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Chiral EFT for Nuclear Interactions
Review & some new developments

Which methods are used in ab initio calculations 
(and what are their limitations)?

Workshop on recent developments from QCD to nuclear matter, 
Institute of Physics, Academia Sinica, 17-20 Dec. 2025

Where do we stand with understanding nuclear 
interactions from chiral EFT?

What is the role of chiral symmetry?



Is there a way to simplify the picture (without losing connection to QCD)?

Deuteron as a bound state of quarks and gluons

 d



Weinberg’s 3rd law of progress in theoretical physics:

You may use any degrees of freedom you like to describe a physical 
system, but if you use the wrong ones, you will be sorry…

in Asymptotic Realms of Physics, MIT Press, Cambridge, 1983

  non-relativistic description in the framework of the A-body Schrödinger equation:⇒

] |Ψ⟩ = E |Ψ⟩V2N + V3N + V4N + …[(
N

∑
i=1

− ⃗∇2

2m
+ 𝒪(m−3)) +

derived in ChPT

Typical momenta of nucleons in nuclei:

⟨Ψ | ̂p |Ψ⟩ ∼ 50 − 300 MeV

Fermi-momentum at the saturation density:

pF = (3/2π2ρ)1/3 ∼ 270 MeV

 Degrees of freedom
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Two main challenges:

—  derivation/construction of nuclear 
      interactions (chiral EFT)

—  solution of the quantum mechanical  
      A-body problem (ab-initio methods)



 The QM A-body problem
2N: Rewrite to the integral Lippmann-Schwinger eq.:  — easy to solve in p-space.t = V2N + V2NG0t

3N: Faddeev equations, e.g. for elastic Nd scattering: 
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symmetric under exchange of nucleons 2,3asymptotic Nd state P12P23 + P13P23

Solved iteratively in partial-waves (for fixed ), few minutes on 1 CPU.J, T ∼ 105 × 105

4N: Yakubovsky equations. Take several hours on JURECA@FZJ to solve for bound state; only  
       very few groups can do scattering (with large restrictions)

Similarity Renormalization Group 
Glazek and Wilson, Phys. Rev. D48, 5863(1993), or Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)

H(s) = U(s)HU†(s) � Hd(s) + Hod(s)

The evolution of the Hamiltonian with the flow parameter s is given by the 
infinitesimal representation of the transformation, 

dH(s)
ds

= [�(s),H(s)],

can arbitrary be defined

where η(s) is the anti-hermitian generator of the transformation, given by 
�(s) = [Hd(s),H(s)]

Different choice for Hd(s) can tailor the SRG evolution for a particular problem. 
==> Simplicity, flexibility
powerful alternative to Lee-Suzuki

lower λ

Hd(s) = T

Bogner et al, PRC75, 061001(R) (2007)

• Basis states construction ຦ A nucleons moving independently in
spherical 3D HO potential

• CRQfLJXUaWLRQ PL[LQJ YLa ÅUeVLdXaO´ LQWeUacWLRQ

ħΩ

6Li

NCSM essentials

>4N: So far, mainly for bound states. E.g., the No-Core-Shell-Model:

 or moren = 1,2,…,1012

 sparse matrix  diagonalization (Lánczos), 
     extrapolation in Nmax, pre-diagonalization of  (SRG):
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e.g.,  ηs = [Tkin, Hs]

Other ab-initio methods: QMC, CC expansion, IM-SRG, Lorentz IT, Green’s functions, NL-EFT, …



 Nuclear lattice simulations with Dean Lee, Ulf-G. Meißner, et al.  
L
⇠

10
..
.2
0
fm

1

a ⇠ 1 . . . 2 fm

1

Lattice EFT:  Nuclear structure from 
solving the Schrödinger equation on 
a discretized Euclidean space-time

 Nuclear lattice simulations

Hubbard-Stratonovich trafos
Auxiliary-Field QMC simulations…

p
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Figure 7. Extrapolation of NLEFT results for 28Si with kmax = 2. The definitions of
the observables are given in the main text. The LO energy is ELO = −330(3) MeV,
and the result at NNLO including effective 4N interactions (as reported in Ref. [19]) is
ENNLO+4N = −233(3) MeV. The empirical binding energy is −236.54 MeV. For each
trial state, the value of C

SU(4)
is given in units of the (spatial) lattice spacing.

5. Statistical and systematic errors

Our extrapolation procedure is examined in detail for the case of 12C in Table 1. Our main fit,
labeled “fit 5”, is also shown in Fig. 3, and consists of a simultaneous fit to five trial states that
differ in the value ofCSU(4). We observe that χ

2 ≃ 0.68, which indicates that the error bars of
the individual MC data points are likely to be overestimated. This could plausibly happen as
the observables are formed from the ratio of two amplitudes, the errors of which are at present
simply added in quadrature. A full-fledged jackknife error analysis may yield a more realistic
result. The uncertainties shown in parentheses correspond to the variances reported by the χ2
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iliary fields is proportional to the determinant of an A × A matrix Mij . The entries of Mij are

single-particle amplitudes for a nucleon starting at j at t = 0 and ending at i at t = tf . We

take advantage of an approximate SU(4) spin-isospin symmetry of the nucleon self-interactions

to improve the initial wavefunction. This approximate symmetry is known as Wigner’s SU(4)

symmetry (3). The Euclidean-time exponential of the SU(4)-invariant Hamiltonian serves as

an inexpensive low-energy filter. The SU(4)-invariant evolution is computationally inexpensive

because the determinant of the amplitude matrix is strictly positive for an even number of nucle-

ons (4, 5). After constructing the initial state, we apply the exponential of the full leading-order

(LO) Hamiltonian. Higher-order contributions are computed as perturbative corrections to the

leading-order transfer matrix. A schematic diagram of the transfer-matrix calculation is shown

in Fig. 4. We sample the background field configurations using a non-local updating algorithm

known as hybrid Monte Carlo (6, 7, 8).
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2 Lattice action

