

Global structure of η'

Yuya Tanizaki (Yukawa Institute, Kyoto)

Based on the following works: [2201.06166](#) (with Mithat Ünsal),
and [2402.04320](#), [2405.12402](#) (with Yui Hayashi) + *on-going*

QCD vacuum structure

SSB \rightarrow $SU(N_f)_V$

Global symmetry: $\frac{(SU(N_f)_L \times SU(N_f)_R) \times U(1)_V \times U(1)_A}{Z_{N_c} \times Z_{N_f} \times Z_2}$ explicitly broken by ABJ anomaly

Spontaneous chiral symmetry breaking via fermion-bilinear condensate:

$$\langle \bar{\psi}_i \psi_j \rangle = -\Lambda^3 \underbrace{e^{i\eta'/N_f}}_{\text{flavor-singlet } \eta'} \cdot \underbrace{U_{ij}}_{\pi, K, \eta}$$

One of the common chiral Lagrangian + η' :

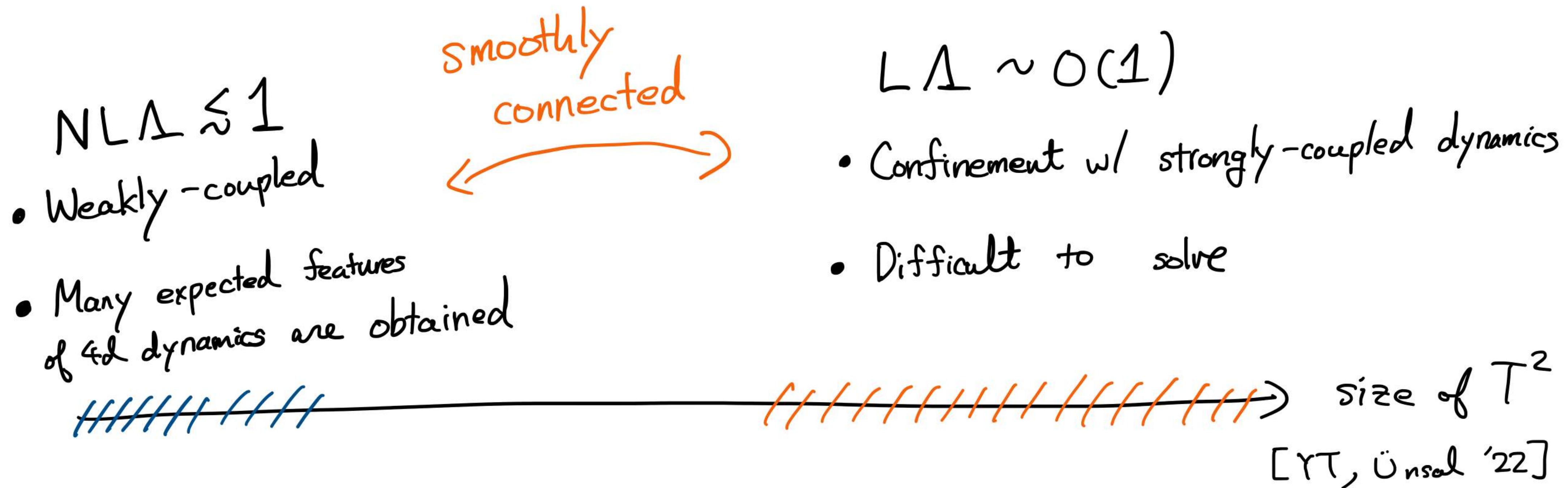
$$\mathcal{L} = \frac{F_\pi^2}{2} \text{tr}(\partial_\mu \mathcal{U}^\dagger \partial_\mu \mathcal{U}) - \Lambda^3 \text{tr}(M e^{i\frac{\eta'}{N_f}} \mathcal{U} + \text{c.c.}) + WZW(\mathcal{U})$$

$$+ \frac{F_\pi'^2}{2} (\partial_\mu \eta')^2 - \underbrace{\# e^{-\frac{8\pi^2}{g^2}} \cos(\eta' + \theta)}_{\text{Kobayashi - Maskawa - 't Hooft vertex.}}$$

Main claim

Global structure of η' is more involved & interesting !!

4d QCD / YM on $\mathbb{R}^2 \times T_{\text{twist}}^2$



- We solve QCD on $\mathbb{R}^2 \times T_{\text{twist}}^2$ with "controllable" approximation.

No IR divergence at all.

\Rightarrow chiral Lagrangian + η' is obtained.

Yang - Mills theory on $\mathbb{R}^2 \times T^2$ & 't Hooft flux

4d $SU(N)$ YM : $\mathbb{Z}_N^{(1)}$ center symmetry

$$\mathbb{R}^2 \times \mathbb{T}^2 \quad \left\{ \quad \mathbb{Z}_N^{(1)} \quad : \quad \text{Area vs Perimeter for 2d Wilson loop.} \right.$$

$\mathbb{Z}_N^{(0)} \times \mathbb{Z}_N^{(0)}$: Conventional center symmetry for Polyakov loops P_3, P_4

Role of 't Hooft flux P

① 4d anomaly is maximally preserved in 2d effective theory. $\frac{25}{25}$

$$Z_{\theta+2\pi}[B] = e^{\frac{2\pi i}{N} \int \frac{1}{2} B \cup B} Z_\theta[B]$$

$\xrightarrow{T^2\text{-compact.}}$

$$Z_{\theta+2\pi}[B_{2d}] = e^{i \frac{2\pi}{N} P \int B_{2d}} Z_\theta[B_{2d}]$$

