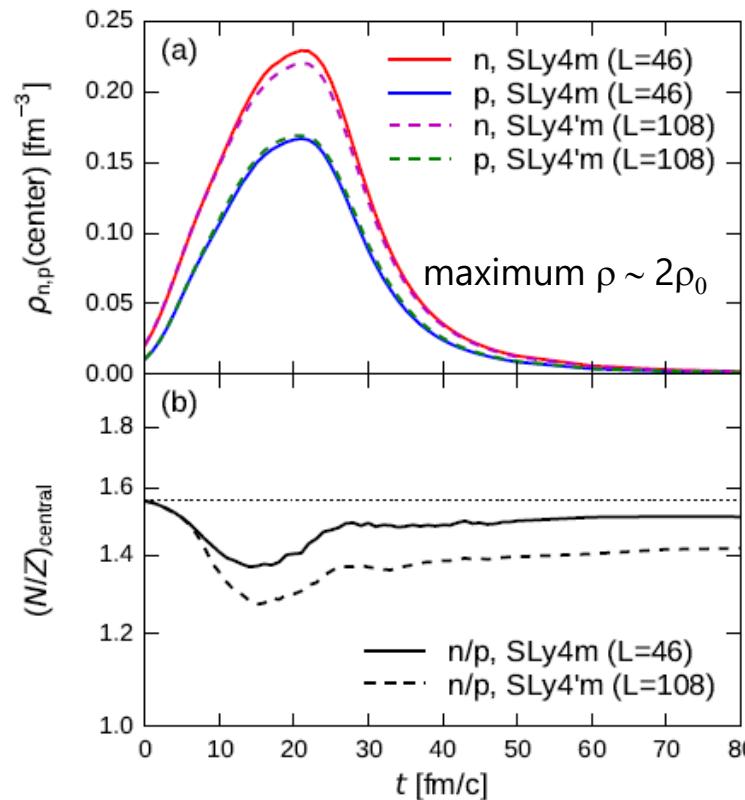
\longleftrightarrow
($\Delta \leftrightarrow \text{N}\pi$)

Effective interaction:
Skyrme force



Interest:
High density $\rho \sim 2\rho_0$

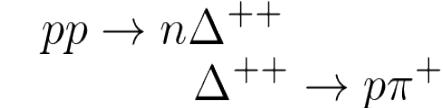
Clear difference of N/Z in high ρ due to different $E_{\text{sym}}(\rho)$



Formation in NN collisions

π^- production

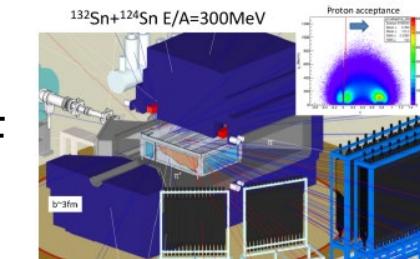
π^+ production



Simple expectation : $\frac{\pi^-}{\pi^+} \simeq \left(\frac{N}{Z}\right)^2$ @high density

Considered to be sensitive to symmetry energy at high density
B. A. Li, PRL 88, 192701 (2002)

Experimental study:
S π RIT project @RIBF
Sn+Sn, $E/A=270 \text{ MeV}$

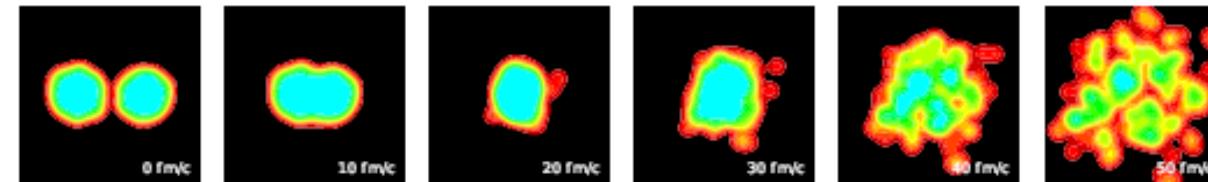


Transport equation for heavy-ion collisions

Transport models are used as the main method to obtain physics information from HICs by solving the time evolution of the collision reaction

$^{132}\text{Sn} + ^{124}\text{Sn}$, $E/A = 300 \text{ MeV}$, $b \sim 0$

AMD calculation



- Transport equation for one-body distribution function $f_\alpha(\mathbf{r}, \mathbf{p}, t)$ ($\alpha = n, p, \Delta^-, \Delta^0, \Delta^+, \Delta^{++}, \pi^-, \pi^0, \pi^+$)
BUU eq.

H. Wolter et al. [TMEP], (Review paper), Prog. Part. Nucl. Phys. 125, 103962 (2022)

$$\frac{\partial f_\alpha(\mathbf{r}, \mathbf{p}, t)}{\partial t} = \underbrace{\frac{\partial h_\alpha[f]}{\partial \mathbf{r}} \cdot \frac{\partial f_\alpha}{\partial \mathbf{p}} - \frac{\partial h_\alpha[f]}{\partial \mathbf{p}} \cdot \frac{\partial f_\alpha}{\partial \mathbf{r}}}_{\text{Mean-field propagation term}} + \underbrace{\int |\mathbf{v}| \frac{d\sigma}{d\Omega} \{f_3 f_4 (1-f)(1-f_2) - f f_2 (1-f_3)(1-f_4)\} \frac{d\mathbf{p}_2 d\Omega}{(2\pi\hbar)^3}}_{\text{Collision term}} \frac{d\mathbf{p}_2 d\Omega}{(2\pi\hbar)^3}$$

($\text{NN} \leftrightarrow \text{NN}$, $\text{NN} \leftrightarrow \text{N}\Delta$, $\Delta \leftrightarrow \text{N}\pi$)

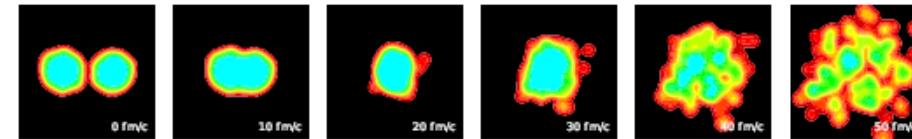
Single-particle Hamiltonian (\Leftarrow EOS): $h_\alpha(\mathbf{r}, \mathbf{p}; f) = \frac{\delta E}{\delta f_\alpha(\mathbf{r}, \mathbf{p})} = \frac{\mathbf{p}^2}{2m_\alpha} + U_\alpha(\mathbf{r}, \mathbf{p}; f)$

- Potentials U_α enter in both the mean-field propagation and the collision term (in principle)

What factors influence pion production, and to what extent?

$^{132}\text{Sn} + ^{124}\text{Sn}$, $E/A = 300 \text{ MeV}$, $b \sim 0$

AMD calculation



Symmetry energy
soft / stiff

(Nucleon dynamics)

Nucleon
N/Z

($\text{NN} \leftrightarrow \text{N}\Delta$)

Δ Particle
 Δ^-/Δ^{++}

($\Delta \leftrightarrow \text{N}\pi$)

Pion
 π^-/π^+

- ✓ Symmetry energy at high density
- N. Ikeno, A. Ono, Y. Nara and A. Ohnishi, PRC93, 044612 (2016)

- ✓ Cluster correlation
- A. Ono, Prog. Part. Nucl. Phys. 105, 139 (2019)
- N. Ikeno, A. Ono, Y. Nara and A. Ohnishi, PRC93, 044612 (2016), PRC97, 069902(E) (2018)

- ✓ Pauli blocking
- N. Ikeno, A. Ono, Y. Nara and A. Ohnishi, PRC101, 034607 (2020)

- ✓ Momentum dependence of mean-field potential
- N. Ikeno and A. Ono, PRC 108, 044601 (2023)

- ✓ Delta and Pion potential effects
- N. Ikeno and A. Ono, PRC 108, 044601 (2023), - N. Ikeno, A. Ono, and C. Ko, in preparation

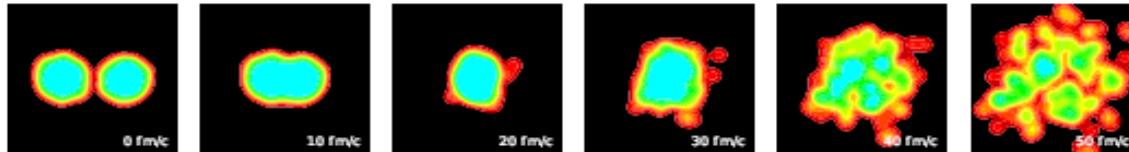
- ✓ Other unexpected effects
.... etc.

- ✓ Details of transport codes: Transport model evaluation project (TMEP)
- H. Wolter et al. (N.I.) [TMEP], (Review paper), Prog. Part. Nucl. Phys. 125, 103962 (2022)

Importance of Cluster correlations and AMD+JAM Transport model

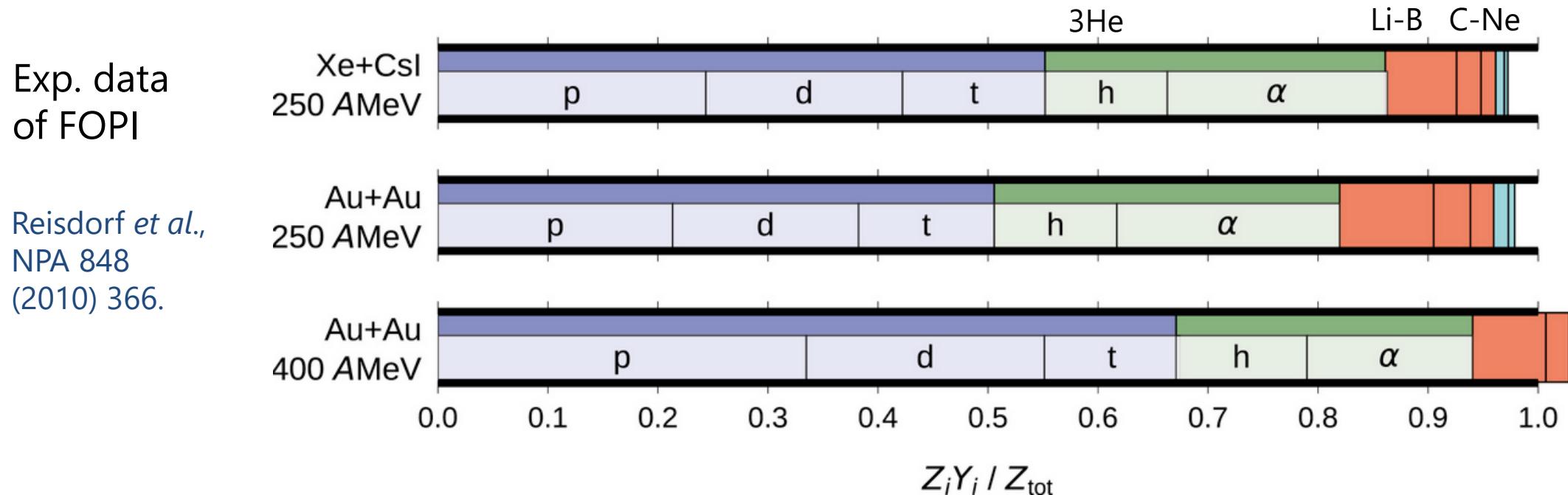
Importance of clusters

A. Ono, Prog. Part. Nucl. Phys. 105, 139 (2019)



In the final stage, clusters and fragments are produced

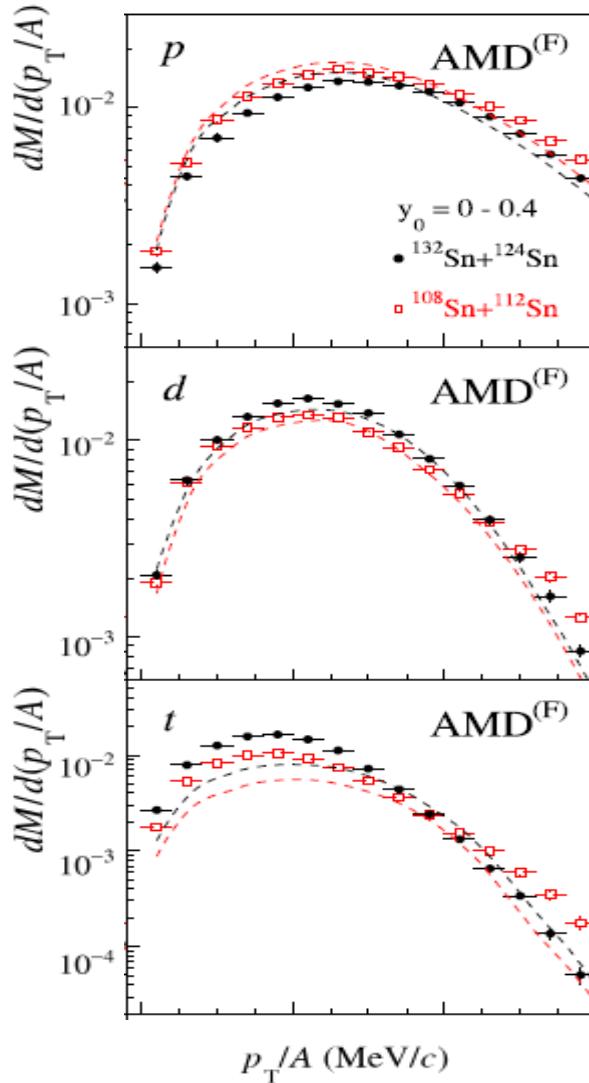
- Decomposition of protons into final products:



Only about 20-30% of the total protons are emitted as free protons. All the other protons are bound in light clusters and heavier fragments.

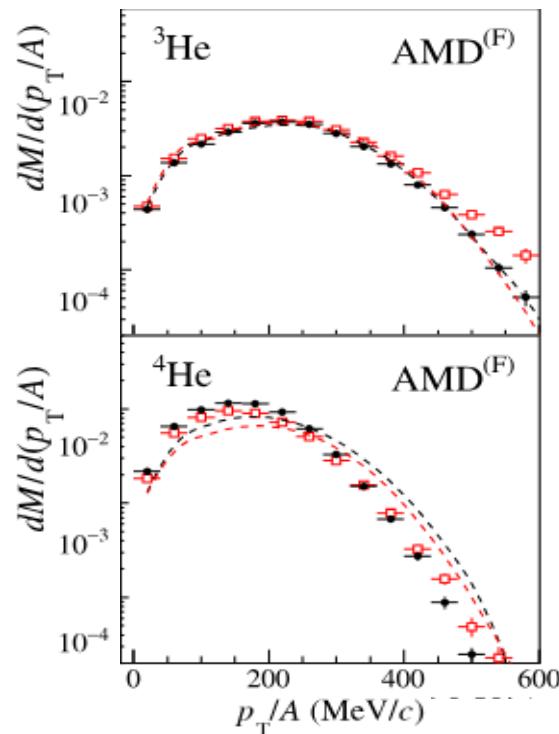
=> Cluster correlations can not be ignored in calculations

Cluster and comparison with the $S\pi$ RIT data



J. W. Lee et al. [S π RIT],
EPJA 58, 201 (2022)

Data points (S π RIT)
 $^{132}\text{Sn} + ^{124}\text{Sn}$
 $^{108}\text{Sn} + ^{112}\text{Sn}$ reactions



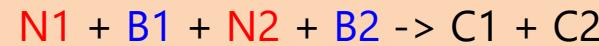
AMD: Antisymmetrized Molecular Dynamics

A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, PTP87 (1992) 1185; A. Ono, Prog. Part. Nucl. Phys. 105 (2019) 139

- AMD wave function

$$|\Phi_{\text{AMD}}\rangle = \det_{ij} \left[\exp \left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i(t)}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right].$$

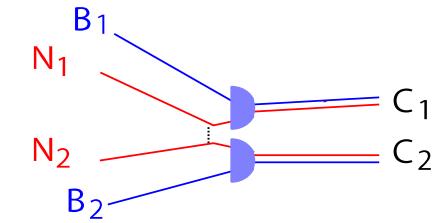
- Effective interaction: SLy4, SkM* etc.
- NN collisions with cluster correlations



N1, N2: Colliding nucleons

B1, B2: Spectator nucleons/clusters

C1, C2: N, (2N), (3N), (4N) (up to α cluster)



$$\frac{d\sigma(C_1, C_2)}{d\Omega} = P(C_1, C_2, p_f, \Omega) \frac{p_i}{v_i} \frac{p_f}{v_f} |M|^2 \frac{p_f}{p_i}$$