We use the lattice action described in Ref. (9, 10, 11). However some technical improvements

have been made, and we outline the modifications here. Throughout our lattice discussion we

use dimensionless parameters and operators, which correspond with physical values multiplied
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Figure 3. Left Panel: Predictions for charge radii of nuclei up to A = 58 at N3LO in chiral effective field theory and
comparison with experimental data. The symbols with a black border indicate nuclei with unequal numbers of protons and
neutrons. Right Panel: Predictions for pure neutron matter energy per neutron and symmetric nuclear matter energy
per nucleon as a function of density at N3LO in chiral effective field theory. For pure neutron matter, we use the number
of neutrons from 14 to 80 and various box sizes from 6.58 fm to 13.2 fm. For symmetric nuclear matter, we use nucleon
numbers from 12 to 160 and a periodic box of length 9.21 fm. For comparison we show the results from variational
calculations (APR),37 auxiliary-field diffusion MC simulations (GCR),38 many-body perturbation theory using N3LO/NNLO
(two-nucleon/three-nucleon) chiral interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV),39 and coupled
cluster theory using NNLO chiral interactions with explicit delta degrees of freedom (DNNLO).40 The empirical saturation
point is labeled with a black rectangular box.

mass nuclei, neutron matter, and nuclear matter using high-fidelity chiral interactions and found good agreement with empirical
data. Judging from the accuracy of the predictions, we have been successful in canceling systematic errors in nuclear structure
calculations by tuning the short-distance features of the three-nucleon interactions. These new developments may help resolve
long-standing challenges in ab initio nuclear structure theory.

While we have focused on Monte Carlo simulations for nuclear physics here, wave function matching can be used with
any computational method and applied to any quantum many-body system. This also includes quantum computing algorithms
where wave function matching can be used to reduce the number of quantum gates required. All that is needed is a simple
Hamiltonian HS that produces fair agreement with empirical data for the many-body system of interest and is easily computable
using the method of choice. Further details on the implementation and theory of wave function matching are given in Methods.
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Limitations/challenges:

— softness of the interactions (sign problem)

— 1st order perturbation theory (but can be optimized…)

— reactions (beyond two-clusters)

— currently, no access to Nd scattering 
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Figure 7. Extrapolation of NLEFT results for 28Si with kmax = 2. The definitions of
the observables are given in the main text. The LO energy is ELO = −330(3) MeV,
and the result at NNLO including effective 4N interactions (as reported in Ref. [19]) is
ENNLO+4N = −233(3) MeV. The empirical binding energy is −236.54 MeV. For each
trial state, the value of C

SU(4)
is given in units of the (spatial) lattice spacing.

5. Statistical and systematic errors

Our extrapolation procedure is examined in detail for the case of 12C in Table 1. Our main fit,
labeled “fit 5”, is also shown in Fig. 3, and consists of a simultaneous fit to five trial states that
differ in the value ofCSU(4). We observe that χ

2 ≃ 0.68, which indicates that the error bars of
the individual MC data points are likely to be overestimated. This could plausibly happen as
the observables are formed from the ratio of two amplitudes, the errors of which are at present
simply added in quadrature. A full-fledged jackknife error analysis may yield a more realistic
result. The uncertainties shown in parentheses correspond to the variances reported by the χ2
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Figure 3. Left Panel: Predictions for charge radii of nuclei up to A = 58 at N3LO in chiral effective field theory and
comparison with experimental data. The symbols with a black border indicate nuclei with unequal numbers of protons and
neutrons. Right Panel: Predictions for pure neutron matter energy per neutron and symmetric nuclear matter energy
per nucleon as a function of density at N3LO in chiral effective field theory. For pure neutron matter, we use the number
of neutrons from 14 to 80 and various box sizes from 6.58 fm to 13.2 fm. For symmetric nuclear matter, we use nucleon
numbers from 12 to 160 and a periodic box of length 9.21 fm. For comparison we show the results from variational
calculations (APR),37 auxiliary-field diffusion MC simulations (GCR),38 many-body perturbation theory using N3LO/NNLO
(two-nucleon/three-nucleon) chiral interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV),39 and coupled
cluster theory using NNLO chiral interactions with explicit delta degrees of freedom (DNNLO).40 The empirical saturation
point is labeled with a black rectangular box.

mass nuclei, neutron matter, and nuclear matter using high-fidelity chiral interactions and found good agreement with empirical
data. Judging from the accuracy of the predictions, we have been successful in canceling systematic errors in nuclear structure
calculations by tuning the short-distance features of the three-nucleon interactions. These new developments may help resolve
long-standing challenges in ab initio nuclear structure theory.

While we have focused on Monte Carlo simulations for nuclear physics here, wave function matching can be used with
any computational method and applied to any quantum many-body system. This also includes quantum computing algorithms
where wave function matching can be used to reduce the number of quantum gates required. All that is needed is a simple
Hamiltonian HS that produces fair agreement with empirical data for the many-body system of interest and is easily computable
using the method of choice. Further details on the implementation and theory of wave function matching are given in Methods.
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Limitations/challenges:

— softness of the interactions (sign problem)

— 1st order perturbation theory (but can be optimized…)

— reactions (beyond two-clusters)

— currently, no access to Nd scattering 
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Figure 7. Extrapolation of NLEFT results for 28Si with kmax = 2. The definitions of
the observables are given in the main text. The LO energy is ELO = −330(3) MeV,
and the result at NNLO including effective 4N interactions (as reported in Ref. [19]) is
ENNLO+4N = −233(3) MeV. The empirical binding energy is −236.54 MeV. For each
trial state, the value of C

SU(4)
is given in units of the (spatial) lattice spacing.