② Classical vacuum is unique & $\mathbb{Z}_N^{(0)} \times \mathbb{Z}_N^{(0)}$ symmetric

$$P_3 P_4 = e^{\frac{2\pi i}{N} p} P_4 P_3$$

③ Classical vacuum "violates" $\mathbb{Z}_N^{(1)}$ but semiclassically restored as

$$4d \text{ instanton} \quad \mathbb{R}^2 \times \mathbb{T}^2 \xrightarrow{\text{p-twist}}$$

④ ④ N center-rortex constituents
④ ④ [Gonzalez-Arroyo, Montero '98]

't Hooft flux & Classical vacuum

Lattice action

$$S_w[U_e, B] = -\frac{1}{g^2} \sum_p \left(e^{-iB_p} \text{tr}[U_p] + e^{iB_p} \text{tr}[U_p^+] \right)$$

$$B_p = \begin{cases} \frac{2\pi}{N} & \text{(for the plaquette indicated with light blue)} \\ 0 & \text{(otherwise)} \end{cases}$$

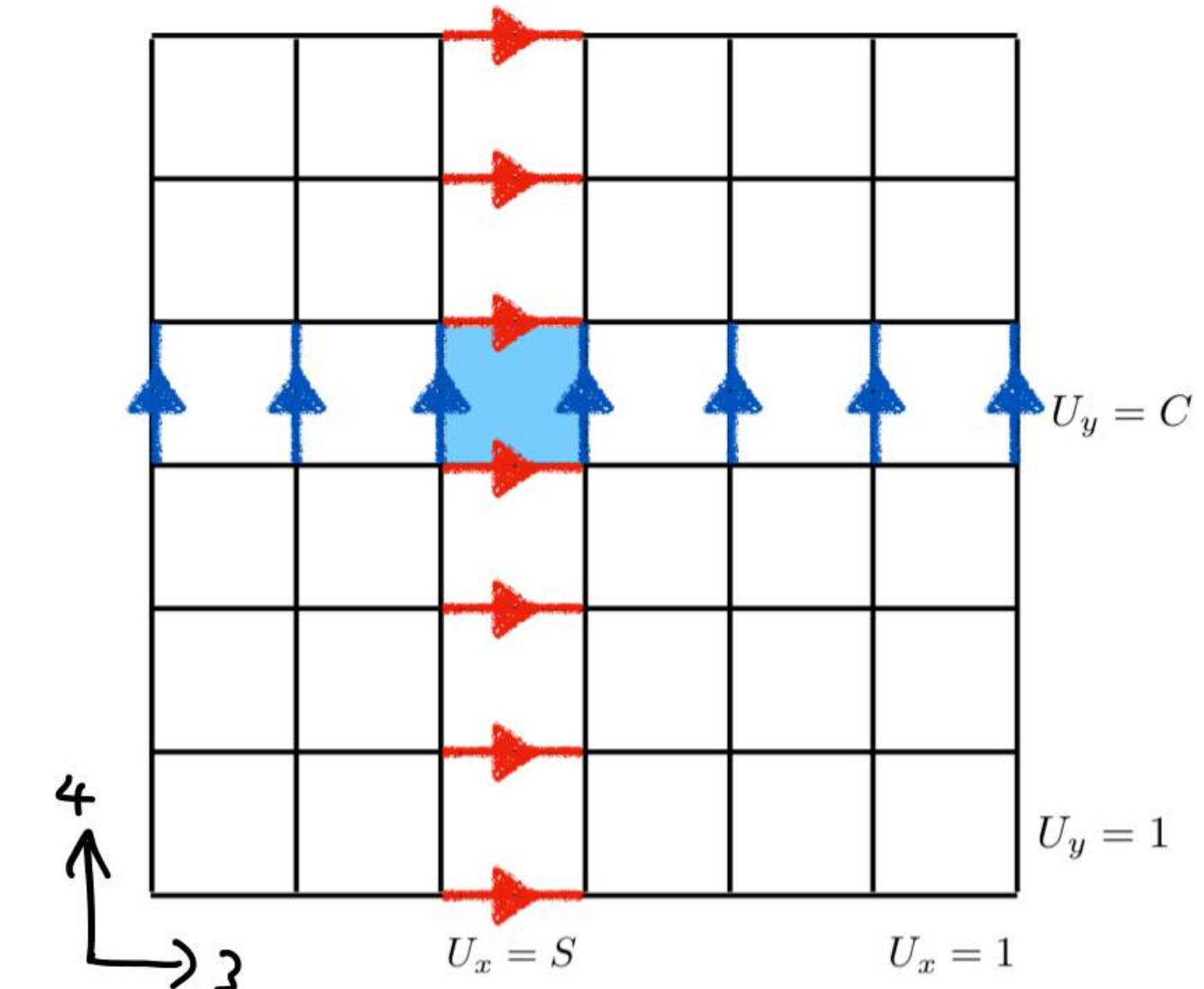
We can minimize this action by setting

$$U_e = \begin{cases} S = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} \\ C = \begin{pmatrix} 1 & \dots & \omega^{N-1} \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} \end{cases} \quad \left[\begin{array}{l} * \text{ Any classical minimum is} \\ \text{gauge equivalent to this one} \end{array} \right]$$