More discussion within AMD M. Kaneko et al. [S π RIT], PLB 822, 136681 (2021); M. Kurata-Nishimura et al. [S π RIT], PLB871, 139970 (2025)

Transport model

N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, PRC93(2016) 044612;
PRC97(2018) 069902(E)

- Coupled equations for $f_\alpha(\mathbf{r}, \mathbf{p}, t)$ ($\alpha = N, \Delta, \pi$)

$$\frac{\partial f_N}{\partial t} + \frac{\partial h_N}{\partial \mathbf{p}} \cdot \frac{\partial f_N}{\partial \mathbf{r}} - \frac{\partial h_N[f_N, f_{\Delta, \pi}]}{\partial \mathbf{r}} \cdot \frac{\partial f_N}{\partial \mathbf{p}} = I_N[f_N, f_{\Delta, \pi}]$$

$$\frac{\partial f_{\Delta, \pi}}{\partial t} + \frac{\partial h_{\Delta, \pi}}{\partial \mathbf{p}} \cdot \frac{\partial f_{\Delta, \pi}}{\partial \mathbf{r}} - \frac{\partial h_{\Delta, \pi}[f_N, f_{\Delta, \pi}]}{\partial \mathbf{r}} \cdot \frac{\partial f_{\Delta, \pi}}{\partial \mathbf{p}} = I_{\Delta, \pi}[f_N, f_{\Delta, \pi}]$$

$I_N[f_N, f_{\Delta, \pi}]$:

NN → NN

NN → NΔ

NΔ → NN

Δ → Nπ

Nπ → Δ

- Our model: JAM coupled with AMD

Perturbative treatment of pion and Δ particle production

$$I_N = I_N^{\text{el}}[f_N, 0] + \lambda I'_N[f_N, f_{\Delta, \pi}] \quad \begin{cases} f_{\Delta, \pi} = O(\lambda) : \Delta \text{ and pion productions are rare} \\ f_N = f_N^{(0)} + \lambda f_N^{(1)} + \dots \end{cases}$$

- Nucleon f_N : **Zeroth order equation**

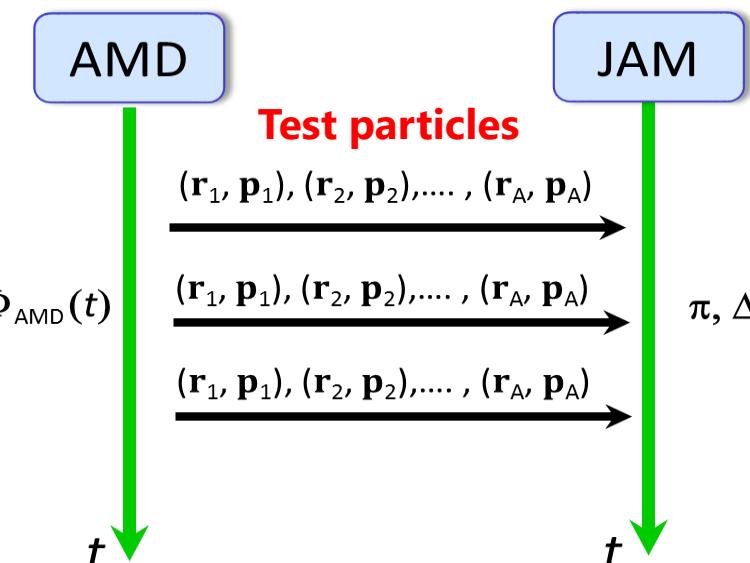
$$\frac{\partial f_N^{(0)}}{\partial t} + \frac{\partial h_N}{\partial \mathbf{p}} \cdot \frac{\partial f_N^{(0)}}{\partial \mathbf{r}} - \frac{\partial h_N[f_N^{(0)}, 0]}{\partial \mathbf{r}} \cdot \frac{\partial f_N^{(0)}}{\partial \mathbf{p}} = I_N^{\text{el}}[f_N^{(0)}, 0]$$

- Δ particle f_Δ and pion f_π : **First order equation**

$$\frac{\partial f_{\Delta, \pi}}{\partial t} + \frac{\partial h_{\Delta, \pi}}{\partial \mathbf{p}} \cdot \frac{\partial f_{\Delta, \pi}}{\partial \mathbf{r}} - \frac{\partial h_{\Delta, \pi}[f_N^{(0)}, f_{\Delta, \pi}]}{\partial \mathbf{r}} \cdot \frac{\partial f_{\Delta, \pi}}{\partial \mathbf{p}} = I_{\Delta, \pi}[f_N^{(0)}, f_{\Delta, \pi}]$$

Solved by
AMD

Solved by
JAM
for given $f_N^{(0)}$

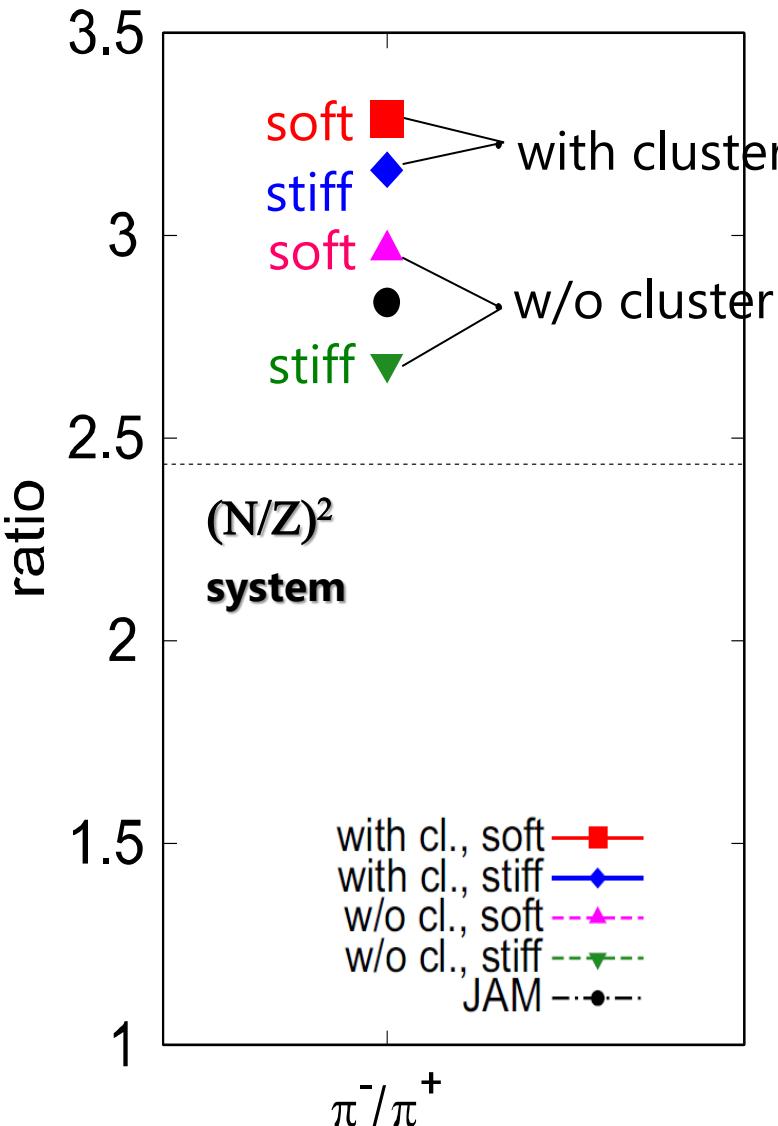


Y. Nara, N. Otuka, A. Ohnishi, K. Niita,
S. Chiba, PRC61 (2000) 024901

Cluster effect on the π^-/π^+ ratio

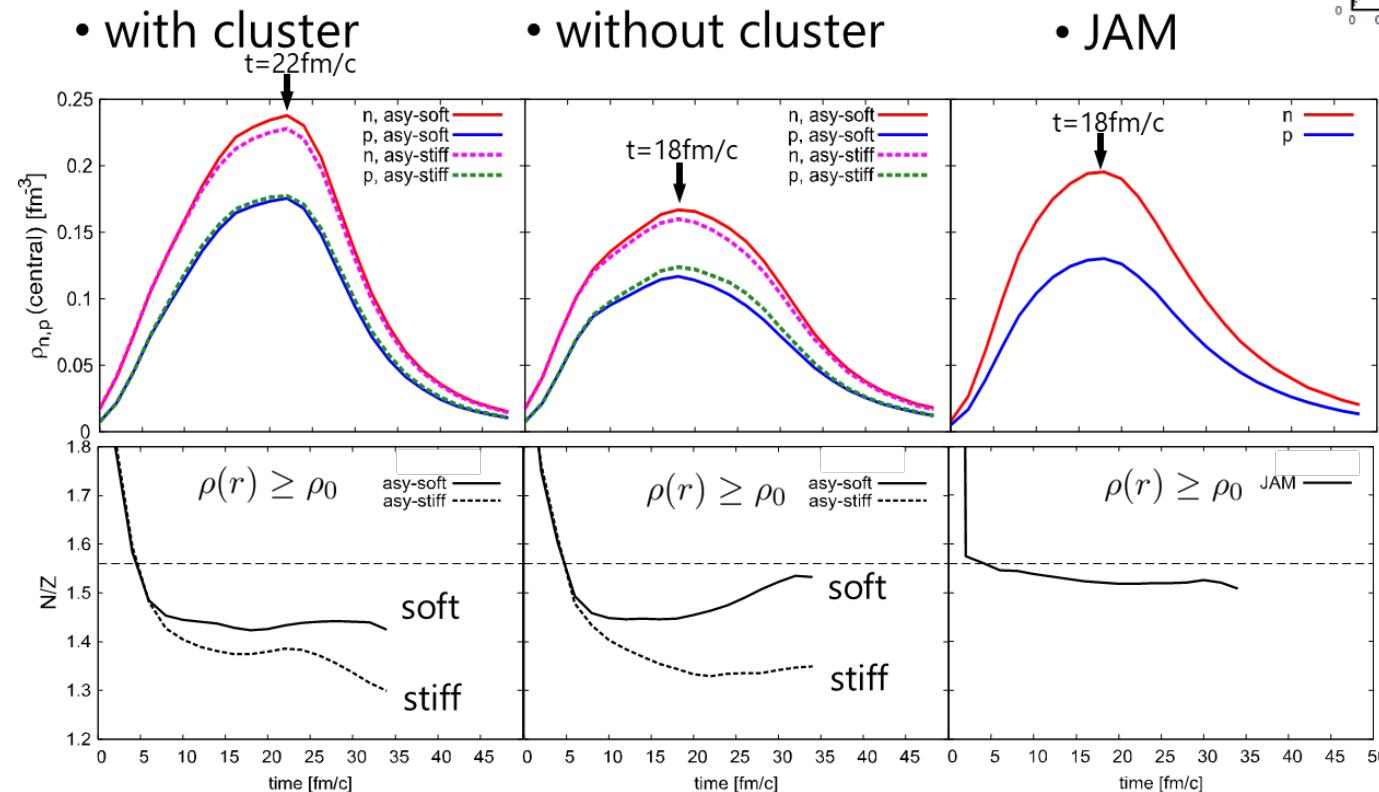
N. Ikeno, A. Ono, Y. Nara, A. Ohnishi,
PRC93(2016) 044612; PRC97(2018) 069902(E)

➤ AMD+JAM model

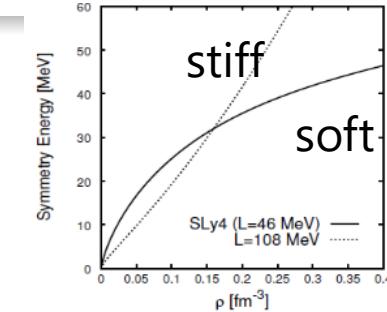


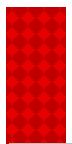
$^{132}\text{Sn} + ^{124}\text{Sn}$, E/A=300 MeV

Effective interaction:
Skyrme force



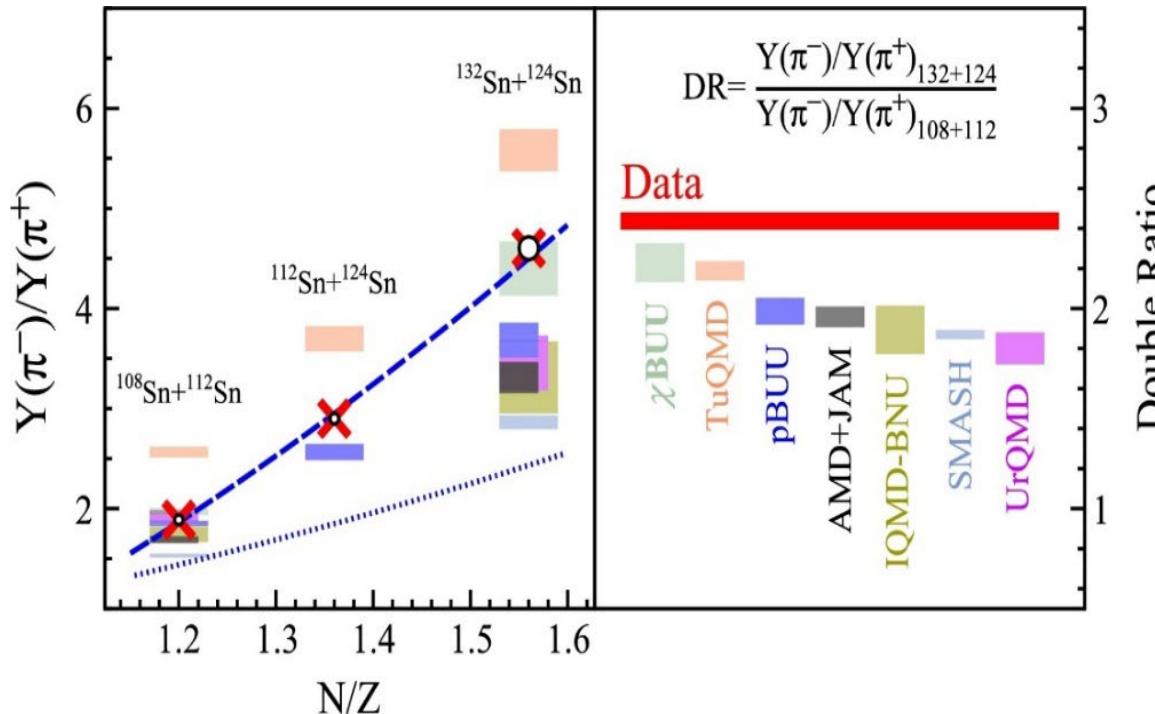
Nucleon dynamics is directly affected by Pion
 ⇒ **Cluster correlation is very important**
 Most codes do not include cluster correlation





TMEP project and comparison with the S π RIT data

- Transport model evaluation project (TMEP) [Before exp. data were available]

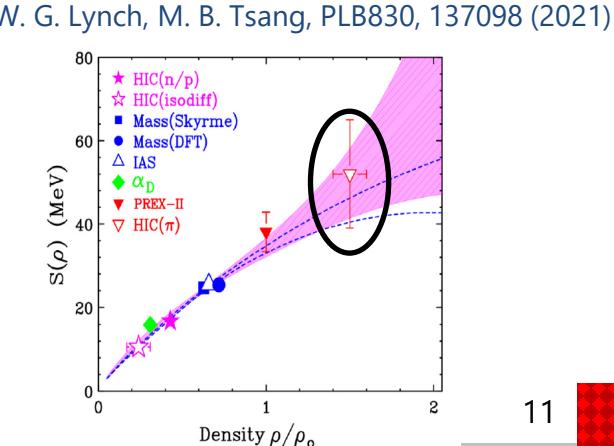


G. Jhang et al. [S π RIT, TMEP], PLB 813, 136016 (2021)

- ✓ Most codes consistently underestimate the data
- ✓ The band for each model: different L effect

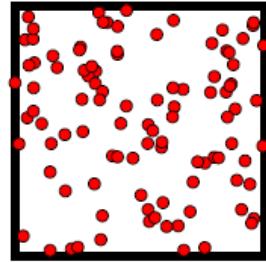
In most codes, potentials were not taken into account in the collision term ($NN \leftrightarrow N\Delta, \Delta \leftrightarrow N\pi$)