5. Statistical and systematic errors

Our extrapolation procedure is examined in detail for the case of 12C in Table 1. Our main fit,
labeled “fit 5”, is also shown in Fig. 3, and consists of a simultaneous fit to five trial states that
differ in the value ofCSU(4). We observe that χ

2 ≃ 0.68, which indicates that the error bars of
the individual MC data points are likely to be overestimated. This could plausibly happen as
the observables are formed from the ratio of two amplitudes, the errors of which are at present
simply added in quadrature. A full-fledged jackknife error analysis may yield a more realistic
result. The uncertainties shown in parentheses correspond to the variances reported by the χ2
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Figure 3. Left Panel: Predictions for charge radii of nuclei up to A = 58 at N3LO in chiral effective field theory and
comparison with experimental data. The symbols with a black border indicate nuclei with unequal numbers of protons and
neutrons. Right Panel: Predictions for pure neutron matter energy per neutron and symmetric nuclear matter energy
per nucleon as a function of density at N3LO in chiral effective field theory. For pure neutron matter, we use the number
of neutrons from 14 to 80 and various box sizes from 6.58 fm to 13.2 fm. For symmetric nuclear matter, we use nucleon
numbers from 12 to 160 and a periodic box of length 9.21 fm. For comparison we show the results from variational
calculations (APR),37 auxiliary-field diffusion MC simulations (GCR),38 many-body perturbation theory using N3LO/NNLO
(two-nucleon/three-nucleon) chiral interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV),39 and coupled
cluster theory using NNLO chiral interactions with explicit delta degrees of freedom (DNNLO).40 The empirical saturation
point is labeled with a black rectangular box.

mass nuclei, neutron matter, and nuclear matter using high-fidelity chiral interactions and found good agreement with empirical
data. Judging from the accuracy of the predictions, we have been successful in canceling systematic errors in nuclear structure
calculations by tuning the short-distance features of the three-nucleon interactions. These new developments may help resolve
long-standing challenges in ab initio nuclear structure theory.

While we have focused on Monte Carlo simulations for nuclear physics here, wave function matching can be used with
any computational method and applied to any quantum many-body system. This also includes quantum computing algorithms
where wave function matching can be used to reduce the number of quantum gates required. All that is needed is a simple
Hamiltonian HS that produces fair agreement with empirical data for the many-body system of interest and is easily computable
using the method of choice. Further details on the implementation and theory of wave function matching are given in Methods.
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squares, while the other nuclei are predictions denoted with filled diamonds.
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FIG. 3. Left Panel: Predictions for charge radii of nuclei up to A = 40 at N3LO in chiral effective field theory and comparison with
experimental data. The symbols with a black border indicate nuclei with unequal numbers of protons and neutrons. Right Panel: Predictions
for pure neutron matter energy per neutron and symmetric nuclear matter energy per nucleon as a function of density at N3LO in
chiral effective field theory. For the pure neutron matter energy we use the number of neutrons from 14 to 80 and various box sizes from
6.58 fm to 13.2 fm, and for the symmetric nuclear matter energy we use the number of nucleons from 12 to 160 and a periodic box of length
9.21 fm. For comparison we show the results from variational (APR) [34], Auxiliary Field Diffusion MC calculations (GCR) [35], calculated
with N3LO/NNLO (two-nucleon/three-nucleon) chiral interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV) [36] and
NNLO chiral interactions with explicit delta degrees of freedom (�NNLO) [37].

systematic uncertainties for the charge radii calculations are more difficult to predict without a comprehensive study of the
dependence of charge radii upon the individual interactions. However, the agreement with empirical results is quite good, with
an RMSD of about 0.03 fm. Note that the larger errors for the heaviest nuclei are statistical and can be decreased by utilizing
greater computational resources.

In the right panel of Fig. 3, we present lattice results for the energy per nucleon versus density for pure neutron matter
and symmetric nuclear matter. None of the neutron matter and symmetric nuclear matter data were used to fit any interaction
parameters. The density is expressed as a fraction of the saturation density for nuclear matter, ⇢0 = 0.16 fm�3. For the neutron
matter calculations, we consider 14 to 80 neutrons in periodic box lengths ranging from 6.58 fm to 13.2 fm. For the symmetric
nuclear matter calculations, we use system sizes from 12 to 160 nucleons in a periodic box of length 9.21 fm. The comparisons
with several other published work are shown and detailed in the figure caption. We see that the neutron matter calculations
are in good agreement with previous calculations, and the symmetric nuclear matter calculations pass through the empirical
saturation point. The one-standard-deviation error bars represent computational uncertainties due to Monte Carlo errors and
infinite projection time extrapolation. Uncertainties associated with extrapolation to large system size are not included here
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Ab initio alpha–alpha scattering
Serdar Elhatisari1, Dean Lee2, Gautam Rupak3, Evgeny Epelbaum4, Hermann Krebs4, Timo A. Lähde5, Thomas Luu1,5 &  
Ulf-G. Meißner1,5,6

Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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Wavefunction matching for solving 
quantum many-body problems

Serdar Elhatisari1,2, Lukas Bovermann3, Yuan-Zhuo Ma4,5, Evgeny Epelbaum3, Dillon Frame6,7, 
Fabian Hildenbrand6,7, Myungkuk Kim8, Youngman Kim8, Hermann Krebs3, Timo A. Lähde6,7, 
Dean Lee4 ✉, Ning Li9, Bing-Nan Lu10, Ulf-G. Meißner2,6,7,11, Gautam Rupak12, Shihang Shen6,7, 
Young-Ho Song13 & Gianluca Stellin14

Ab initio calculations have an essential role in our fundamental understanding of 
quantum many-body systems across many subfields, from strongly correlated 
fermions1–3 to quantum chemistry4–6 and from atomic and molecular systems7–9 to 
nuclear physics10–14. One of the primary challenges is to perform accurate calculations 
for systems where the interactions may be complicated and difficult for the chosen 
computational method to handle. Here we address the problem by introducing an 
approach called wavefunction matching. Wavefunction matching transforms the 
interaction between particles so that the wavefunctions up to some finite range  
match that of an easily computable interaction. This allows for calculations of systems 
that would otherwise be impossible owing to problems such as Monte Carlo sign 
cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light 
nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity 
chiral effective field theory interactions17,18 and find good agreement with empirical 
data. These results are accompanied by insights on the nuclear interactions that may 
help to resolve long-standing challenges in accurately reproducing nuclear binding 
energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