$$\Rightarrow P_3 = S, \quad P_4 = C.$$

This configuration completely preserves

$$\mathbb{Z}_N^{[0]} \times \mathbb{Z}_N^{[0]}$$



2d $\mathbb{Z}_N^{(1)}$ symmetry & center vortex

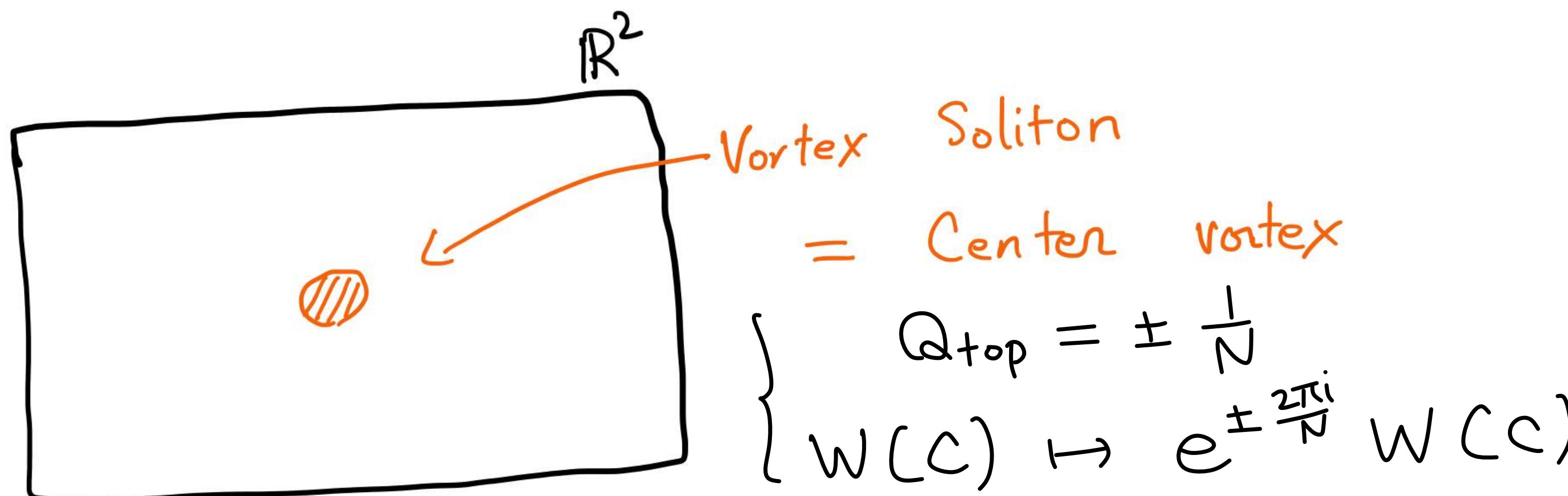
- For 2d effective theory,

$P_3 = S$ and $P_4 = C$ behave as Adjoint Higgs with orthogonal VEV:

$$SU(N) \xrightarrow{\text{Higgs}} \mathbb{Z}_N.$$

\Rightarrow 2d 1-form symmetry is spontaneously broken at classical vacua.

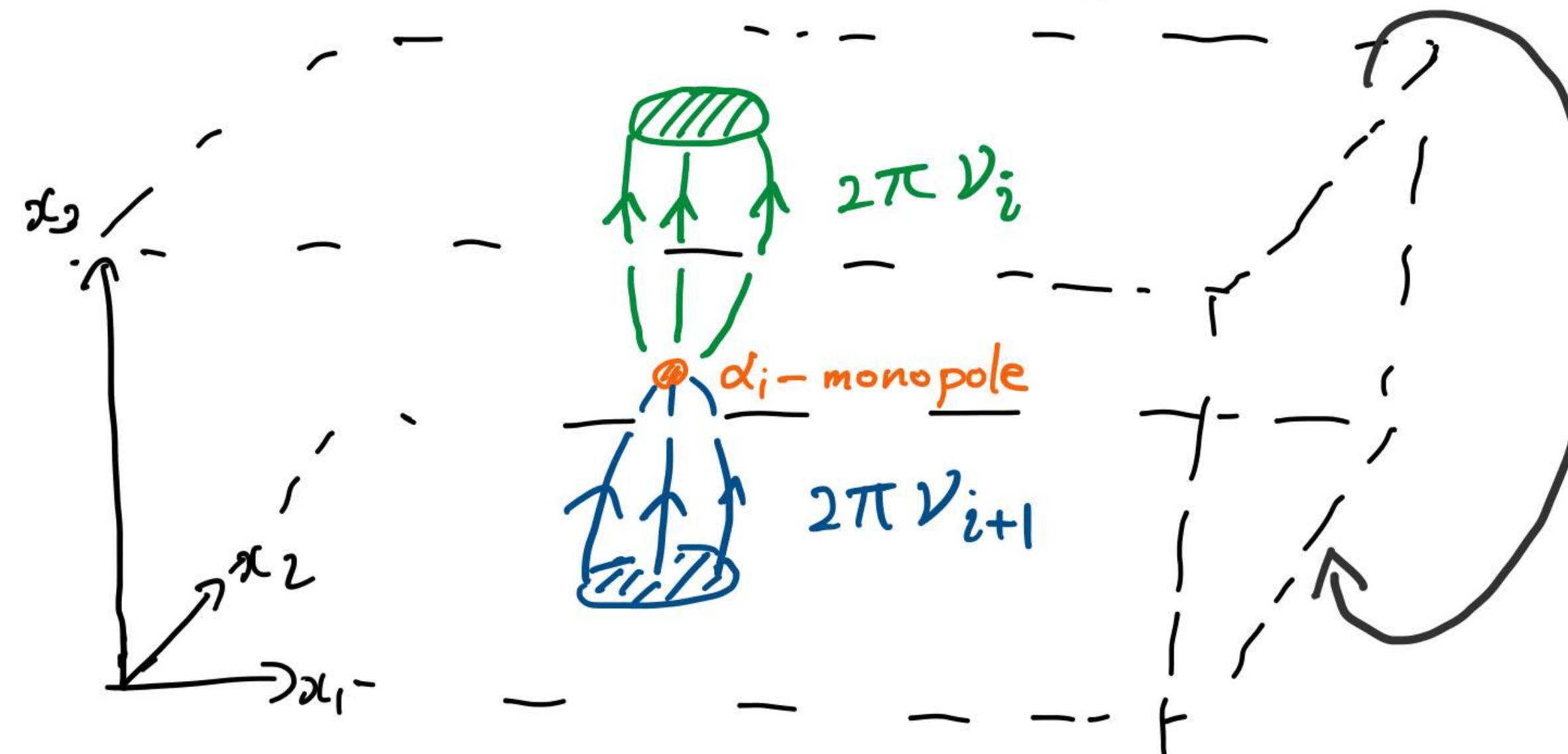
- Key player for the Area law: Center vortex = Fractional instanton