- S π RIT experiment @RIBF J. Estee et al. [S π RIT], PRL26, 162701 (2021)
Slope of the symmetry energy is reported to be **42 < L < 117 MeV** with dcQMD(TuQMD)



Box Pion Comparison in Transport Model Evaluation Project (TMEP)

Compared 10 transport codes under controlled conditions of a system confined in a box with periodic boundary



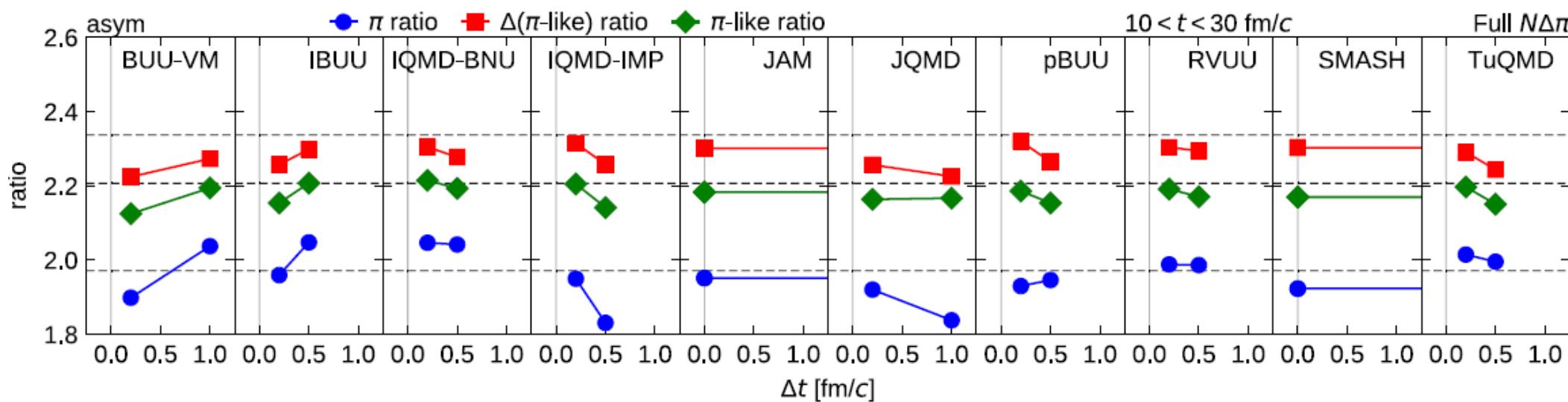
=> Thermal and chemical equilibrium

- $V=(20 \text{ fm})^3$ ($\rho_B=0.16 \text{ fm}^{-3}$)
- **No mean-field**, No Pauli-blocking
- $\text{NN} \leftrightarrow \text{NN}$, $\text{NN} \leftrightarrow \text{N}\Delta$, $\Delta \leftrightarrow \text{N}\pi$

A. Ono et al., [TMEP] PRC 100 (2019)

Nucleons \Leftrightarrow pions, deltas in equilibrium

$$\frac{N}{Z} = \frac{\pi^-}{\pi^0} = \frac{\pi^0}{\pi^+} = \frac{\Delta^-}{\Delta^0} = \frac{\Delta^0}{\Delta^+} = \frac{\Delta^+}{\Delta^{++}}$$



$$\pi\text{-like ratio} = \frac{\pi^- + \Delta^- + \frac{1}{3}\Delta^0}{\pi^+ + \Delta^{++} + \frac{1}{3}\Delta^+}$$

$$\pi \text{ ratio} = \frac{\pi^-}{\pi^+}$$

Agreement of final π^-/π^+ ratio is not so bad.
Uncertainty in the π^-/π^+ ratio is within 5%

Momentum dependence of the mean-field potentials

and

Improved transport model: AMD+sJAM

Transport equation with collision term under potentials

In our study (N. Ikeno and A. Ono, PRC 108, 044601 (2023)) :

✓ Improve the **AMD+sJAM** model to properly take into account such potentials consistently

- Potentials enter both the mean-field propagation and the collision term (in principle)

$$\frac{\partial f_\alpha(\mathbf{r}, \mathbf{p}, t)}{\partial t} = \underbrace{\frac{\partial h_\alpha[f]}{\partial \mathbf{r}} \cdot \frac{\partial f_\alpha}{\partial \mathbf{p}} - \frac{\partial h_\alpha[f]}{\partial \mathbf{p}} \cdot \frac{\partial f_\alpha}{\partial \mathbf{r}}}_{\text{Mean-field propagation term}} + \underbrace{\int |\mathbf{v}| \frac{d\sigma}{d\Omega} \{f_3 f_4 (1-f)(1-f_2) - f f_2 (1-f_3)(1-f_4)\} \frac{d\mathbf{p}_2 d\Omega}{(2\pi\hbar)^3}}_{\text{Collision term (NN} \leftrightarrow \text{NN , NN} \leftrightarrow \text{N}\Delta, \Delta \leftrightarrow \text{N}\pi\text{)}}$$

Collision rate/cross-section: σ ($\mathbf{p}_1, \mathbf{p}_2$: environment) for $1+2 \rightarrow 3+4$

$$v_i \frac{d\sigma}{d\Omega} \propto \int |M|^2 \delta(E_f - E_i) p_f^2 dp_f = |M|^2 \frac{p_f^2}{v_f}, \quad v_f = \frac{dE_f}{dp_f}$$

Potentials at the space-time point of the collision enter in the energies:

$$E_i = \sqrt{m_1^2 + p_1^2} + U_1 + \sqrt{m_2^2 + p_2^2} + U_2, \quad E_f = \sqrt{m_3^2 + p_3^2} + U_3 + \sqrt{m_4^2 + p_4^2} + U_4$$

Assume energy conservation at each collision.

- Threshold effect: $\sigma = 0$ when $E_f(\mathbf{p}_f=0) > E_i$. This threshold condition depends on the potentials.
- More generally, we need to know how the cross section σ depends on the potentials.

Initial state:

$$\xrightarrow[1]{+\mathbf{p}_1} \xleftarrow[2]{-\mathbf{p}_1}$$

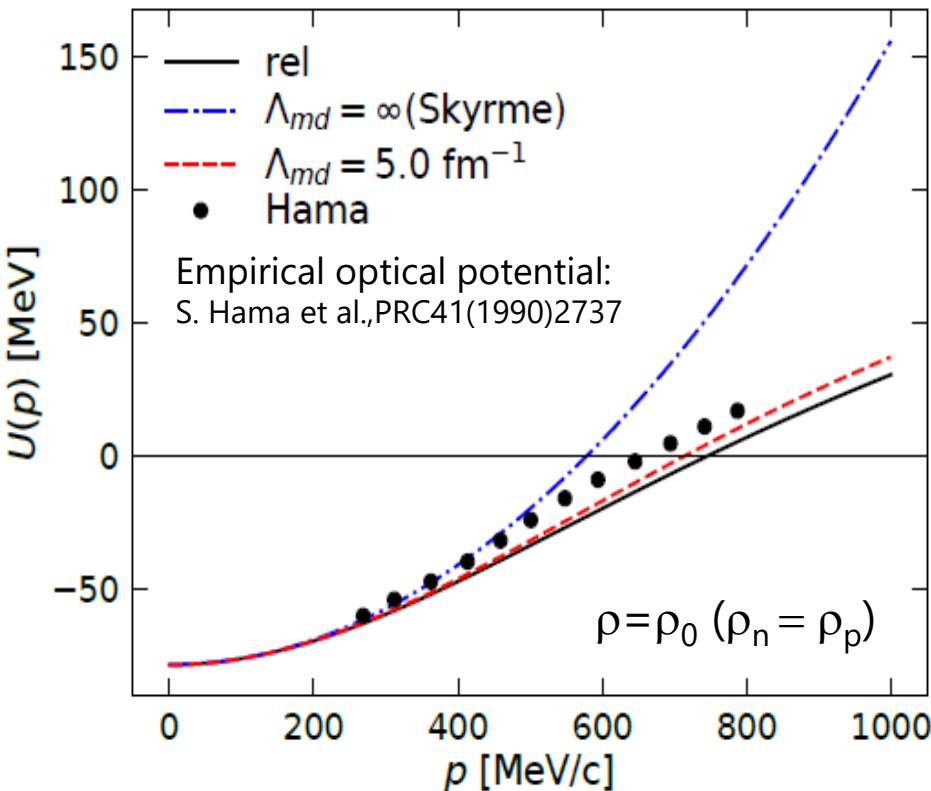
Final state:

$$\xrightarrow[4]{-\mathbf{p}_f} \xuparrow[3]{+\mathbf{p}_f}$$

We must solve

$$E_f(\mathbf{p}_f) = E_i$$

Momentum dependence of the nucleon potentials



- Skyrme interaction (SLy4, $m^*/m=0.70$)
(not used)

$U(p)$ at $p > 500 \text{ MeV}/c$ is important for the Δ, π productions
 $\Rightarrow p^2$ dependence needs modification in the high-momentum region

- $\Lambda_{md}=5.0 \text{ fm}^{-1}$: Used in AMD
- **rel** (relativistic form): Used in sJAM

Momentum-dependent potential (in AMD): $U_\alpha(r, p) = A_\alpha(r) \frac{[p - \bar{p}(r)]^2}{1 + [p - \bar{p}(r)]^2 / \Lambda_{md}^2} + \tilde{C}_\alpha(r),$

Nucleon single-particle energy $E_a(r, p) = \sqrt{(m_N + \Sigma_a^s(r))^2 + (p - \Sigma_a(r))^2} + \Sigma_a^0(r).$

$$U_{\text{rel}}(p) = \sqrt{(m_N + \Sigma^s)^2 + p^2} + \Sigma^0 - \sqrt{m_N^2 + p^2}$$

$$m^* = m_N + \Sigma^s,$$

$$E^* = \sqrt{m_N^{*2} + \mathbf{p}^{*2}},$$

$$\mathbf{p}^* = \mathbf{p} - \boldsymbol{\Sigma}$$

NN \rightarrow N Δ cross sections under potentials

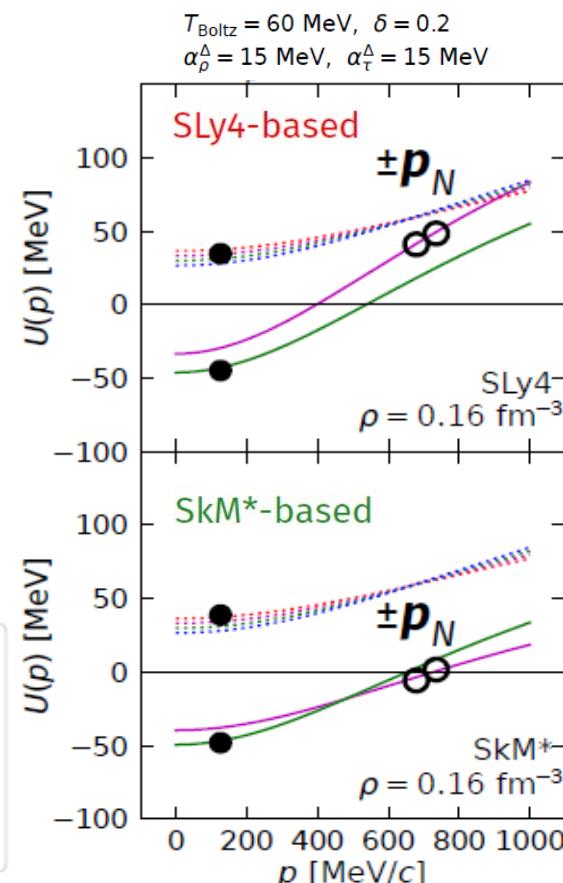
N. Ikeno and A. Ono, PRC108, 044601 (2023)

Two different momentum dependences of **neutrons** $U_n(p)$ and **protons** $U_p(p)$

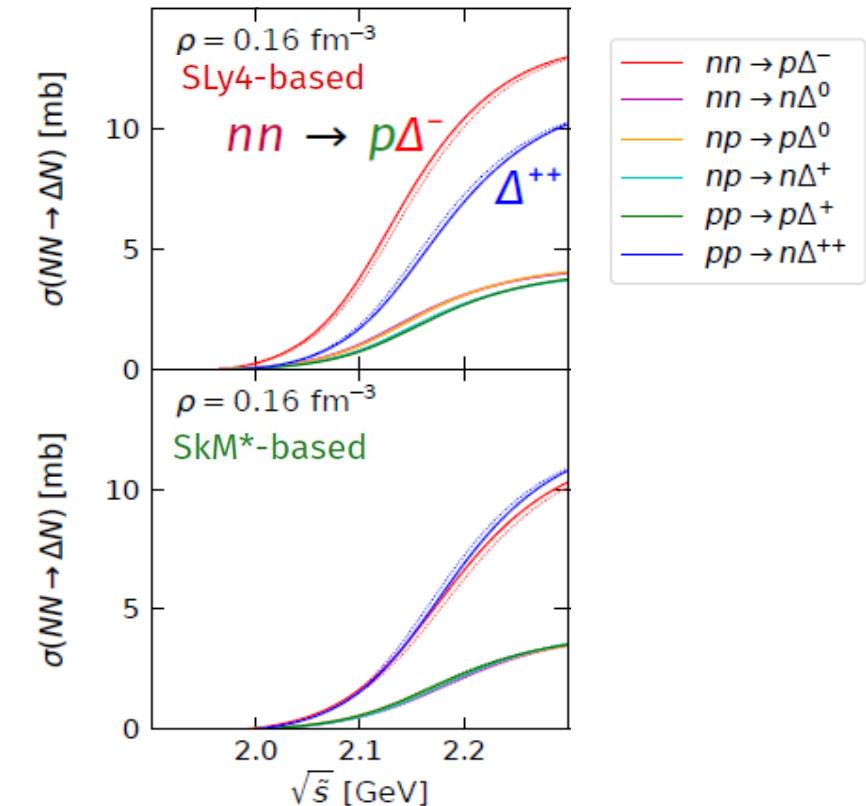
Similar EOS for SLy4 and SkM*

	SLy4	SkM*
ρ_0	0.16	0.16
E_0	-15.97	-15.77
K	230	217
m^*	0.69	0.79
S_0	32.0	30.0
L	46	46
$m_n^* - m_p^*$	-0.18	+0.33
$m_n^* < m_p^*$	$m_n^* > m_p^*$	$\delta \cdot m_N$
		in n-rich

- n
- p
- Δ^-
- Δ^0
- Δ^+
- Δ^{++}



$\sigma(NN \rightarrow N\Delta)$ with the initial nucleon momenta $\pm \mathbf{p}_N$ in nuclear matter, as a function of $\sqrt{\tilde{s}} = 2\sqrt{m_N^2 + \mathbf{p}_N^2}$



$$\sigma(\pm \mathbf{p}_N; \text{environment}) \sim p_f \sim \sqrt{\epsilon^*} \quad \text{with} \quad \epsilon^* = \underbrace{2\sqrt{m_N^2 + (\pm \mathbf{p}_N)^2} - m_N - m_\Delta}_{\text{same as in vacuum}} + \underbrace{U_1(+\mathbf{p}_N) + U_2(-\mathbf{p}_N) - U_3(0) - U_\Delta(0)}_{\text{effect of potentials}}$$

Strong impact on the isospin dependence of Δ production by e.g. $2U_n(p_N) - U_p(0) - U_\Delta(0)$

Modified Model: AMD+sJAM

N. Ikeno and A. Ono, PRC108, 044601 (2023)

AMD wave function

$$|\Phi_{\text{AMD}}\rangle = \det_{ij} \left[\exp \left\{ -\nu \left(\mathbf{r}_j - \frac{\mathbf{Z}_i(t)}{\sqrt{\nu}} \right)^2 \right\} \chi_{\alpha_i}(j) \right].$$

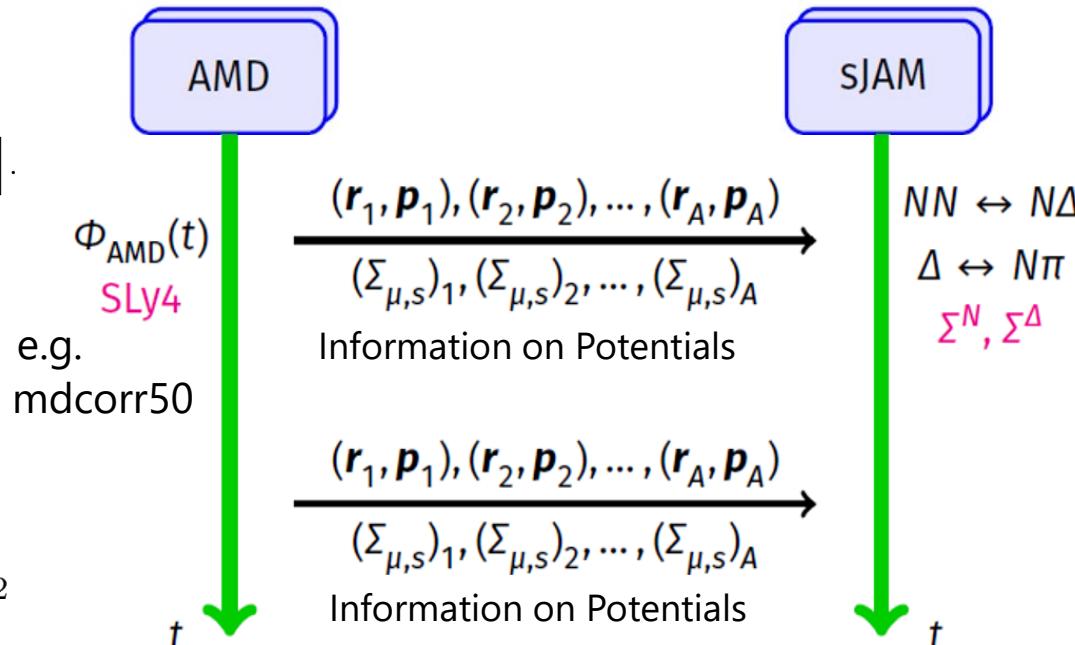
Effective interaction:
SLy4, SkM* etc.