Quantum Monte Carlo simulations are a powerful and efficient ab initio 
method for describing quantum many-body systems using stochastic 
processes1,9,15,16,21–23. If the Monte Carlo amplitudes are positive, then 
the computational effort grows only as a low power of the number 
of particles. For many problems of interest, a simple Hamiltonian HS 
can be found that is easily computable using Monte Carlo methods 
and describes the energies and other observable properties of the 
many-body system in fair agreement with empirical data24–27. However, 
realistic high-fidelity Hamiltonians usually suffer from severe sign 
problems with positive and negative contributions cancelling each 
other so that Monte Carlo calculations become impractical. Here we 
solve the problem using an approach called wavefunction matching. 
While keeping the observable physics unchanged, wavefunction match-
ing creates a new high-fidelity Hamiltonian H′ such that the two-body 
wavefunctions up to some finite range match that of a simple Hamilto-
nian HS, which is easily computed. This allows for a rapidly converging 
expansion in powers of the difference H′ − HS. Although wavefunction 
matching can be used with any computational scheme, we focus here on 
quantum Monte Carlo simulations where the method presents a practi-
cal strategy for evading sign oscillations in high-fidelity calculations. 

While HS and H′ act on many-body systems, the wavefunction-matching 
process is done at the two-body level only. For the sake of clarity,  
we define HS and H′ as containing only two-body interactions. Later we 
also consider the inclusion of three-body interactions. However, that 
analysis is separate from wavefunction matching.

A unitary transformation U is a linear transformation that maps 
normalized orthogonal states to other normalized orthogonal states. 
Starting from a high-fidelity Hamiltonian H with only two-body interac-
tions, wavefunction matching defines a new Hamiltonian H′ = U†HU, 
where U† is the Hermitian conjugate of U. The unitary transformation 
is performed at the two-body level. In each two-body angular momen-
tum channel, the unitary transformation U is active only when the 
separation distance between two particles is less than some chosen 
distance R. For the calculations presented here, the value R = 3.72 fm is 
used. The dependence on R is extensively discussed in Supplementary 
Information.

Let us write ψ0(r), ψ r′ ( )0  and ψ r( )0
S  for the two-body ground-state 

wavefunctions of H, H′ and the simple Hamiltonian HS, respectively. 
Here r is the distance between the two particles. The transformation 
U is defined such that ψ r′ ( )0  is proportional to ψ r( )0

S  for r < R. The simple 
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can be found that is easily computable using Monte Carlo methods 
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 Ab initio many-body calculations

H. Hergert - INT Program 21-1b, “Nuclear Forces for Precision Physics”, Apr 19, 2021

Progress in Ab Initio Calculations
HH, Front. Phys. 8, 379 (2020)

The main bottleneck in developing nuclear physics into precision and predictive science 
is the accuracy of the interaction (especially of 3N forces).

from: Heiko Hergert, Front. Phys. 8, 379 (2020)
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 Chiral expansion of nuclear forces Chiral expansion of the nuclear forcesNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Chiral dynamics:  Long-range interactions are predicted in terms of on-shell amplitudes

Short-range few-N interactions are tuned to experimental data

LO:

NLO:

N2LO:

N3LO:

N4LO:



Man
de

lst
am

 tri
an

gle

s =
0 u =

0

t = 0 t = 4M2
π

t = M2
ρ

s =
(m N

+
M π)

2u =
(m

N +
M

π ) 2

 [ ]ν Mπ

 [
]

t
M

2 π

0 2 4-2-4

0

-20

20

40

60

80

s-channelu-channel

 Predictive power
Chiral symmetry  +  N data      predictions for the large-distance behavior of the nuclear forces.π =

strongly constrained by  symmetry: 
 vs.  matters, also , , 

etc. interactions play a role…

χ
ℒps ℒpv ππ ππN

⟵

 can be extracted from (analytically continued) 
 obtained in ChPT (need data to fix LECs) 
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Dispersive representation:
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μdμ
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Roy-Steiner equation
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Chiral expansion of the long-range NN force

SMS NN potentials  Reinert, Krebs, EE, EPJA 54 (2018) 86;  PRL 126 (2021) 092501

V1π(q) = α
⃗q2 + M2π

V2π(q) = 2
π ∫

∞

2Mπ

dμμ
ρ(μ)
⃗q2 + μ2

e− ⃗q2 + M2π
Λ2 + subtraction, e− ⃗q2 + μ2

2Λ2 + subtractions

+ nonlocal (Gaussian) cutoff for contacts

χ2
datum
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Chiral expansion of the long-range NN force

Can these predictions be tested in NN scattering?

Switching off the -exchange leads to    (i.e.,  away!), consistent fits only for  MeV…2π χ2
datum ∼ 1.99 50σ Elab ≤ 135

χ2
datum

 for the description of neutron-proton and proton-proton scattering dataχ2
datum

 Elab bin CD Bonn Nijm I Nijm II Reid 93 Bochum N4LO+

 0-300 MeV 1.042 1.061 1.070 1.078 1.013



 The landscape of chiral NN interactions
Different regularizations (cutoff choices)

— fully nonlocal  Entem, Machleidt, Nosyk 2017 (Idaho);  Ekström et al. 2013-18 (GO): NNLOopt, NNLOsat, NNLO-Δ 

— semi-local  EE, Krebs, Meißner 2015;  Reinert, EE, Krebs 2018 (LENPIC)

— local  Gezerlis et al. 2013;  Piarulli et al., 2016 (Norfolk models);  Saha, Entem, Machleidt, Nosyk 2023 

Degrees of freedom in the effective Lagrangian
— :  LENPIC, Idaho, GO, NLEFTπ, N
— :  Norfolk, GOπ, N, Δ

Highest available EFT order
— N4LO+: Low-Energy Nuclear Physics International Collaboration (LENPIC), Idaho
— N3LO:  Norfolk, NLEFT
— N2LO:  Gothenburg-Oak Ridge (GO)

Strategy in the determination of LECs
—  from the Roy-Steiner analysis (not fitted),  LECs from two-nucleon dataπN NN

LENPIC, Idaho, Norfolk, NLEFT
— LECs determined from a global fit to , , nuclei, EoS  GOπN NN

— local, nonlocal + lattice  Lee, Elhatisari, EE, Lähde, Meißner, Krebs et al. (Nuclear Lattice EFT)

the only chiral EFT interactions that provide a statistically 
perfect description of NN data below  

-production thresholdπ



 Application: How big is a neutron?
The proton radius puzzle settled. What about the neutron radius?