Center vortex on $\mathbb{R}^2 \times \frac{T^2}{\text{flux}} = \text{KuBLLY monopole instanton}$

$SU(N)$ gauge field on $\mathbb{R}^3 \times S^1$ w/ nontrivial holonomy: N fundamental monopoles
 $\left[\Rightarrow 3d \text{ semiclassics by Ünsal, ... since 2007} \right]$

α_i - monopole emits the magnetic flux $2\pi\alpha_i = 2\pi(\nu_i - \nu_{i+1})$.



\mathbb{Z}_N -twisted b.c. ($= \text{t Hooft flux on } T^2$)

$$\begin{pmatrix} \nu \\ \nu \\ \nu \end{pmatrix} \mapsto \begin{pmatrix} \nu \\ \nu \\ \nu \end{pmatrix}$$

[Hayashi, YT 2405.12402]

\mathbb{Z}_N -twisted b.c. gives the perturbative gap $\frac{2\pi}{NL_3}$ \Rightarrow Magnetic flux localizes.

Monopole = Junction of the center vortex

(cf. Ambjorn, Giedt, Greensite '99, de Forcrand, Pepe '00)

Partition function on $\overset{\text{M}_2}{\text{M}_2} \times \mathbb{T}^2$ & θ -dependence
 $\rightarrow \mathbb{R}^2$

To make the computation well-defined, we compactify \mathbb{R}^2 to some closed 2-manifold M_2 .

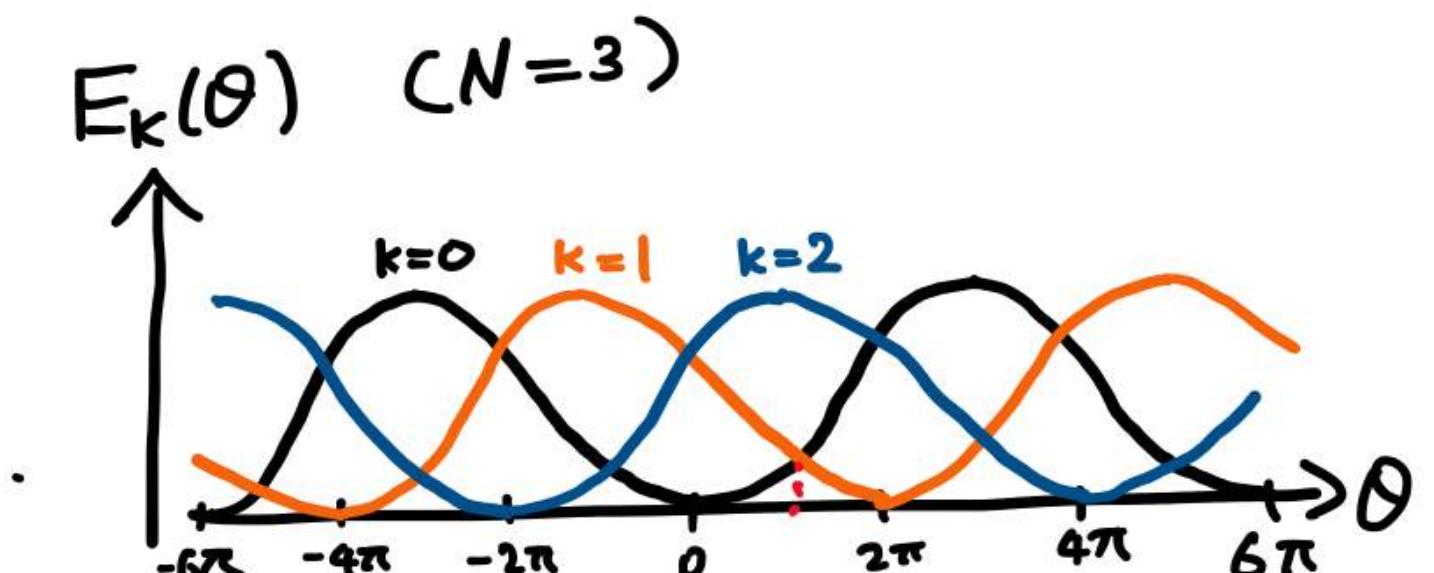
Using the 1-loop vertex of the center vortex

we have

$$\begin{aligned}
 Z(\theta) &= \sum_{n, \bar{n} \geq 0} \frac{\sum_{k=0}^{N-1} e^{\frac{2\pi i}{N} k(n-\bar{n})}}{n! \bar{n}!} \left(V \cdot K e^{-\frac{8\pi^2}{g^2 N} + i \frac{\theta}{N}} \right)^n \left(V \cdot K e^{-\frac{8\pi^2}{g^2 N} - i \frac{\theta}{N}} \right)^{\bar{n}} \\
 &= \sum_{k=0}^{N-1} \exp \left[-V \left(-2K e^{-\frac{8\pi^2}{g^2 N}} \cos \left(\frac{\theta - 2\pi k}{N} \right) \right) \right]
 \end{aligned}$$