Collision term with cluster:

$$N_1 + N_2 + B_1 + B_2 \rightarrow C_1 + C_2$$

$$\frac{d\sigma}{d\Omega} = P(C_1, C_2) \left(\frac{p_i}{v_i} \frac{p_f}{v_f} \right) |M|^2 \frac{p_f}{p_i}$$

- Energy is conserved precisely
- Cross section naturally depends on potentials



sJAM: newly developed JAM

Collisions including ...

$$\begin{aligned} NN &\leftrightarrow NN \\ NN &\leftrightarrow N\Delta \\ \Delta &\leftrightarrow N\pi \end{aligned}$$

e.g. $NN \rightarrow N\Delta$

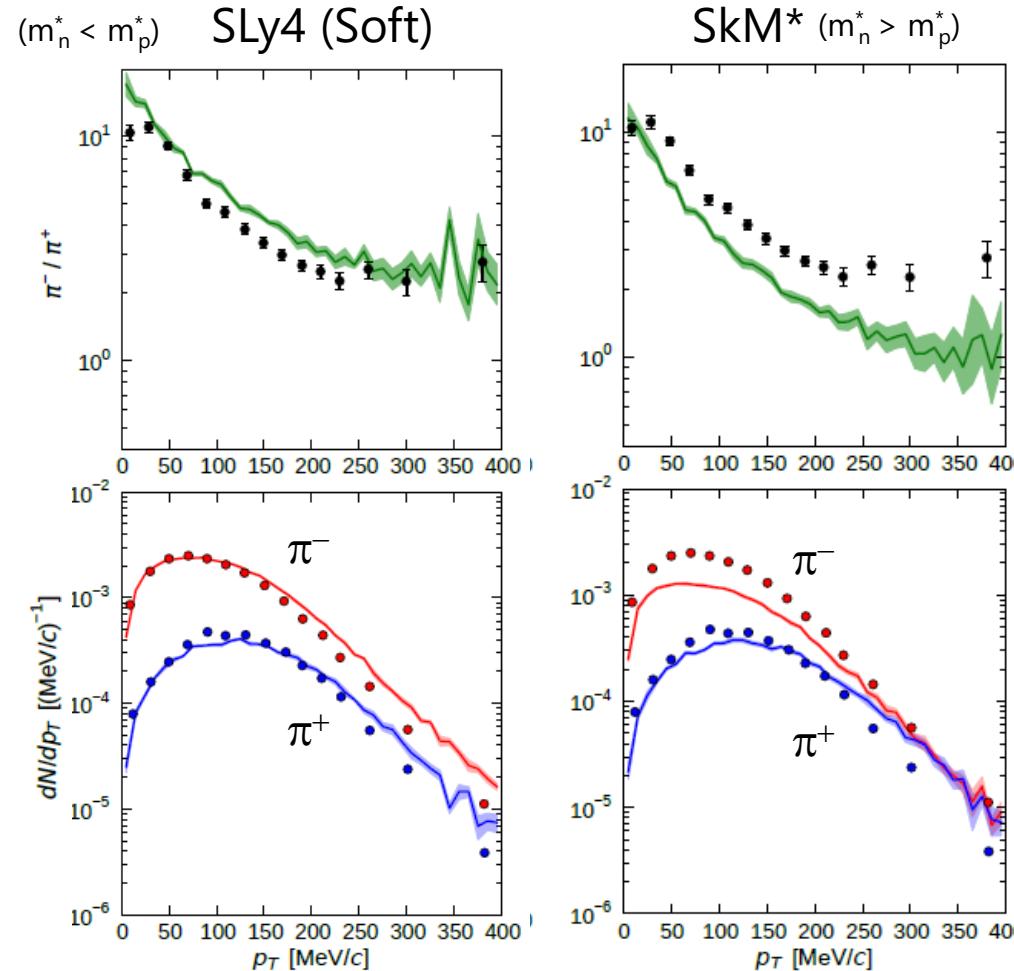
$$\frac{d\sigma_{NN \rightarrow N\Delta}}{dm_\Delta} \propto f_{i\text{ff}} \frac{|M|^2}{16\pi s} \frac{p_f}{p_i} A_\Delta(m_\Delta)$$

is calculated as a function of
($\mathbf{p}_1, \mathbf{p}_2$: environment) for
every possible collision.

The JAM code (without pot.) in the AMD+JAM model has been replaced by the new sJAM code (with pot.).

Effect of nucleon potential on pion production

N. Ikeno and A. Ono, PRC108, 044601 (2023)



Data: J. Estee et al. [S π RIT],
PRL26,162701(2021).

$^{132}\text{Sn} + ^{124}\text{Sn}$,
E/A=270 MeV

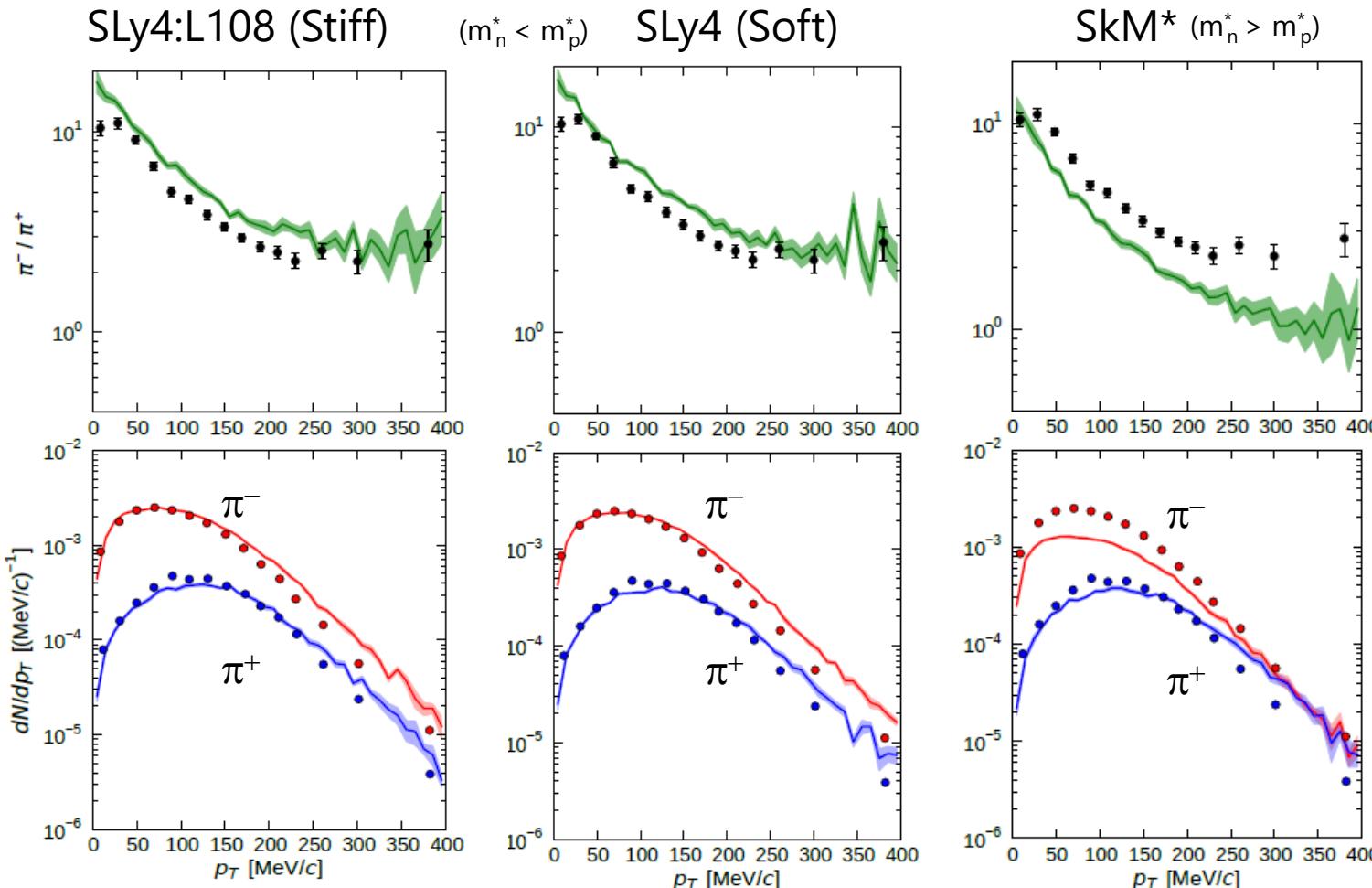
Impact parameter:
 $0 < b < 3 \text{ fm}$

Nuclear dynamics are discussed
S π RIT data within AMD:
M. Kurata-Nishimura et al. [S π RIT],
PLB871, 139970 (2025)

- ✓ SLy4 vs. SkM*: Momentum dependence of U_n and U_p has a strong effect on pion production

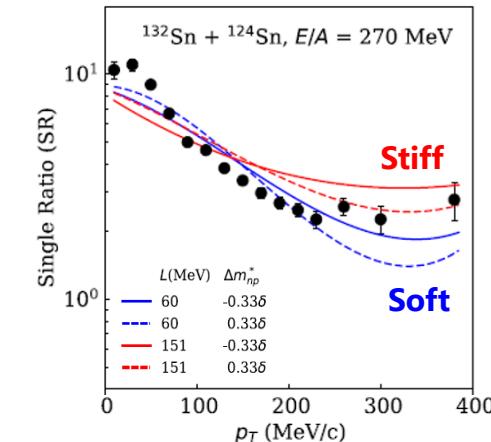
Effect of nucleon potential on pion production

N. Ikeno and A. Ono, PRC108, 044601 (2023)



- ✓ SLy4 vs. SkM*: Momentum dependence of U_n and U_p has a strong effect on pion production
- ✓ SLy4 vs. SLy4:L108: Relatively small dependence of symmetry energy (L) on pion production

J. Estee et al. [S π RIT],
PRL26,162701(2021).
Data: S π RIT, Cal: dcQMD



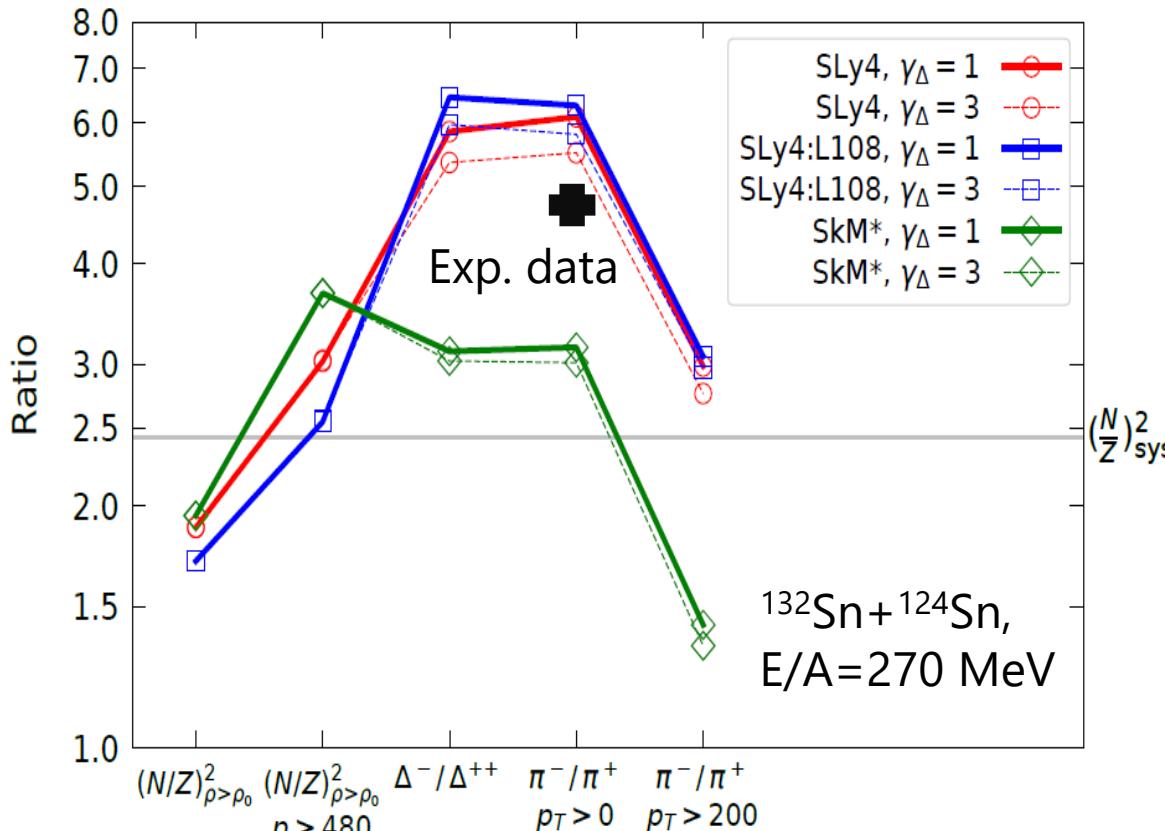
$^{132}\text{Sn} + ^{124}\text{Sn}$,
 $E/A=270$ MeV

Impact parameter:
 $0 < b < 3$ fm

Nuclear dynamics are discussed
S π RIT data within AMD:
M. Kurata-Nishimura et al. [S π RIT],
PLB871, 139970 (2025)

From nucleons to pion ratios

N. Ikeda and A. Ono, PRC108, 044601 (2023)



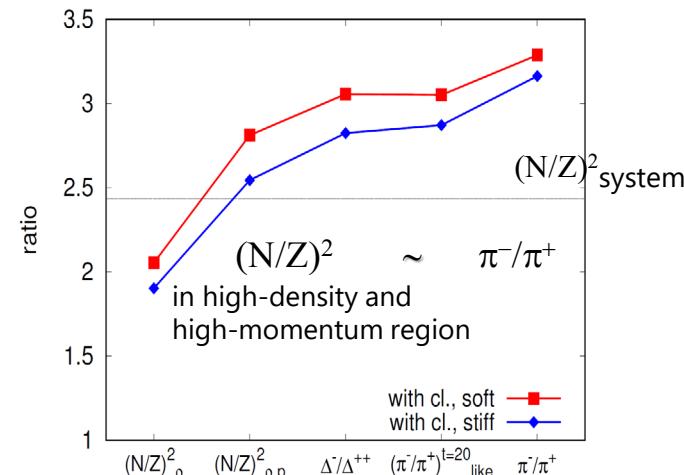
Representative ratios:

$$\left(\frac{N}{Z}\right)^2 = \frac{\int_0^\infty N(t)^2 dt}{\int_0^\infty Z(t)^2 dt} \quad \frac{\Delta^-}{\Delta^{++}} = \frac{\int_0^\infty (nn \rightarrow p\Delta^-) dt}{\int_0^\infty (pp \rightarrow n\Delta^{++}) dt}$$

$N(t), Z(t)$: Numbers of nucleon which satisfy the conditions

➤ Without consideration of potential effects

N. Ikeda, A. Ono, Y. Nara, A. Ohnishi, PRC93 (2016) 044612; PRC97(2018) 069902(E)



- ✓ L dependence (SLy4 vs SLy4:L108) in N/Z is inverted in the Δ production.
- ✓ Effect of the symmetry energy L (SLy4 vs SLy4:L108) : Relatively small on pion production
- ✓ Effect of the momentum dependence of U_n and U_p (SLy4 vs SkM*): Strong
- ✓ π^-/π^+ carries strong information on the momentum-dependence of U_n and U_p
- Pion potential is NOT included here

Pion potential effect on pion production

- Low-density and low-momentum region: s-wave potential is well-known

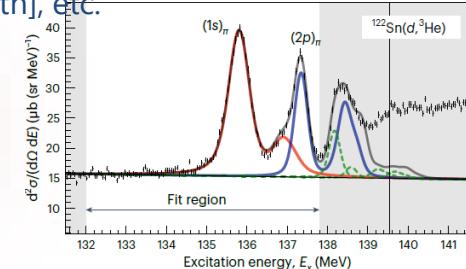
Exp. data and chiral perturbation theory

E.E. Kolomeitsev, N. Kaiser, W. Weise, PRL90(03)092501; D. Jido, T. Hatsuda, T. Kunihiro, PLB670(08)109, K. Kwon, D. Jido et al, arXiv:2507.01398 [nucl-th], etc.