— no neutron targets; extrapolations of  extracted  
     from 2H not reliable…

Gn
C(Q2)

— the only information comes from (fairly old) n-scattering  
     experiments on Pb, Bi, …  

PDG value:   r2
n = − 0.1161 ± 0.0022 fm2

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

WEIGHTED AVERAGE
-0.1161±0.0022 (Error scaled by 1.3)

KROHN 73 0.1
ALEKSANDR... 86 3.9
KOESTER 95 0.5
KOPECKY 97 1.8
KOPECKY 97 0.1

χ2

       6.5
(Confidence Level = 0.164)

-0.15 -0.14 -0.13 -0.12 -0.11 -0.1 -0.09

n mean-square charge radius

n MAGNETIC RADIUSn MAGNETIC RADIUSn MAGNETIC RADIUSn MAGNETIC RADIUS

This is the rms magnetic radius,
√

〈

r2
M

〉

.

VALUE (fm) DOCUMENT ID COMMENT

0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE

0.89 ±0.03 EPSTEIN 14 Using e p, e n, ππ data

0.862+0.009
−0.008 BELUSHKIN 07 Dispersion analysis

n ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αn

Following is the electric polarizability αn defined in terms of the induced
electric dipole moment by DDDD = 4πϵ0αnEEEE. For a review, see SCHMIED-
MAYER 89.

For very complete reviews of the polarizability of the nucleon and Compton
scattering, see SCHUMACHER 05 and GRIESSHAMMER 12.

VALUE (10−4 fm3) DOCUMENT ID TECN COMMENT

11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE

11.55± 1.25±0.8 MYERS 14 CNTR γd → γd

12.5 ± 1.8 +1.6
−1.3

1 KOSSERT 03 CNTR γd → γpn

12.0 ± 1.5 ±2.0 SCHMIEDM... 91 CNTR n Pb transmission

10.7 + 3.3
−10.7 ROSE 90B CNTR γd → γnp

HTTP://PDG.LBL.GOV Page 6 Created: 6/5/2018 19:00

Idea: accurate calculation of the 2H structure radius, 
which incorporates all nuclear effects 

combined with 1H-2H isotope shifts data 

can be used to extract  !r2
n

r2
d − r2

p = 3.82070(31) fm2

Jentschura et al. ’11; Pachucki et al. ’18

JB0ψλ ψλ’

isoscalar charge density 
available to N4LO 

(3 LECs)

+ (r2
p + 3

4m2p
) + r2

nr2
d = r2

str

γ



 Deuteron charge and quadrupole FFs
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via

G
scaled

C
(Q) = GC(Q)
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band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].
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FIG. 5. (Color online) Left panel: the deuteron charge and quadrupole FFs calculated at N4LO for the cuto↵ choice of
⇤ = 500 MeV (solid red lines) along with the estimated truncation error (68% degree-of-belief) shown by the light-shaded
band. Bands between dashed (red) lines correspond to a 1� error in the determination of the two short-range contributions
at N4LO. Right panel: the same form factors divided by the scaling functions as defined in Eq. (63) and (64). Open violet
circles and green triangles are experimental data from Refs. [57] and [55], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [35, 119].

B. Results for the deuteron form factors

The results for the deuteron charge and quadrupole FFs from the best fit to data up to Q = 6 fm�1, evaluated for
the cuto↵ ⇤ = 500 MeV, are visualized in Fig. 5 together with the N4LO truncation errors and statistical uncertainty
of the LEC’s in ⇢

reg

Cont
from Eq. (39). The plot contains two theoretical uncertainty bands: the light-shaded band

stands for the estimated truncation error corresponding to the 68% degree-of-belief interval, while the band between
long-dashed (red) lines corresponds to a 1� error in the determination of the two short-range contributions at N4LO.
In principle, these two uncertainty bands are not fully independent since the truncation error is also included in the
estimate of the 1� error for the LECs in the charge density operator as discussed in previous Section. In this way,
however, the truncation error is estimated more conservatively.

Since the variation of the FFs at small Q-values is di�cult to see on the logarithmic scale, we also plot the rescaled
FFs using a linear scale in the right panels of Fig. 5. Specifically, following Ref. [35], we define the rescaled charge
and quadrupole FFs via

G
scaled

C
(Q) = GC(Q)

 
3X

i=0

ai exp(�biQ
2)

!�1

, (63)

The charge and quadrupole form factors of the deuteron at N4LO

Filin et al., PRL 124 (2020)
Filin et al., PRC 103 (2021)

The extracted structure radius 
and quadrupole moment:

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501;  PRC 103 (2021) 024313

statistical and systematic errors due to 
the EFT truncation, choice of fitting range 

and N LECsπ

rstr = 1.9729+0.0015
−0.0012 fm

Qd = 0.2854+0.0038
−0.0017 fm

2

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

WEIGHTED AVERAGE
-0.1161±0.0022 (Error scaled by 1.3)

KROHN 73 0.1
ALEKSANDR... 86 3.9
KOESTER 95 0.5
KOPECKY 97 1.8
KOPECKY 97 0.1

χ2

       6.5
(Confidence Level = 0.164)

-0.15 -0.14 -0.13 -0.12 -0.11 -0.1 -0.09

n mean-square charge radius

n MAGNETIC RADIUSn MAGNETIC RADIUSn MAGNETIC RADIUSn MAGNETIC RADIUS

This is the rms magnetic radius,
√

〈

r2
M

〉

.