$E_k(\theta)$: Ground-state energy densities

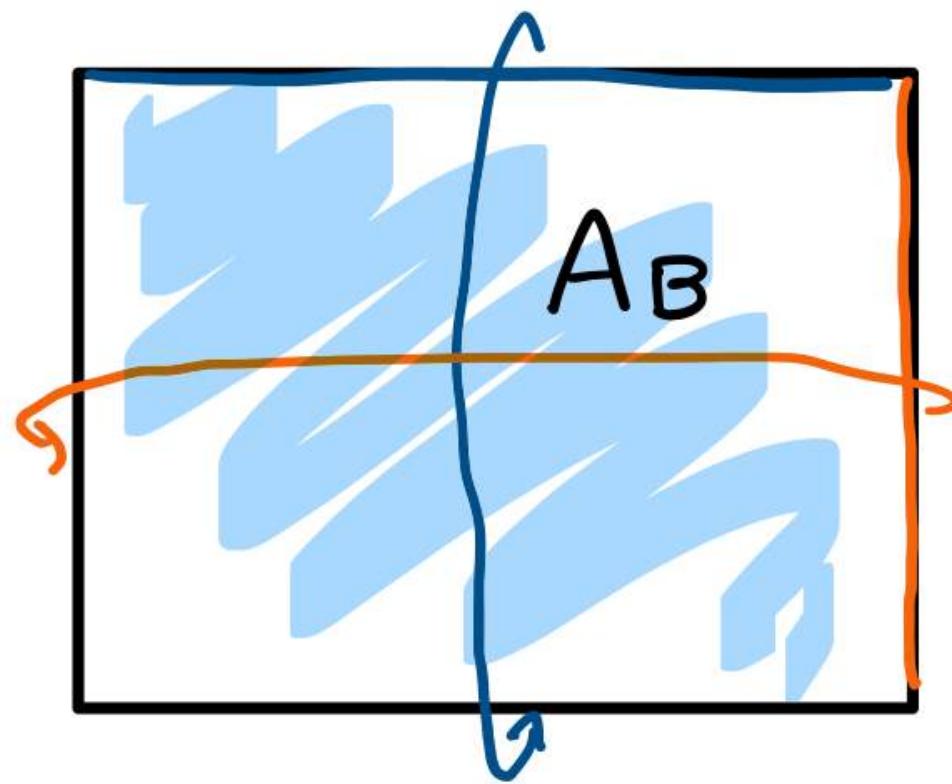
$\Rightarrow \left\{ \begin{array}{l} \bullet \text{N-branch structure of ground states.} \\ \bullet \text{Each branch has a fractional } \theta\text{-dependence.} \end{array} \right.$



$U(1)_B$ monopole flux & 't Hooft flux on T^2

Fundamental quarks explicitly violates $\mathbb{Z}_N^{(1)}$ \Rightarrow No 't Hooft B.C., naively.

Use $U(1)_B = \frac{U(1)_g}{\mathbb{Z}_N}$ monopole flux.



Cocycle condition

$$\left\{ \begin{array}{l} \psi(L, x_4) = g_3^+(x_4) e^{-i \frac{\phi_3(x_4)}{N}} \psi(0, x_4) \\ \psi(x_3, L) = \underbrace{g_4^+(x_3)}_{\text{color-transition functions}} \underbrace{e^{-i \frac{\phi_4(x_3)}{N}}}_{U(1)_g\text{-transition functions}} \psi(x_3, 0) \end{array} \right.$$

$$g_3^+(L) g_4^+(0) e^{-i \frac{1}{N} (\phi_3(L) + \phi_4(0))} = g_4^+(L) g_3^+(0) e^{-i \frac{1}{N} (\phi_4(L) + \phi_3(0))}.$$

$$U(1)_B = U(1)_g / \mathbb{Z}_N \text{ monopole flux}$$

$$2\pi = \int_{T^2} dA_B = (\phi_3(L) - \phi_3(0)) - (\phi_4(L) - \phi_4(0))$$

$$\Rightarrow g_3^+(L) g_4^+(0) = g_4^+(L) g_3^+(0) e^{\frac{2\pi i}{N}}$$

't Hooft flux !!

2d Effective Lagrangian on $\mathbb{R}^2 \times T^2$ w/ baryon - 't Hooft flux

4d QCD $\xrightarrow[\text{classical & Perturbative}]{}$ \mathbb{Z}_N - Schwinger model
 Gauge : Gapped gluons & Center vortices
 Quark : 2d Dirac fermion as 4d Dirac zero modes w/ $\frac{\int dA_B}{T^2} = 2\pi$.

\Downarrow Bosonization & Semiclassical Analysis

$\left\{ \begin{array}{l} U : 2d U(N_f) - \text{valued field } (\pi, K, \eta \text{ & } \eta') \\ k : \mathbb{Z}_N \text{ discrete variable} \end{array} \right. \quad \begin{array}{l} [\text{YI, Ünsal 2201.06/66}] \\ [\text{Hayashi, YT 2402.02430}] \end{array}$

$$\begin{aligned}
 \mathcal{L}_{\text{2d effective}} &= \frac{1}{8\pi} \text{tr}(\partial_\mu U^\dagger \partial_\mu U) - \text{tr}[M U + \text{c.c.}] \\
 &\quad + i \frac{1}{12\pi} \text{tr}[(U^\dagger d U)^3] \\
 &\quad - e^{-\frac{8\pi^2}{g^2 N}} \left(e^{i \frac{\Theta - 2\pi k}{N}} (\det U)^{1/N} + \text{c.c.} \right) \stackrel{=}{\color{orange}} \cos\left(\frac{\eta + \Theta - 2\pi k}{N}\right)
 \end{aligned}$$

Revisiting $U(1)_A$ problem

$U(1)_A$: η' (i.e. $e^{i\eta'} = \det U$) is too massive according to SSB of the chiral symmetry $SU(N_f)_L \times SU(N_f)_R \times U(1)_V \times U(1)_A$.