- ex) Deeply bound pionic atom, Recent Experimental Results @ RIKEN/RIBF

T. Nishi, K. Itahashi, .., N. Ikeno, et al. [piAF], Nature Phys. 19 (2023) 788.

S. Hirenzaki and N. Ikeno, 'Handbook of Nuclear Physics', Springer (2022),
"Theoretical study of Deeply Bound Pionic Atoms with an Introduction to Mesonic Nuclei".

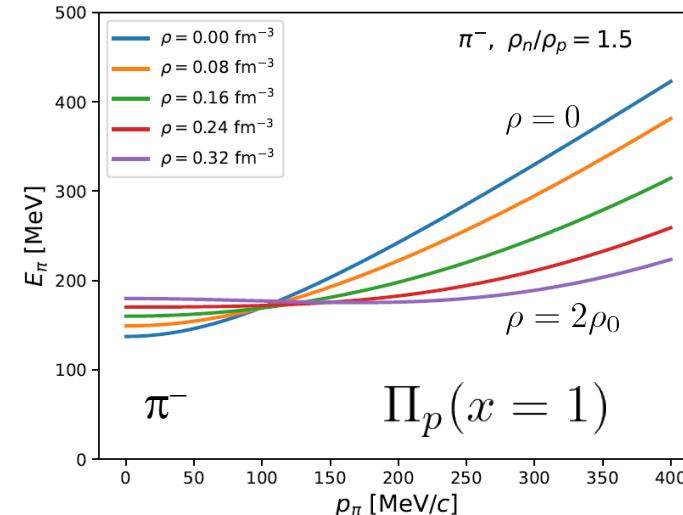
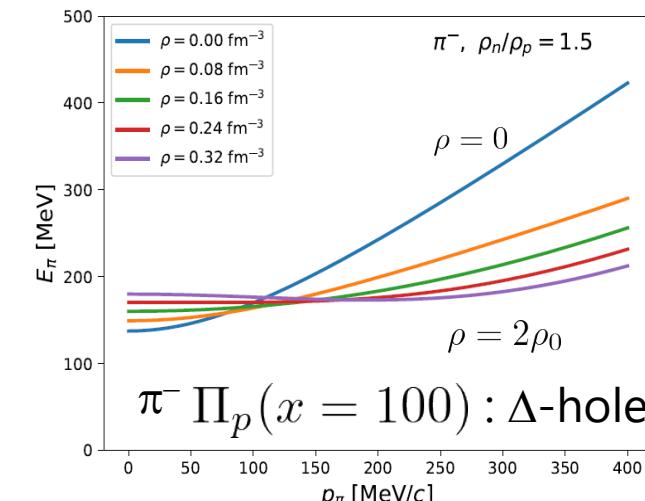


- High-density ($>2\rho_0$) and high-momentum region: p-wave potential includes large uncertainties
[an example of theory]: Δ -hole model in HIC, p-wave interaction: attractive

C.M. Ko, L. Xiong, V. Koch. PRC.47.788(1993); Z. Zheng, C.M. Ko, PRC 95, 064604 (2017) ...

- Pion energy: $E_\pi^2 = m_\pi^2 + \mathbf{p}^2 + \Pi_s + \Pi_p(E_\pi, \mathbf{p})$

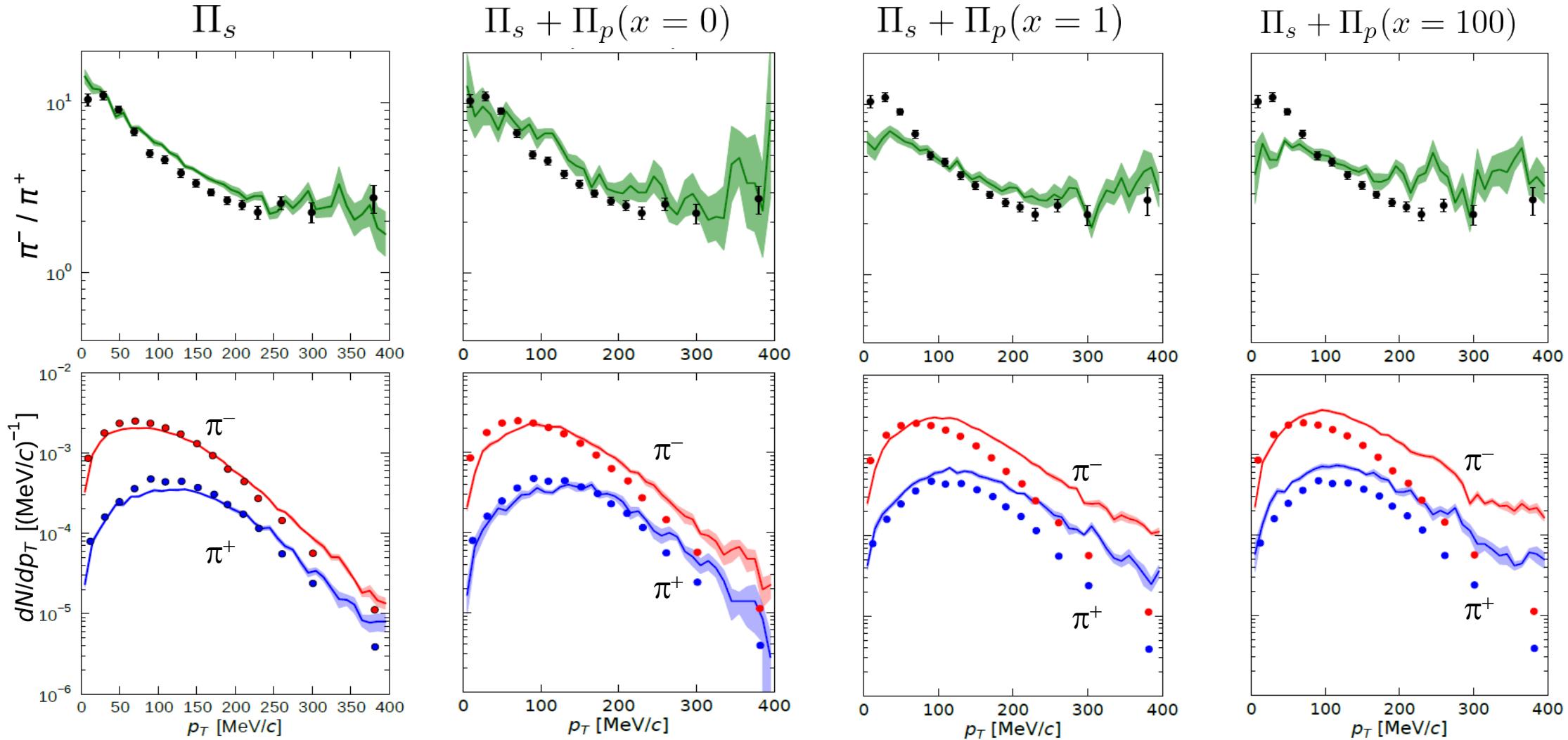
Several choices of p-wave potential:





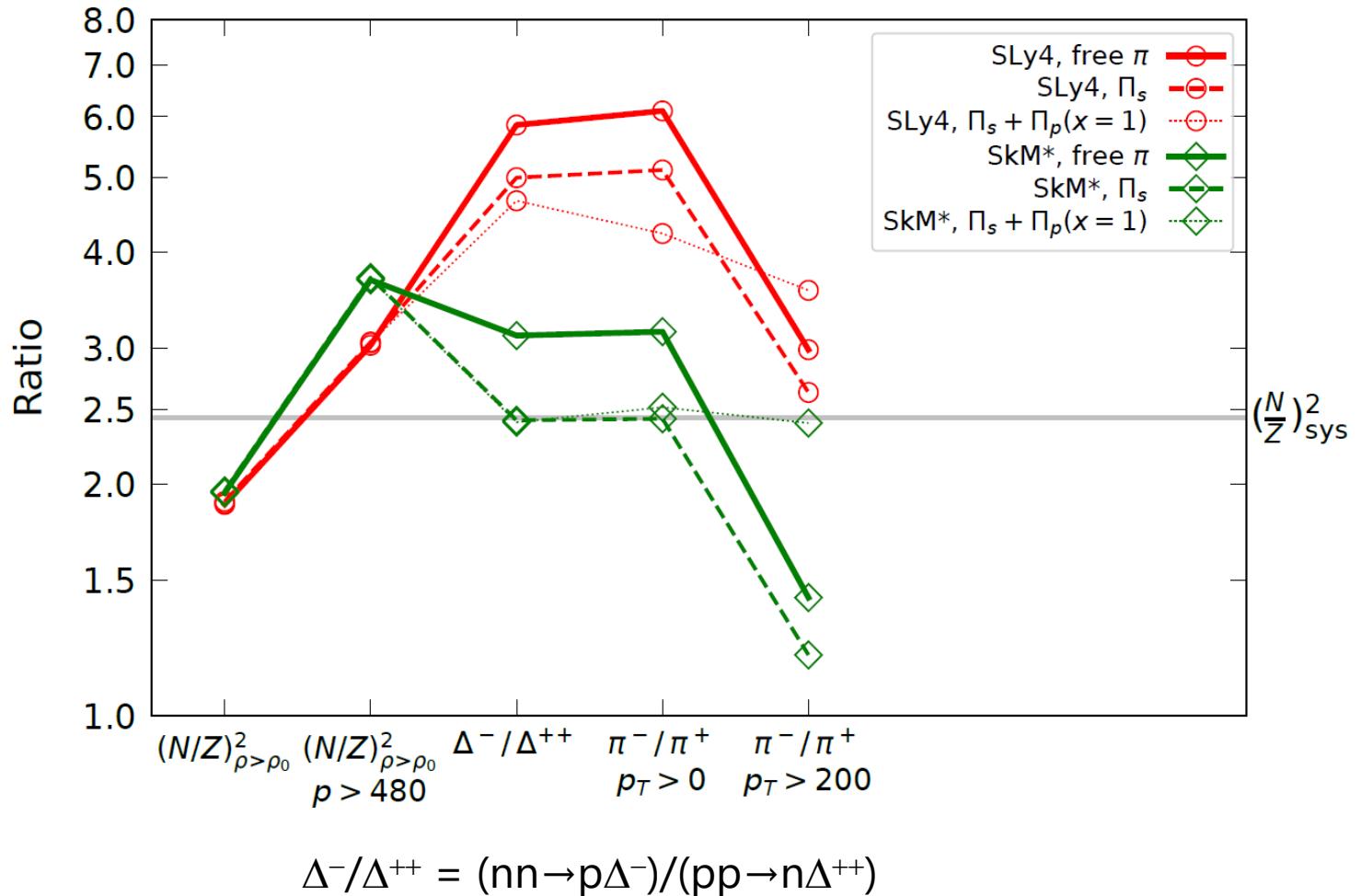
Pion spectra for different p-wave pion potentials

SLy4 case

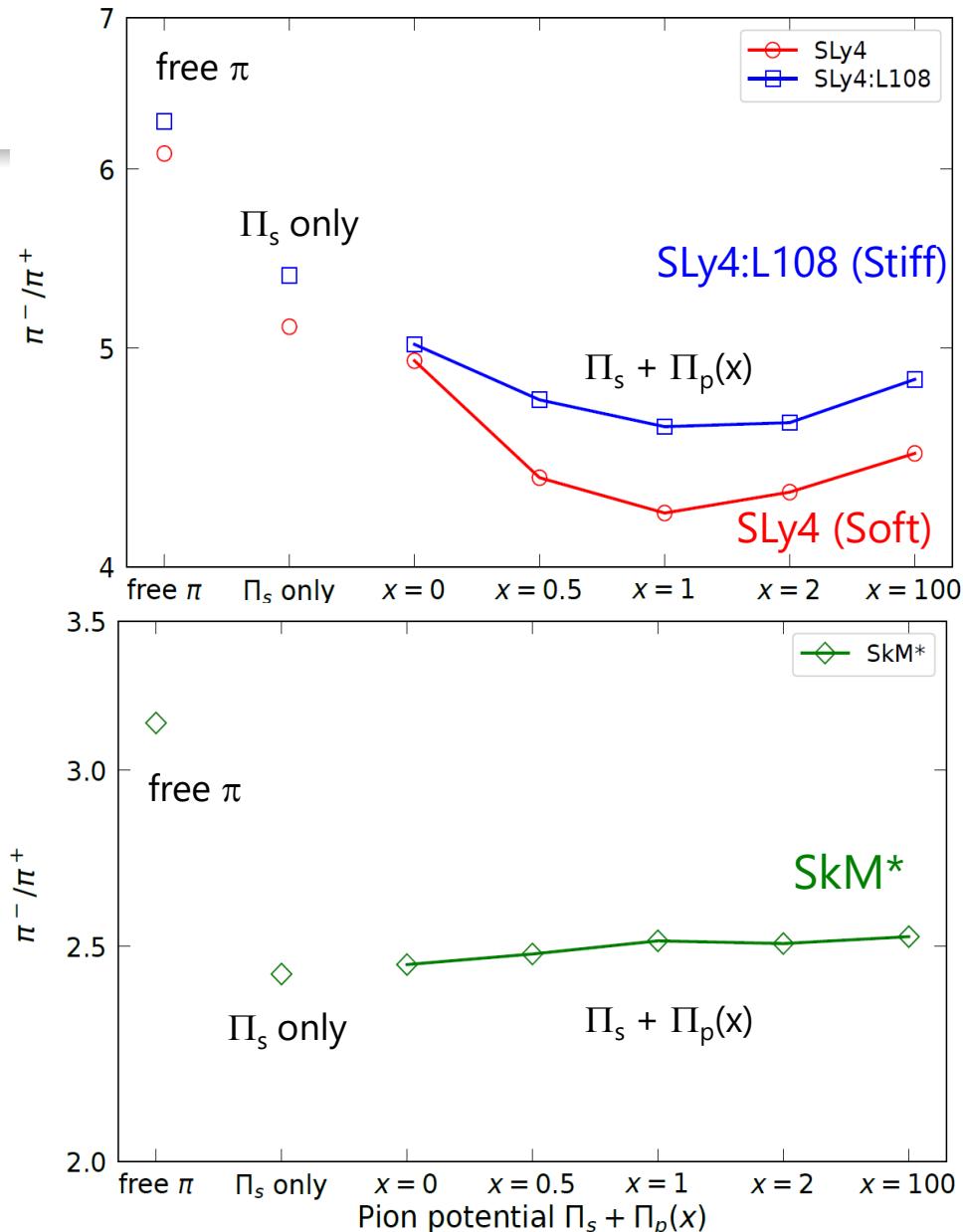


Effect of p-wave potentials (high- p and high- ρ) on high-momentum pion yield
-> Does this uncertainty affect the final result?