VALUE (fm) DOCUMENT ID COMMENT

0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE0.864+0.009
−0.008 OUR AVERAGE

0.89 ±0.03 EPSTEIN 14 Using e p, e n, ππ data

0.862+0.009
−0.008 BELUSHKIN 07 Dispersion analysis

n ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αnn ELECTRIC POLARIZABILITY αn

Following is the electric polarizability αn defined in terms of the induced
electric dipole moment by DDDD = 4πϵ0αnEEEE. For a review, see SCHMIED-
MAYER 89.

For very complete reviews of the polarizability of the nucleon and Compton
scattering, see SCHUMACHER 05 and GRIESSHAMMER 12.

VALUE (10−4 fm3) DOCUMENT ID TECN COMMENT

11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE11.8 ± 1.1 OUR AVERAGE

11.55± 1.25±0.8 MYERS 14 CNTR γd → γd

12.5 ± 1.8 +1.6
−1.3

1 KOSSERT 03 CNTR γd → γpn

12.0 ± 1.5 ±2.0 SCHMIEDM... 91 CNTR n Pb transmission

10.7 + 3.3
−10.7 ROSE 90B CNTR γd → γnp

HTTP://PDG.LBL.GOV Page 6 Created: 6/5/2018 19:00

Combining our result for    with the 

1H-2H isotope shift datum    leads

r2
str = r2

d − r2
p − r2

n − 3
4m2p

r2
d − r2

p = 3.82070(31) fm2

r2
n = − 0.105+0.005

−0.006 fm2

our result

The value of  is to be compared with  Qd Qexp
d = 0.285 699(15)(18) fm2 Puchalski et al., PRL 125 (2020)

Λ = 500 MeV

Atac et al., Nature Commun. 12 (21)

Haecock et al., Science 373 (21)

to the prediction for the neutron radius:
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When particles interact with each other through the
intervening mechanism of a field, the description of their
dynamical behavior by means of action-at-a-distance
potentials is only of an approximate nature. Two-body,
three-body, ~, m-body potentials may be regarded as
successive stages of this approximation; their relative
magnitudes are examined systematically for several types
of classical and quantized fields, e.g, , electromagnetic,
mesotron, etc. It is found that the description of electrons

in atomic systems by the customary two-body potentials is
an excellent approximation; in nuclei, independent of the
details of the field, one finds: three-body potentials
=(v„/c) X (two-body potentials) ~, zn-body potentials—(v„/c) ~&& (two-body potentials}, where v„ is the average
velocity of the heavy particles in the nucleus. The usual
description of nuclei in terms of two-body potentials
cannot therefore be considered satisfactory, except in the
case of the deuteron.

INTRODUCTION

''N field theories of particle interaction, an
& - exact description of the dynamical behavior
of the particles necessitates the explicit intro-
duction of variables describiq, g the state of the
field. A description of particle dynamics in terms
of interactions depending only on the instan-
taneous relative coordinates of the particles'
(action-at-a-distance) is, therefore, necessarily of
an approximate character. In the first stage of
this approximation the interactions are of the
so-called "two-body" type:

systems, but a relatively poor one for the heavy
particles in nuclei.

CLASSICAL ELECTROMAGNETIC THEORY OF
ELECTRON DYNAMICS

(a) Etinations of motion
The equation of motion of a given electron in

the presence of potentials, p, A is

1 8
ma~ ——e~ —grad. ~ e(r~, t)———A(r~, t)

c Bt

Vk+—&(curl~A(r~, t), k=1, , n (1).
c

In the higher stages, as shown below, one ob-
tains additional interactions of such a nature
that the force between any two particles is de-
pendent on the positions of some of the others
("many-body" forces). For example,

Here q, A, arise from the other electrons, and
describe the state of the field; they are deter-
mined by the equations 2

BA
g'e =—4~pe;8(r —r;(t))——div. —, (2)

c Bt
V= P V;;~(r;;, rg, r;~) 1 O'Aq'A-—

c' cjt~

VZ
4m Pe, 8(r—r;(t) )——i, j, k

represents three-body interactions. It is the
purpose of this 'paper to examine the conditions
under which a set of two-body interactions con-
stitute an adequate substitute for the explicit
use of field variables. It will be found that the
use of two-body interactions is an excellent
approximation for electronic motions in atomic

1 Be)
+grad. (

div. A+——[. (3)
c at)

To obtain an "action-at-a-distance" dynamical
description of the particles, one attempts to
express q, A in terms of the instantaneous rela-
tive particle coordinates. Choosing the gauge so*University Fellow.' One also admits interactions depending on the particle

velocity into the action-at-a-distance dynamical de
scription.

' W. Heitler, Quantum Theory of RaCh ation (Oxford
Univ. Press, 1936), p. 2, Eqs. (Sa), (Sb).
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intermediate Δ-excitation multi-pion interactions off-shell behavior of the VNN 
Vring = 𝒜3π − VπG0VπG0VπFujita, Miyazawa ’57

short-range

Δ
ρπ

 3NF are not directly measurable and depend  
on the scheme (DoF, off-shell VNN, …)

⇒

  Guidance from theory indispensable — an opportunity for χEFT!⇒

3NF have extremely rich and complex structure

V3N =
20

∑
i=1

Oi fi(r12, r23, r31) + permutations

⃗r12

⃗r23
⃗r31

EE, Gasparyan, Krebs, Schat ’15

Topolnicki ’17

Three-nucleon forces (3NF) are small but important corrections to the dominant NN forces

3NF mechanisms: 

— most general local 3NF: 

— most general nonlocal 3NF:  320 (!) operators

3-body force: A frontier in nuclear & atomic physics
Endo, EE, Naidon, Nishida, Sekiguchi, Takahashi, EPJA 61 (2025) 9