$\Rightarrow U(1)_A$ is not a symmetry of quantum theory!

η' gets the mass even if $M_{\text{quark}} = 0$.

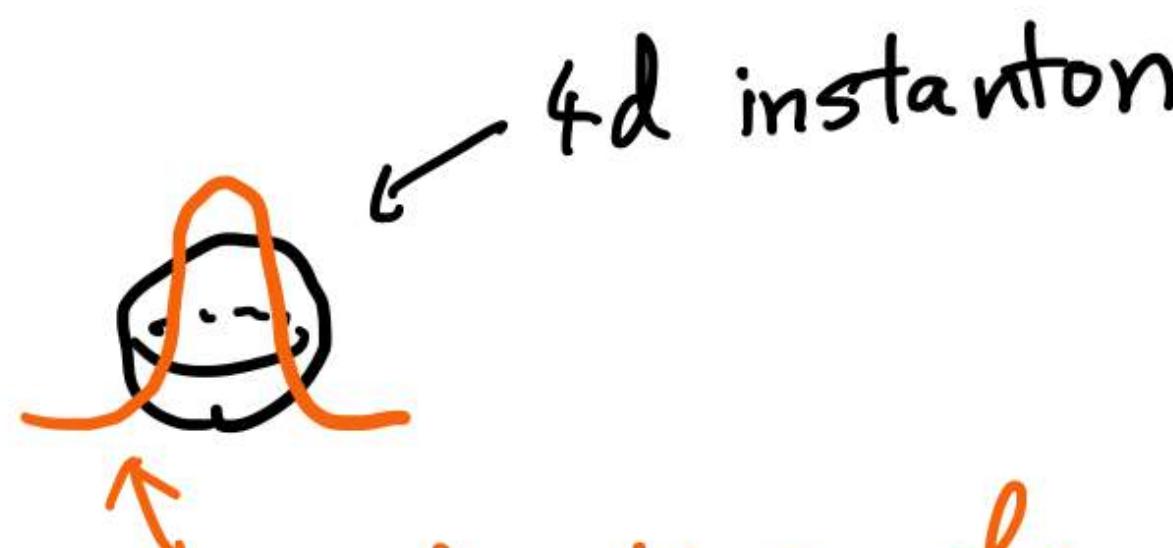
Previous proposals

- Kobayashi - Maskawa - 't Hooft : $-\cos(\eta' + \theta)$
- Witten - Veneziano's large $-N$: $\frac{1}{2}(\eta' + \theta)^2 + O\left(\frac{(\eta' + \theta)^4}{N^2}\right)$

$\frac{1}{N}$ fractionalization
 $\uparrow N \gg 1$

2d center-vortex theory : $-\cos\left(\frac{\eta' + \theta - 2\pi k}{N}\right)$

How does $\frac{1}{N}$ appear? What is its fermionic picture?



Localization of
chiral zero mode

$$e^{-\frac{8\pi^2}{g^2}} \cdot e^{-i\theta} \det U(x)$$

$\mathbb{R}^2 \times \mathbb{T}^2$
w/ 'tHooft flux
 \Rightarrow

4d instanton = N independant
center vortices

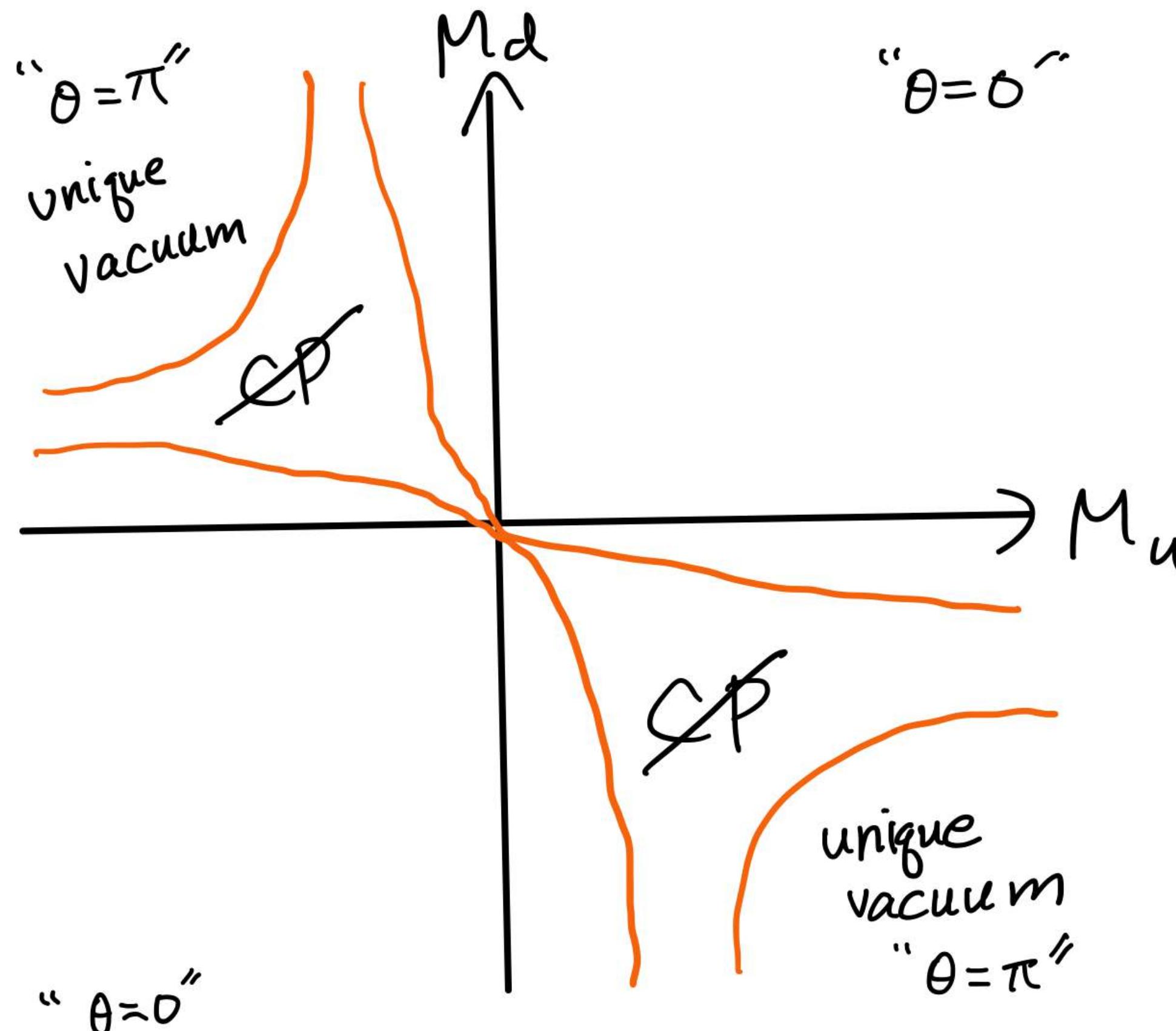
$$\prod_{i=1}^N e^{-\frac{8\pi^2}{g^2 N}} e^{-i\frac{\theta}{N}} (\det U(x_i))^{1/N}$$