Pion potential effect on pion production

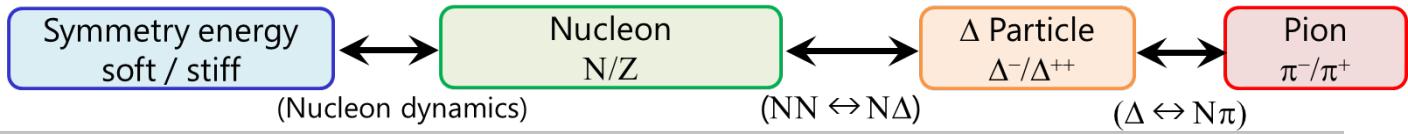


- Δ production ratio (Δ^-/Δ^{++}) is reduced by mainly Π_s , not by Π_p
- This Δ^-/Δ^{++} ratio is almost directly reflected in the π^-/π^+ ratio
- At high momentum, the π^-/π^+ ($p_T > 200$) increases due to Π_p

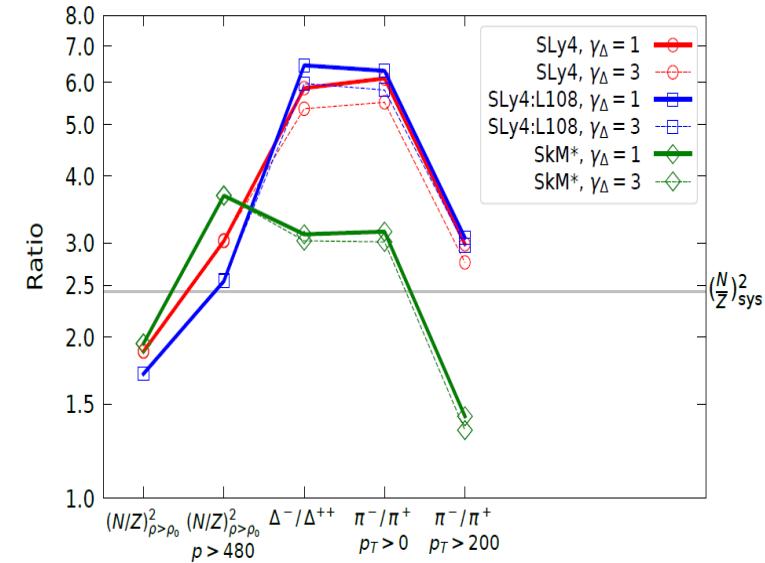


=> The π^-/π^+ ratio with some dependence on the p-wave potential

Summary

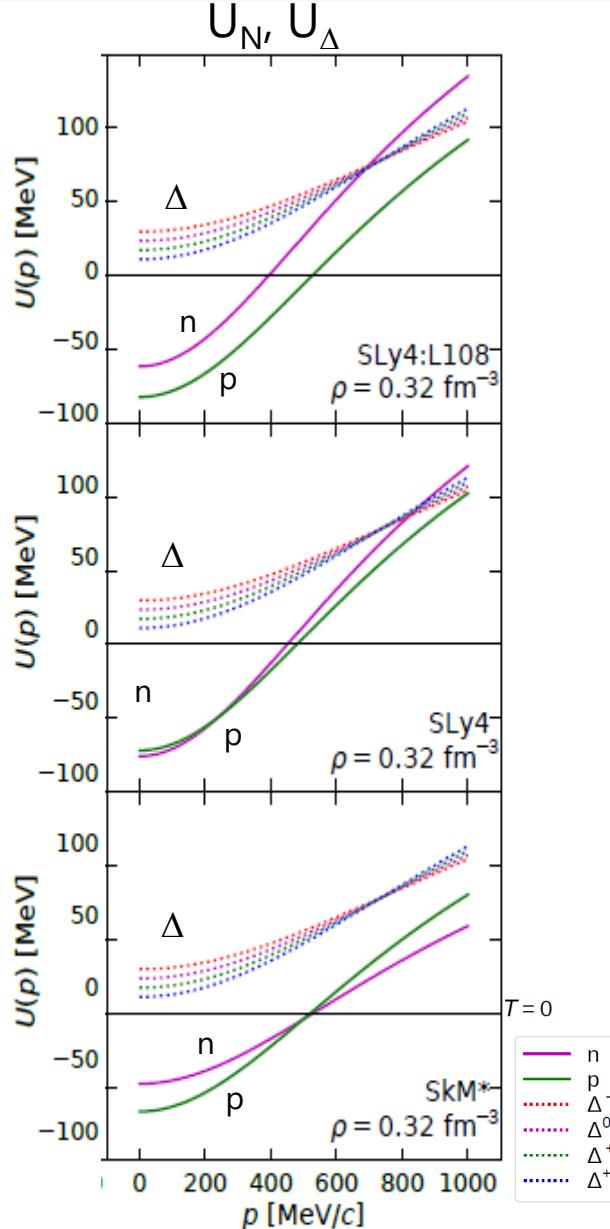
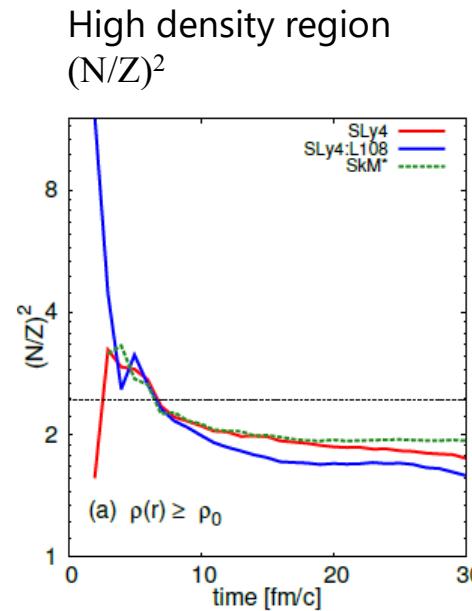
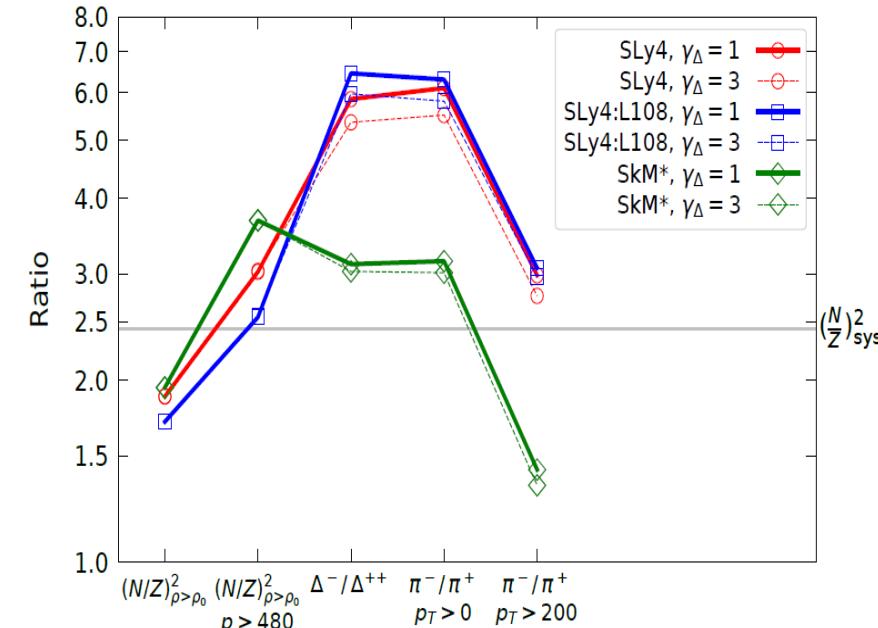


- Pion production in HICs and High-density symmetry energy
- Transport models: AMD+sJAM
 - ✓ Cluster correlation
 - ✓ Collision term under potentials
 - Strong influence on the $NN \leftrightarrow N\Delta$ process (SLy4 vs. SkM*)
- Pion ratios are more sensitive to the momentum dependence of U_n and U_p than other factors
- Better observables and ways to determine the symmetry energy?
=> Pions **combined with** nucleon fragments and other observables



New experimental data: Different systems and energies
=> Comprehensive studies are expected

How to understand the effects in Nucleon dynamics



Representative ratios: $\left(\frac{N}{Z}\right)^2 = \frac{\int_0^\infty N(t)^2 dt}{\int_0^\infty Z(t)^2 dt}$

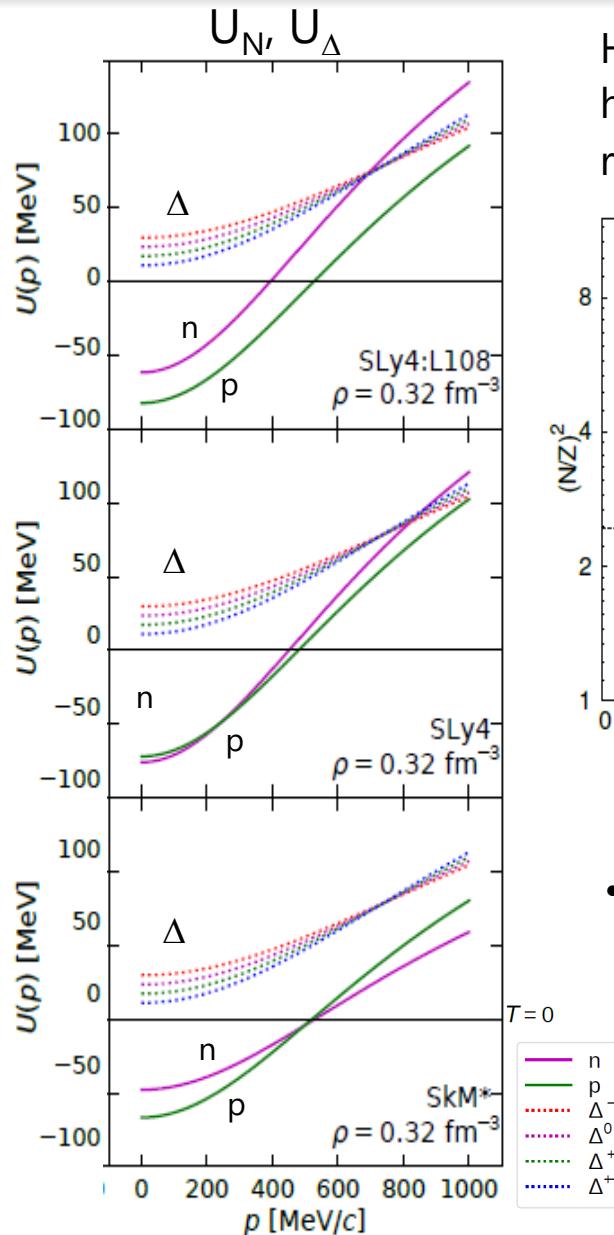
$N(t), Z(t)$: Numbers of nucleon which satisfy the conditions

From Ratio's Fig, we can see

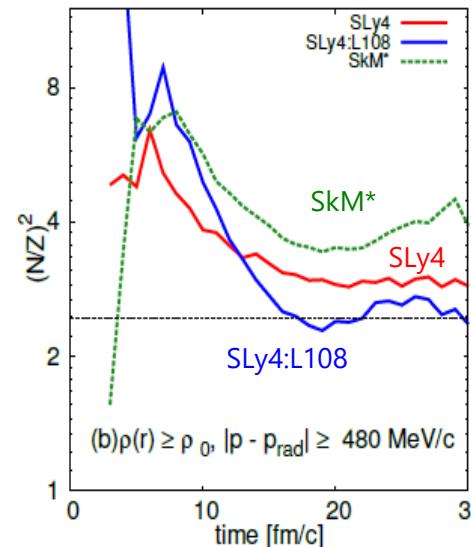
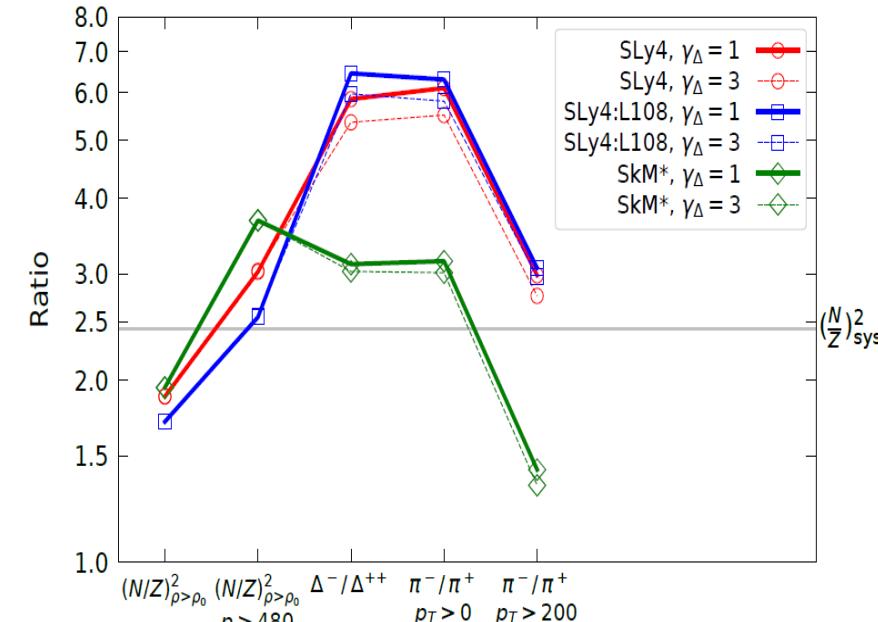
- Effect of the symmetry energy L (SLy4 vs SLy4:L108)
- Effect of the momentum dependence of U_n and U_p (SLy4 vs SkM*)

=> There is clearly the effect of the symmetry energy L between SLy4 and SLy4:L108