Still poorly understood (in spite of extensive research) Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rept. Prog. Phys. 75 (12) 



 Three-body force: A frontier in nuclear physics
Endo, EE, Naidon, Nishida, Sekiguchi, Takahashi, EPJA 61 (2025) 9! Chiral expansion of the 3NF
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Elastic Nd scattering at 135 MeV

LENPIC

Semi-local nuclear forces from chiral EFT: State-of-the-art & challenges 19
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Fig. 9 Predictions for ground state energies of selected nuclei with A = 4–12 at NLO and N2LO
for L = 450 MeV using the ab-initio No-Core Configuration Interaction method (NCCI). Black
error bars indicate the NCCI uncertainties, while shaded bars refer to the EFT truncation errors
(not shown for incomplete N2LO calculations based on 2NF only). See Ref. [42] for details.

the many-body forces and currents have been worked out using dimensional regu-
larization (DR), see Tab. 1, the existing expressions can not be directly employed
in few-nucleon calculations due to the inconsistencies caused by combining the di-
mensional and cutoff regularizations [7]. Below, an explicit example will be given
to demonstrate such an inconsistency for the 3NF regularized in a naive way using
both (semi-) local and nonlocal cutoffs.

Statement of the problem

Both the 2NF and 3NF need to be regularized in order to obtain a well defined
solution of the Faddeev equations. High-momentum components in the integrals
appearing in the iterations of the Faddeev equation generate contributions involv-
ing positive powers and logarithms of the cutoff which diverge in the L ! • limit
and are supposed to get absorbed by the available short-range interactions. The mo-
mentum dependence of such contact interactions beyond the 2N sector is, however,
severely constrained by the spontaneously broken chiral symmetry of QCD. In par-
ticular, in the limit of exact chiral symmetry (i.e., for Mp ! 0), only derivative pion
couplings are allowed in the effective Lagrangian according to the Goldstone theo-
rem. In the 2N sector, the tree-level short range interactions do not involve any pion
couplings, and their momentum dependence is therefore not restricted by the chiral

Predictions for light p-shell nuclei

LENPIC Collaboration, PRC 103 (21);  PRC 106 (22)

0.1

1

10

dσ/dΩ

0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

θc.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
θc.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

θc.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
θc.m. [deg]

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

Axx

Ad
ydσ/dΩ [mb/sr]

Axz

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

New
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are

0.1

1

10

dσ/dΩ

0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

θc.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
θc.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

θc.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
θc.m. [deg]

10

consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this

0.1

1.0

10.0

-0.25

-0.50

0

0.25

0.50

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

d� /d� [mb/sr]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0.1

1

10

d�/d� [mb/sr]0.1

1

10

0

0.2

0.4

100 120 1400

0.2

0.4

100 120 140

-1

-0.5

0

0.5

Ayn

-1

-0.5

0

0.5

-0.5

-0.25

0

0.25

0.5

Ayd-0.5

-0.25

0

0.25

0.5

0

0.25

0.5

0.75

1 Ayy

0

0.25

0.5

0.75

1

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180

Axz

�c.m. [deg]

-0.25

0

0.25

0.5

0.75

1

1.25

0 60 120 180
�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180

Axx

�c.m. [deg]

-0.75

-0.5

-0.25

0

0.25

0.5

0 60 120 180
�c.m. [deg]

0 45 90 135 180 0 45 90 135 180
�CM [deg] �CM [deg]

0.25

0

0.50

0.75

1.00

-0.75

-0.50

-0.25

0

0.25

Ad
y

AxxAxz
NLO (1σ)
NLO (2σ)

N2LO (1σ)
N2LO (2σ)

100 120 1400

0.2

0.4

Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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consistently with the SCS NN potentials. The need to
perform regularization of the 3NF in coordinate space
was found to introduce significant computational over-
head for its numerical implementation, which was one
of the motivations to reformulate the SCS regulariza-
tion scheme to momentum space [83]. Notice that par-
tial wave decomposition of a general 3NF can be car-
ried out in an automated way by numerically perform-
ing the required angular integrations as described in
Refs. [139, 140], see also Ref. [26].

As detailed in Sec. 2.2.4, the 3NF at N2LO depends
on the LECs cD and cE that need to be determined
from few-nucleon data. It is customary to fix the lin-
ear combination of these LECs to reproduce the 3H
binding energy, which determines cE as a function of
cD. To fix the second LECs, di↵erent observables have
been proposed in the literature including the Nd dou-
blet scattering length [8, 16], 3H beta decay [141], 4He
binding energy [142], charge radii of the A = 3, 4 nu-
clei and properties of few- and many-nucleon systems
[143, 144, 145]. Clearly, to allow for the most stringent
test of the nuclear Hamiltonian, the LECs should ide-
ally be fixed from A  3 observables. In Ref. [138], a
variety of observables including the Nd doublet scat-
tering length as well as the Nd total and di↵erential
cross sections at the energies of Elab = 70, 108 and
135 MeV have been considered. Taking into account
both the experimental errors and the EFT truncation
uncertainty, the strongest constraint on cD was found
to result from the requirement to reproduce the proton-
deuteron (pd) di↵erential cross section minimum using
the data from Ref. [146]. The resulting Hamiltonian was
then used to calculateNd elastic scattering observables,
ground state energies and selected excitation energies of
p-shell nuclei up to 12C. For almost all considered nu-
clei, adding the 3NF was found to significantly improve
the description of experimental data. A detailed analy-
sis of elastic Nd scattering and breakup using the same
Hamiltonian is presented in Ref. [147].