each term behaves almost independently

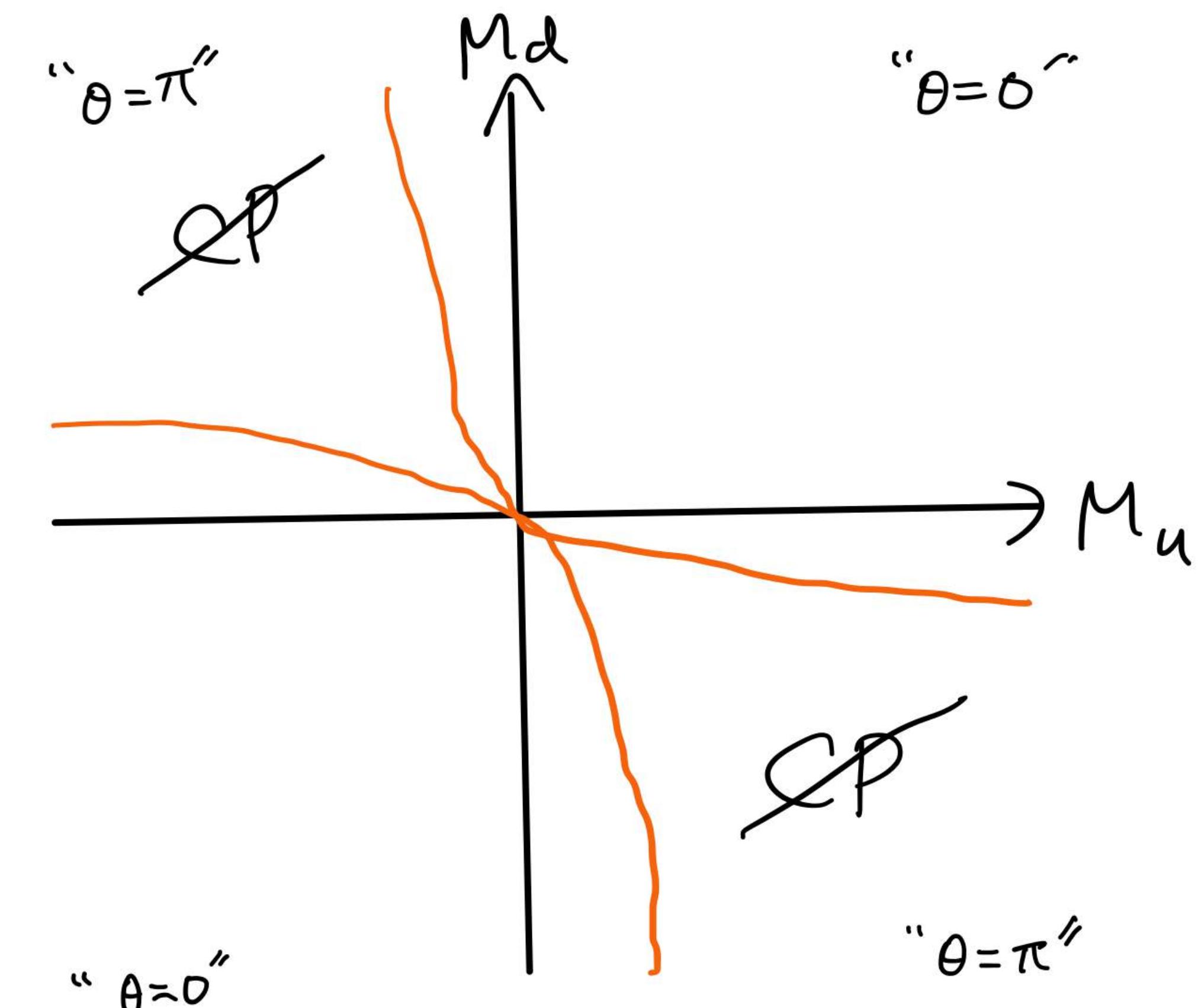
$\frac{1}{N}$ fraction of
the chiral zero mode

Phase diagram in (M_u, M_d) space

KMT vertex & $\frac{1}{N}$ -fractionalized vertex can give different predictions.



