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Neutron stars
• Densest matter in the Universe：Neutron star 

• Typical quantities 
• mass  solar mass 

• radius   

• magnetic field (surface)  

• temperature  

• Many-body system of relativistic fermions
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Chirality            Collective modes in magnetized dense matter 
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• Collective exciations in a magnetized collisionless plasma 

• O-mode in relativisitc plasma is modifed by quantum effect

Electromagnetism in magnetic fields
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x

z Bex

k
Extraordinary mode (X-mode)

Ordinary mode (O-mode)

Cyclotron motion  ⊥ Bex

See, e.g., Landau, Lifshitz vol.8

E = δE , B = Bex + δB



Chiral anomaly
• Massless fermions have chirality 

• Dispersion relation of O-mode
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Chiral kinetic theory
• Boltzmann equation in collisionless regime 

• Topology of chiral fermions 

• Equations of motion 

• Currents can be obtained by solving the Boltzmann equation
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Son, Yamamoto (2012); Stephanov, Yin (2012)
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Berry curvature

·x = v + ·p × Ω , ·p = eE + e ·x × B



 Anomalous correction to O-mode

• Dispersion relation 

• Long wavelength limit：Correction to plasma oscillation 

• Quasi-static limit
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ω2 = |kx |2 + m2
DF(ξ) + m2

a G(ξ) (ξ ≡
ω

|kx |
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3e4B2

ex

4π4χ )
Anomalous correction

Hanai (2025)

(ξ ≪ 1)

(ξ ≫ 1)

Landau damping

ω ≃ − i
4 |kx |3

πm2
D (1 +

m2
a

|kx |2 )
|kx | ≳ ma Anomalous dynamical screening



Relaxation time in dense matter
• Electron-electron scattering 

• Temperature dependence 

• Shear viscosity：
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ℳ =
C1

ω2 − |k |2 + ΠL
+

C2

ω2 − |k |2 + ΠT

Landau damping

Hanai (2025)Heiselberg, Pethick (1993)
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η ∝ τT

would enhance the r-mode instability



Conclusion & outlook
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Chirality

Anomaly
shear viscosity

Anomalous dynamical screening

• Anomalous effect may be dominant in strong magnetic fields 

• Application to quark matter?
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Chiral effects in effective theory
• Chiral anomaly is independent of scales
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Chiral anomaly

micro macro

Quantum field theory Kinetic theory Hydrodynamics

’t Hooft (1980)

Chiral hydrodynamicsChiral kinetic theory
Son, Surowka (2009)Son, Yamamoto (2012);  

Stephanov, Yin (2012)



Parity of transport
• Electric fields cause electric currents（Ohm’s law） 

• Do magnetic fields cause electric currents？
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 ej = σE  e(−j) = σ(−E)
parity transformation

 ej = σmB  e(−j) = σmB
parity transformation

 If  is satisfied, the current can be generated.σm → − σm



Chiral magnetic/separation effects

• At finite density system 

• For Dirac fermions
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(μ =
μR + μL

2
, μ5 =

μR − μL

2 ) chiral chemical potential

j = jR + jL =
eμ5

2π2
B,

j5 = jR − jL =
eμ
2π2

B

CME

CSE

Vilenkin (1980); Nilsen, Ninomiya (1983);  
Fukushima, Kharzeev, Warringa (2008); …

Son, Zhitnitsky (2004);  
Metlitsky, Zhitnitsky (2005); …
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CME & chiral anomaly
• Energy necessary for the chirality imbalance 

• Energy is suppled by electric currents 

• For arbitrary electric fields,
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2π2
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2π2
B

chiral anomaly

Nielsen, Ninomiya (1983)



Relaxation time of quark matter
• Medium effects 
• longitudinal: Debye screening (usual Fermi liquid like) 

• transverse: Landau damping
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∼ #α2
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qD
+ #α2

s
T5/3

q2/3
D

usual Fermi liquid Landau damping
(qIR ∼ qD) (qIR ∼ (q2

DT )1/3)

Heiselberg, Pethick (1993)



Relativistic collisionless plasma
• Collective modes also appear in the collisionless regime 

• Focus on the fluctuations
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ωτ
1

≈

Collisionless plasma

Hydrodynamics

Kinetic theory

Rybalka, Gorbar, Shovkovy (2019)

cf. zero sound; Stephanov, Yee, Yin (2015)

E = δE , B = Bex + δB , n5 = δn5



Electromagnetism in magnetic fields

• Maxwell equations in media 

• Linear response 

• Permittivity tensor in an external magnetic field
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See, e.g., Landau, Lifshitz vol.8

k × δE = ωδB , k × δB = − ωδE − ieδj

eδj = − iωδP = − iω(ε − 1)δE
microscopic details

ε =
εxx εxy 0

−εxy εxx 0
0 0 εzz

Onsager’s theorem: εij(Bex) = ε ji(−Bex)

・Diagonal：even in 
・Off-diagonal：odd in 

Bex

Bex

r2δE − (r ⋅ δE)r − εδE = 0

(r ≡
k
ω )

r2
x = εzz
O-mode



Dynamics of electric field and chiral charge

• Maxwell eq. + linear response 

• Continuity eq. of chiral charge 

• Electric and axial currents
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Transport coefficients
• Counting:  

• Solve Boltzmann equation by expansion 

• Currents at each order
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Aμ = 𝒪(ϵ) , ∂μ = 𝒪(δ) , e = 𝒪(δ)
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Relaxation time in dense matter
• Relaxation time of degenerate matter 

• Electron-electron scattering 

• Temperature dependence
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ω2 − |k |2 + ΠL
+
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Pauli blocking

Landau damping

k2
IR ∼ ΠT

Hanai (2025)Heiselberg, Pethick (1993)
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Strong magnetic field limit
• Chiral kinetic theory is applicable for weak field 

• Lowest Landau level approximation 

• Dispersion relation  
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(ζ ≪ 1)

ε

pz

ε

pz

Δε ∼ eB

effectively (1+1)-dim

ω2 = m2
a

Hanai (2025)



Viscosity and r-mode instability
• Shear viscosity： 

• Chandrasekhar-Friedman-Schutz (CFS) instability 

• r-mode is unstable due to CFS instability (r-mode instability)
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Andersson (1998)

Chandrasekhar (1970); Friedman, Schutz (1978)

τc

τa
∼ 1 ( T

106 K )
−2/3

( B
1017 G )

2

( μe

102 MeV )
−10/3

Hanai (2025)

stable unstable

η =
1
5

neμeτ

Anomalous dynamical screening would enhance 
the r-mode instability