How to understand the effects in Nucleon dynamics

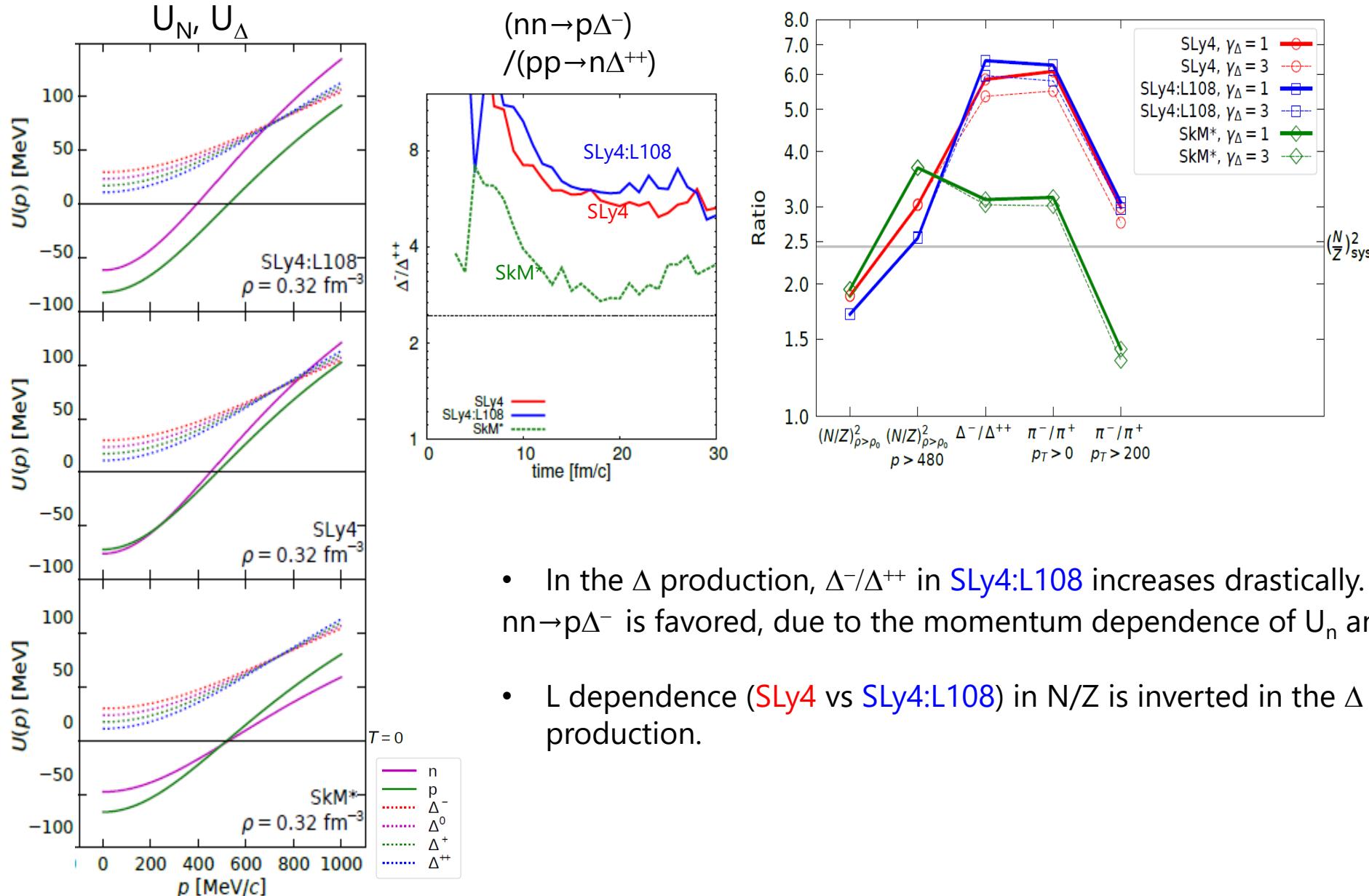


High-density and high-momentum region $(N/Z)^2$

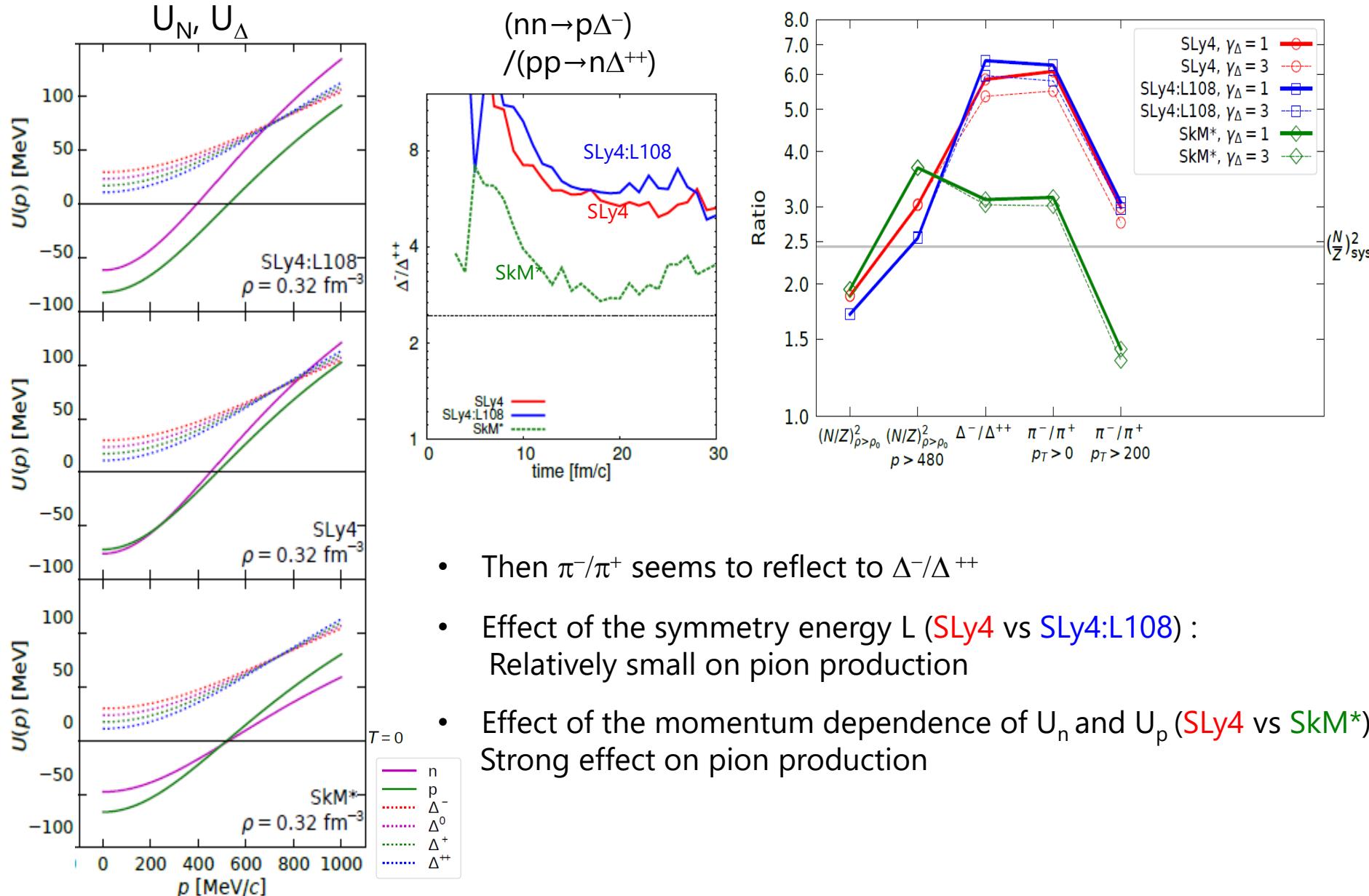


- In the high ρ and p region, $(N/Z)^2$ of SkM* drastically increases because U_n has weaker momentum dependence than that in SLy4 ($m_n^*(\text{SkM}^*) > m_n^*(\text{SLy4})$)

How to understand the effects in Delta and pion

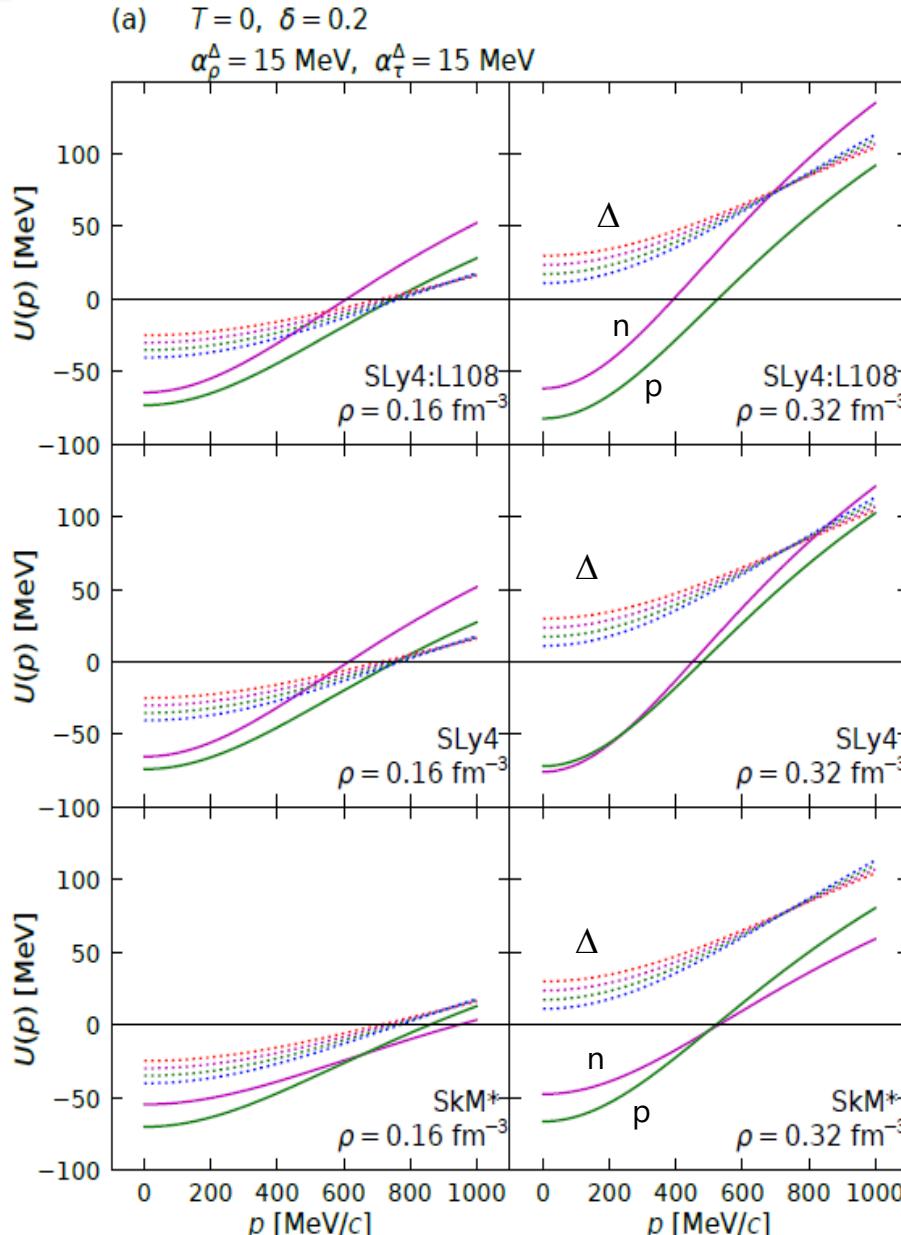


How to understand the effects in Delta and pion



- Then π^-/π^+ seems to reflect to Δ^-/Δ^{++}
- Effect of the symmetry energy L (**SLy4** vs **SLy4:L108**) :
Relatively small on pion production
- Effect of the momentum dependence of U_n and U_p (**SLy4** vs **SkM***) :
Strong effect on pion production

Nucleon and Δ potentials



- Nucleon potential

SLy4:L108 (Stiff), SLy4 (Soft), SkM* in the relativistic form

- Δ potentials:

Consist of isosc $\Sigma_\Delta = (\Sigma_\Delta^s, \Sigma_\Delta^0, \Sigma_\Delta)$ or part

$$\Sigma_{\Delta^-} = \Sigma_{is} + \frac{3}{2} \Sigma_{iv}$$

$$\Sigma_{\Delta^0} = \Sigma_{is} + \frac{1}{2} \Sigma_{iv}$$

$$\Sigma_{\Delta^+} = \Sigma_{is} - \frac{1}{2} \Sigma_{iv}$$

$$\Sigma_{\Delta^{++}} = \Sigma_{is} - \frac{3}{2} \Sigma_{iv}$$

isoscalar part:

$$\Sigma_{is}^s = \frac{1}{2} (\Sigma_n^s + \Sigma_p^s)_{SkM^*},$$

$$\Sigma_{is}^0 = \frac{1}{2} (\Sigma_n^0 + \Sigma_p^0)_{SkM^*} + \alpha_\rho^\Delta \frac{\rho}{\rho_0} + \alpha_\tau^\Delta \frac{\tau}{\tau_0},$$

$$\Sigma_{is} = \alpha_\rho^\Delta \frac{J}{\rho_0},$$

based on the nucleon potential in the SkM* parametrization

Free parameters: $\alpha_\rho^\Delta, \alpha_\tau^\Delta, \gamma^\Delta$

isovector part:

$$\Sigma_{iv}^s = \frac{\gamma^\Delta}{3} (\Sigma_n^s - \Sigma_p^s)_{SkM^*},$$

$$\Sigma_{iv}^0 = \frac{\gamma^\Delta}{3} (\Sigma_n^0 - \Sigma_p^0)_{SkM^*},$$

$$\Sigma_{iv} = \mathbf{0}.$$

- No Pion potential

Delta potential (isoscalar and isovector)

- Effects of the **isovector part** of U_Δ

- Δ potentials: $\Sigma_\Delta = (\Sigma_\Delta^s, \Sigma_\Delta^0, \Sigma_\Delta)$

Consist of isoscalar and isovector part

$$\Sigma_{\Delta^-} = \Sigma_{is} + \frac{3}{2}\Sigma_{iv}$$

$$\Sigma_{\Delta^0} = \Sigma_{is} + \frac{1}{2}\Sigma_{iv}$$

$$\Sigma_{\Delta^+} = \Sigma_{is} - \frac{1}{2}\Sigma_{iv}$$

$$\Sigma_{\Delta^{++}} = \Sigma_{is} - \frac{3}{2}\Sigma_{iv}$$

isoscalar part:

$$\Sigma_{is}^s = \frac{1}{2}(\Sigma_n^s + \Sigma_p^s)_{SkM^*},$$

$$\Sigma_{is}^0 = \frac{1}{2}(\Sigma_n^0 + \Sigma_p^0)_{SkM^*} + \alpha_\rho^\Delta \frac{\rho}{\rho_0} + \alpha_\tau^\Delta \frac{\tau}{\tau_0},$$

$$\Sigma_{is} = \alpha_\rho^\Delta \frac{J}{\rho_0},$$

based on the nucleon potential in the SkM* parametrization

Free parameters: $\alpha_\rho^\Delta, \alpha_\tau^\Delta, \gamma^\Delta$

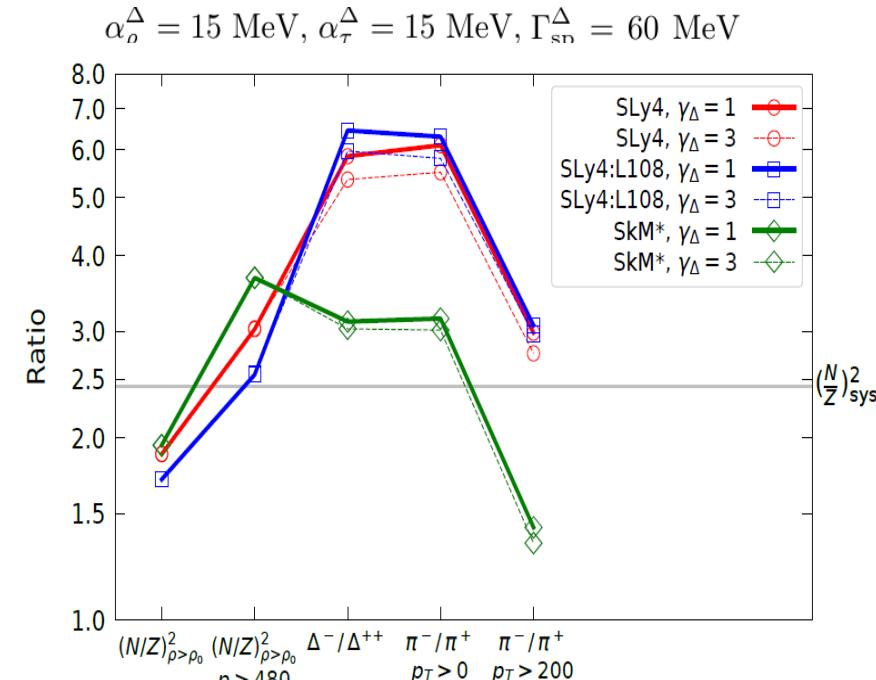
isovector part:

$$\Sigma_{iv}^s = \frac{\gamma^\Delta}{3}(\Sigma_n^s - \Sigma_p^s)_{SkM^*},$$

$$\Sigma_{iv}^0 = \frac{\gamma^\Delta}{3}(\Sigma_n^0 - \Sigma_p^0)_{SkM^*},$$

$$\Sigma_{iv} = \mathbf{0}.$$

- ✓ Effect of the isospin splitting of the Δ potential ($\gamma_\Delta = 1$ vs. $\gamma_\Delta = 3$) is of the same order as that of the nuclear symmetry energy (SLy4 vs SLy4:L108).