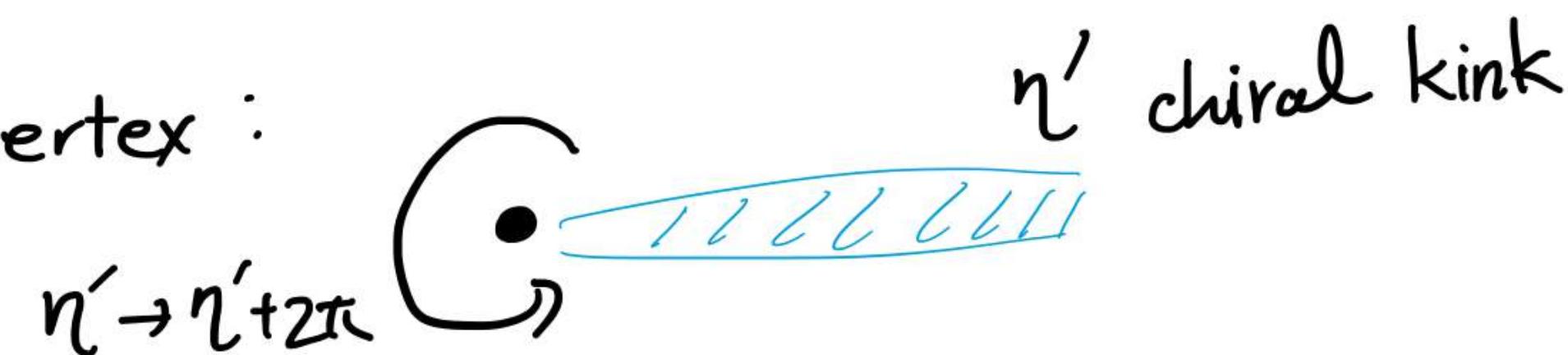
w/ KMT vertex
 [S.Aoki, Creutz '14]
 (inconsistent w/ anomaly matching)



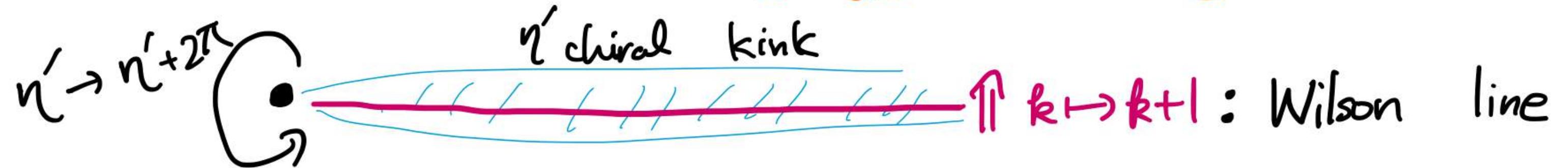
w/ $\frac{1}{N}$ -fractionalized vertex
 [Hayashi, YT '24]

η' - Vortex

Usual KMT vertex :



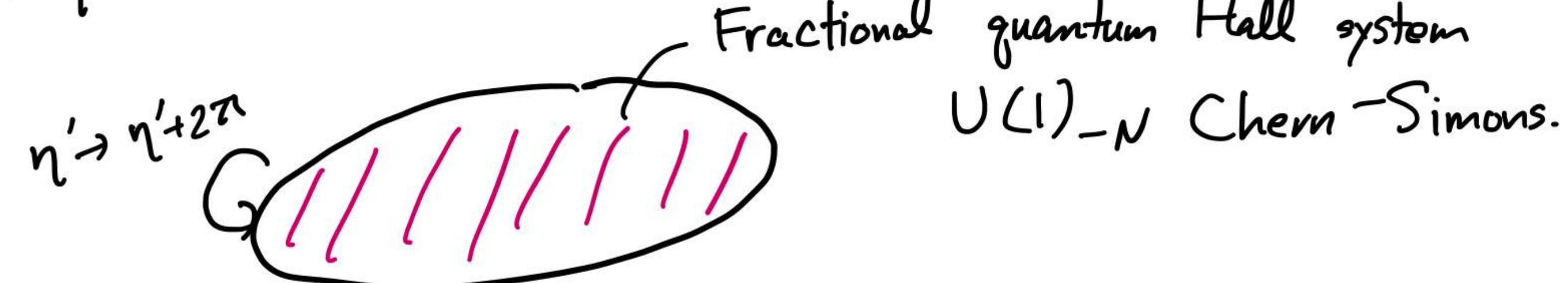
$\frac{1}{N}$ fractionalized vertex : $V(\eta', k) = -\cos\left(\frac{\eta' + \theta - 2\pi k}{N}\right)$ does not come back even if we shift $\eta' \rightarrow \eta' + 2\pi$.
k should also jump!



\Rightarrow In $\mathbb{R}^2 \times T_{\text{twist}}^2$,

$$\boxed{\eta' - \text{vortex} = \text{quark.}}$$

This corresponds to the 2d reduction of the "pancake baryon" construction. (Komargodski 1812.09253)



QCD on $\mathbb{R}^2 \times T^2$ w/ Baryon- $\frac{1}{4}$ Hooft flux

- Weakly-coupled if $N \Lambda \ll 1$

~ We can solve QCD analytically!
↓

2d \mathbb{Z}_N - Schwinger model

- η' -potential involves the discrete label $k \in \mathbb{Z}_N$: [YT, Ünsal '22; Hayashi, YT '24]

$$\cancel{-\cos(n' + \theta)} \Rightarrow -\cos\left(\frac{n' + \theta + 2\pi k}{N}\right)$$

- n' -vortex = Boundary of $U(1)_N$ Chern-Simons quantum liquid