Solid line $\gamma_\Delta = 1$

Dashed line $\gamma_\Delta = 3$

$$\left. \begin{array}{l} \gamma_\Delta = 1 \Rightarrow \Sigma_{\Delta^-} - \Sigma_{\Delta^{++}} = \Sigma_n - \Sigma_p \\ \gamma_\Delta = 3 \Rightarrow \Sigma_{\Delta 0} - \Sigma_{\Delta^+} = \Sigma_n - \Sigma_p \end{array} \right\}$$

Delta potential (isoscalar and isovector)

- Effects of the **isoscalar part** of U_Δ and spreading width Γ^Δ
- Δ potentials: $\Sigma_\Delta = (\Sigma_\Delta^s, \Sigma_\Delta^0, \Sigma_\Delta)$ $\alpha_\rho^\Delta = 0, \alpha_\tau^\Delta = 0, \Gamma_{sp}^\Delta = 0$. (No repulsive terms)

Consist of isoscalar and isovector part

$$\Sigma_{\Delta^-} = \Sigma_{is} + \frac{3}{2}\Sigma_{iv}$$

$$\Sigma_{\Delta^0} = \Sigma_{is} + \frac{1}{2}\Sigma_{iv}$$

$$\Sigma_{\Delta^+} = \Sigma_{is} - \frac{1}{2}\Sigma_{iv}$$

$$\Sigma_{\Delta^{++}} = \Sigma_{is} - \frac{3}{2}\Sigma_{iv}$$

isoscalar part:

$$\Sigma_{is}^s = \frac{1}{2}(\Sigma_n^s + \Sigma_p^s)_{SkM^*},$$

$$\Sigma_{is}^0 = \frac{1}{2}(\Sigma_n^0 + \Sigma_p^0)_{SkM^*} + \alpha_\rho^\Delta \frac{\rho}{\rho_0} + \alpha_\tau^\Delta \frac{\tau}{\tau_0},$$

$$\Sigma_{is} = \alpha_\rho^\Delta \frac{J}{\rho_0},$$

isovector part:

$$\Sigma_{iv}^s = \frac{\gamma^\Delta}{3}(\Sigma_n^s - \Sigma_p^s)_{SkM^*},$$

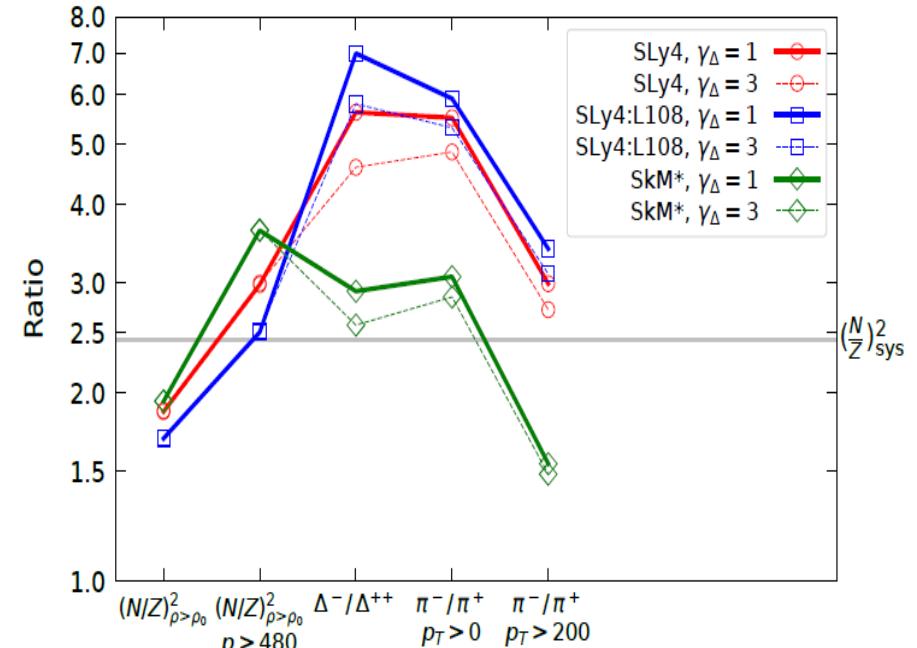
$$\Sigma_{iv}^0 = \frac{\gamma^\Delta}{3}(\Sigma_n^0 - \Sigma_p^0)_{SkM^*},$$

$$\Sigma_{iv} = \mathbf{0}.$$

- spreading width Γ^Δ $\Gamma_\Delta(m) = \Gamma_{sp} \frac{\rho}{\rho_0} + \sum \Gamma_{\Delta \rightarrow N\pi}(m)$

Δ spectral function $A(m)$:
$$A(m) = \frac{4m^2 \Gamma_\Delta(m)}{(m^2 - M_\Delta^2)^2 + m^2 \Gamma_\Delta(m)^2}$$

- ✓ Results are similar qualitatively
- ✓ Effect of the symmetry energy (SLy4 vs SLy4:L108) is now stronger
- ✓ Effect of the difference in the momentum dependence of U_n and U_p (SLy4 vs SkM*) is always the most significant

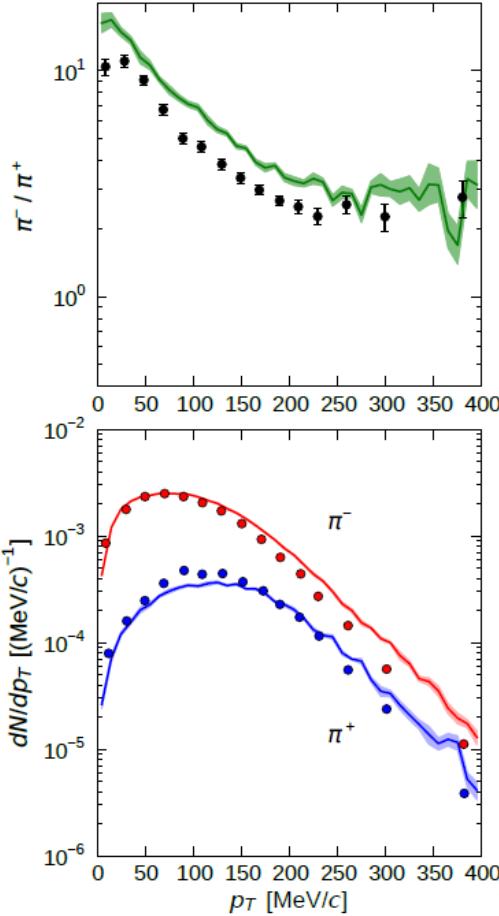


Solid line $\gamma_\Delta = 1$
Dashed line $\gamma_\Delta = 3$.

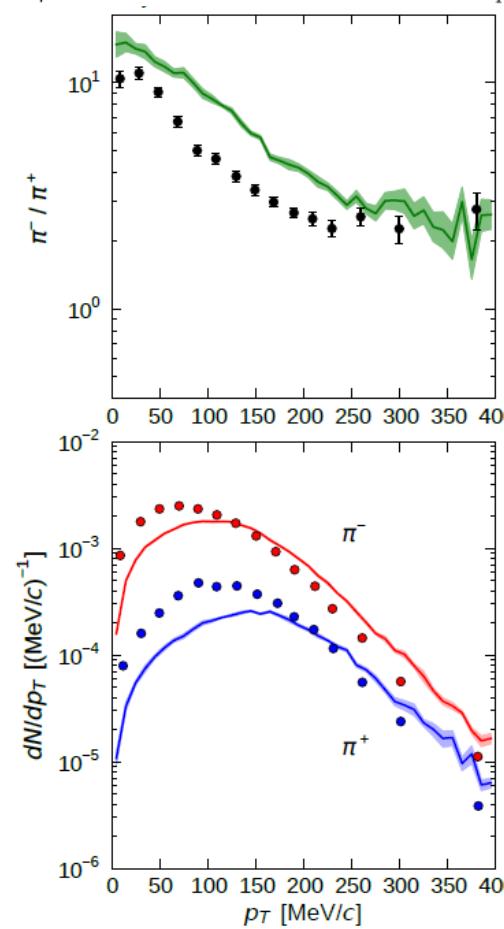
Delta potential (isoscalar and isovector)

- Effects of the isoscalar part of U_Δ and spreading width Γ^Δ

$$\alpha_\rho^\Delta = 15 \text{ MeV}, \alpha_\tau^\Delta = 15 \text{ MeV}, \Gamma_{\text{sp}}^\Delta = 60 \text{ MeV}$$

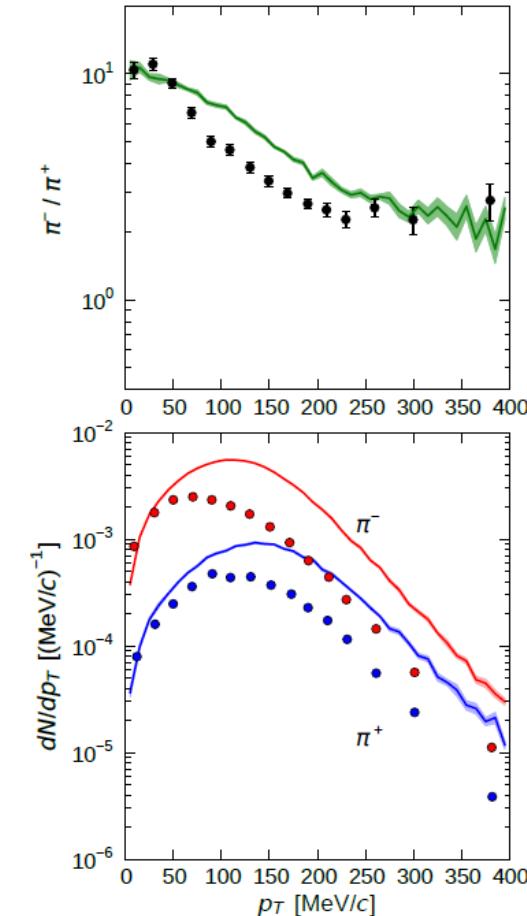


$$\alpha_\rho^\Delta = 15 \text{ MeV}, \alpha_\tau^\Delta = 15 \text{ MeV}, \Gamma_{\text{sp}}^\Delta = 0.$$



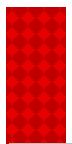
[No repulsive terms]

$$\alpha_\rho^\Delta = 0, \alpha_\tau^\Delta = 0, \Gamma_{\text{sp}}^\Delta = 0.$$



π^-/π^+ ratio of the spectra is not affected much

- Low momentum region of the spectra is significantly affected by Γ^Δ
- Pion yield is overestimated due to the lack of the repulsive terms in U_Δ



Interactions: SLy4, SLy4:L108, SkM*

- Energy density:

$$\mathcal{E}_{\text{int}}(\mathbf{r}) = \sum_{\alpha\beta} \left\{ U_{\alpha\beta}^{t_0} \rho_\alpha(\mathbf{r}) \rho_\beta(\mathbf{r}) + U_{\alpha\beta}^{t_3} \rho_\alpha(\mathbf{r}) \rho_\beta(\mathbf{r}) [\rho(\mathbf{r})]^\gamma + U_{\alpha\beta}^\tau \tilde{\tau}_\alpha(\mathbf{r}) \rho_\beta(\mathbf{r}) + U_{\alpha\beta}^\nabla \nabla \rho_\alpha(\mathbf{r}) \nabla \rho_\beta(\mathbf{r}) \right\},$$

Densities: $\rho_\alpha(\mathbf{r}) = \int \frac{dp}{(2\pi\hbar)^3} f_\alpha(\mathbf{r}, p)$, $\tilde{\tau}_\alpha(\mathbf{r}) = \int \frac{dp}{(2\pi\hbar)^3} \frac{[p - \bar{p}(\mathbf{r})]^2}{1 + [p - \bar{p}(\mathbf{r})]^2/\Lambda_{\text{md}}^2} f_\alpha(\mathbf{r}, p)$,

with $\bar{p}(\mathbf{r}) = \frac{1}{\sum_\alpha \rho_\alpha(\mathbf{r})} \sum_\alpha \int \frac{dp}{(2\pi\hbar)^3} p f_\alpha(\mathbf{r}, p)$.

The coefficients are related to the Skyrme parameters

$$U_{\alpha\beta}^{t_0} = \langle \alpha\beta | \frac{1}{2} t_0 (1 + x_0 P_\sigma) | \alpha\beta - \beta\alpha \rangle,$$

$$U_{\alpha\beta}^{t_3} = \langle \alpha\beta | \frac{1}{12} t_3 (1 + x_3 P_\sigma) | \alpha\beta - \beta\alpha \rangle,$$

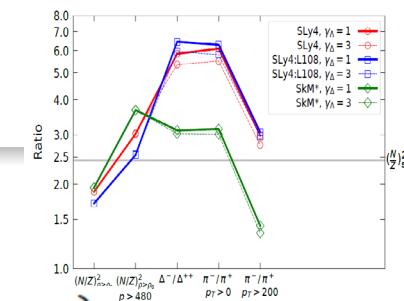
$$U_{\alpha\beta}^\tau = \langle \alpha\beta | \frac{1}{4} t_1 (1 + x_1 P_\sigma) | \alpha\beta - \beta\alpha \rangle + \langle \alpha\beta | \frac{1}{4} t_2 (1 + x_2 P_\sigma) | \alpha\beta + \beta\alpha \rangle,$$

$$U_{\alpha\beta}^\nabla = \langle \alpha\beta | \frac{3}{16} t_1 (1 + x_1 P_\sigma) | \alpha\beta - \beta\alpha \rangle - \langle \alpha\beta | \frac{1}{16} t_2 (1 + x_2 P_\sigma) | \alpha\beta + \beta\alpha \rangle,$$

In the case of cut-off parameter $\Lambda_{\text{md}} = \infty$, interaction is equivalent to the Skyrme type interaction

$$\begin{aligned} v_{ij} = & t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r}) \\ & + \frac{1}{2} t_1 (1 + x_1 P_\sigma) [\delta(\mathbf{r}) \mathbf{k}^2 + \mathbf{k}^2 \delta(\mathbf{r})] \\ & + t_2 (1 + x_2 P_\sigma) \mathbf{k} \cdot \delta(\mathbf{r}) \mathbf{k} \\ & + \frac{1}{6} t_3 (1 + x_3 P_\sigma) [\rho(\mathbf{r}_i)]^\gamma \delta(\mathbf{r}), \end{aligned}$$

the spin-isospin label α (or β) = $p \uparrow, p \downarrow, n \uparrow$ and $n \downarrow$



Interactions: SLy4, SLy4:L108, SkM*

- Momentum-dependent potential (in AMD):

$$U_\alpha(r, p) = (2\pi\hbar)^3 \frac{\delta}{\delta f_\alpha(r, p)} \int \mathcal{E}_{\text{int}}(r) dr = A_\alpha(r) \frac{[p - \bar{p}(r)]^2}{1 + [p - \bar{p}(r)]^2/\Lambda_{\text{md}}^2} + \tilde{C}_\alpha(r),$$

with $A_\alpha(r) = \sum_\beta U_{\alpha\beta}^\tau \rho_\beta(r)$

$$\tilde{C}_\alpha(r) = \sum_\beta \left\{ 2U_{\alpha\beta}^{t_0} \rho_\beta(r) + 2U_{\alpha\beta}^{t_3} \rho_\beta(r) [\rho(r)]^\gamma + U_{\alpha\beta}^\tau \tilde{\tau}_\beta(r) - 2U_{\alpha\beta}^\nabla \nabla^2 \rho_\beta(r) \right\} + \left(\sum_{\alpha' \beta'} U_{\alpha'\beta'}^{t_3} \rho_{\alpha'}(r) \rho_{\beta'}(r) \right) \gamma [\rho(r)]^{\gamma-1}.$$

- Relativistic version (in sJAM):

Nucleon single-particle energy $E_a(r, p) = \sqrt{(m_N + \Sigma_a^s(r))^2 + (p - \Sigma_a(r))^2} + \Sigma_a^0(r).$

$$\left. \begin{aligned} & \text{Parametrization from Skyrme interaction: equivalent up to } O(p^2): \\ & \frac{p^2}{2m_N} + A_a(p - \bar{p})^2 + \tilde{C}_a + m_N \approx \sqrt{(m_N + \Sigma_a^s)^2 + (p - \Sigma_a)^2} + \Sigma_a^0 \quad \text{c.f. Zhen Zhang and Che Ming} \\ & \text{Ko, PRC 98 (2018) 054614.} \end{aligned} \right\}$$

$$\Sigma_a^s = m_a^* - m_N \quad \text{with the nucleon effective mass } m_a^* = (m_N^{-1} + 2A_a)^{-1}$$

$$\Sigma_a = 4A_a m_a^* \bar{p} = 2m_a^* \sum_b U_{ab}^\tau J_b$$

$$\Sigma_a^0 = \tilde{C}_a - \Sigma_a^s + A_a \bar{p}^2 - 8m_a^* A_a^2 \bar{p}^2 = C_a - \Sigma_a^s - \frac{\Sigma_a^2}{2m_a^*}$$

$$U_{\text{rel}}(p) = \sqrt{(m_N + \Sigma^s)^2 + p^2} + \Sigma^0 - \sqrt{m_N^2 + p^2}$$