These studies were further refined in Ref. [148] by
employing the high-precision SMS NN interactions of
Ref. [83] along with the consistently regularized N2LO
3NFs, utilizing Bayesian methods for quantifying EFT
truncation errors and extending the range of consid-
ered observables. In Fig. 5, we show selected results for
Nd elastic scattering observables at Elab = 135 MeV,
which may serve as representative examples. Given that
the LECs cD and cE are fixed from the 3H binding
energy and the di↵erential cross section minimum at
Elab = 70 MeV, the shown results are to be regarded
as predictions. The experimental data from Ref. [146]
are mostly in agreement with the calculations (within
errors), but the N2LO truncation uncertainty at this
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Fig. 5 ChEFT predictions for the di↵erential cross section,
deuteron vector analyzing power Ad

y and deuteron tensor ana-
lyzing powers Axz and Axx in elastic neutron-deuteron scat-
tering at Elab = 135 MeV. Dark-shaded orange and green
bands show the NLO and N2LO results at the 1� confi-
dence level, respectively, while the corresponding light-shaded
bands show the 2�-intervals. Experimental data are pd elas-
tic scattering data from Ref. [146]. Dashed lines in the middle
of green bands are the actual N2LO predictions. Dotted lines
are obtained using the NN interaction at the highest available
order N4LO+, supplemented with the N2LO 3NF (with the
appropriately re-adjusted LECs cD and cE). In all calcula-
tions, the cuto↵ is chosen to be ⇤ = 450 MeV.

moderate energy appears to be rather large. The de-
scription of Nd data at N2LO is qualitatively similar
to the one for proton-proton scattering as a compara-
ble energy, shown in Fig. 2. Based on the results in the
NN system, it is expected that taking into account the
3NF up through N4LO would allow one to achieve a
precise description of Nd scattering data, comparable
to that of the neutron-proton and proton-proton data
reported in Refs. [83, 85].

It is interesting to explore the impact of corrections
to the NN force beyond N2LO. To this aim, a set of cal-
culations based on the SMS NN potentials up through
N4LO+, supplemented with the N2LO 3NF, has been
performed in Ref. [149]. In all cases, the LECs cD and
cE have been fixed following the standard LENPIC fit-
ting protocol described above. For the considered Nd
scattering observables, the inclusion of corrections to
the NN force beyond N2LO changes the central N2LO
predictions, shown by the dashed lines in Fig. 5, to the
dotted lines. The results visualized by the dashed and
dotted lines di↵er by N3LO terms, and it is comfort-
ing to see that the di↵erences between these lines are
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Chiral symmetry and peripheral n↵ scattering
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Low-energy peripheral neutron-↵ scattering is governed by the two-pion exchange components of
the nuclear force, which are determined in a parameter-free way by the chiral symmetry of QCD and
experimental information on the pion-nucleon system. Here, we present ab-initio quantum Monte
Carlo calculations of the neutron-↵ D-wave phase shifts using two- and three-nucleon forces derived
in chiral e↵ective field theory up to third order (N2LO). We show that the longest-range three-
nucleon force stemming from the two-pion exchange plays a crucial role in the proper description of
the neutron-↵ D-wave phase shifts. Our study demonstrates the predictive power of chiral symmetry
on the few-body level in a clean way and opens a new direction for probing and constraining the
chiral three-nucleon forces.

Chiral e↵ective field theory (EFT) [1, 2] provides a
solid foundation for understanding the interactions be-
tween protons and neutrons, one of the fundamental
problems in physics. The method relies on the spon-
taneously broken approximate chiral symmetry of QCD,
which allows one to connect nuclear forces with the un-
delying theory of the strong interactions between quarks
and gluons [3] in a theoretically clean way [4–6]. In par-
ticular, the long-range behavior of nuclear forces and cur-
rent operators is determined in a parameter-free manner
by the chiral symmetry and its breaking pattern, along
with the experimental information on the pion-nucleon
(⇡N) system needed to pin down the corresponding low-
energy constants (LECs) [7].

In the two-nucleon (NN) sector, peripheral neutron-
proton scattering has been traditionally used to probe the
long-range behavior of the nucleon force and test conver-
gence of the chiral EFT expansion [8–10]. Furthermore,
clear evidence of the parameter-free chiral two-pion ex-
change (TPE) was seen in NN scattering data using the
last-generation high-precision chiral EFT NN potentials
in Refs. [11, 12]. On the other hand, the long-range be-
havior of the strong nuclear force is dominated by the
one-pion exchange (OPE), whose form is, in fact, not re-
stricted by chiral symmetry in contrast to that of the
TPE. Indeed for the OPE potential, the pseudovector
⇡N coupling dictated by chiral symmetry is well known
to be on-shell equivalent to the chiral-symmetry-breaking
pseudoscalar one. Thus, probing the implications of chi-
ral symmetry becomes complicated by the dominance of
the OPE interaction at large distances.

In contrast to the NN interaction, three-nucleon forces
(3NFs) are still poorly understood and have become an
important frontier in low-energy nuclear physics [13–
15]. Modeling 3NFs is made more di�cult by the high
complexity of the possible spin-isospin-momentum struc-
tures and the sheer amount of information needed to
parametrize their most general form. Here, chiral EFT
is expected to o↵er decisive advantages relative to more

phenomenological aproaches by providing parameter-free
predictions for the large-distance behavior of the 3NF.
While the dominant contributions to the 3NF at N2LO
are already well-established [16, 17] and have been tested
in ab-initio calculations of nuclear structure and reac-
tions, see [15] and references therein, higher-order cor-
rections are currently under investigation [18, 19]. Based
on the experience in the 2N sector, the development of
accurate and precise 3NFs will likely require the chiral
EFT expansion to be pushed to fifth order (i.e., N4LO).
Here, an important challenge will be the determination
of LECs in the short-range part of the 3NF and estab-
lishing clean ways to probe and constrain the long- and
intermediate-range parts of the 3NF.
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FIG. 1. (Color online). Diagrams (a) and (b) show the dom-
inant contributions to low-energy peripheral neutron-↵ scat-
tering. The OPE process (c) is forbidden by the isospin selec-
tion rule for the isospin T = 0 ↵-particle. Iterated OPE con-
tributions in diagram (d) are suppressed in the tight-binding
limit. Solid and dashed lines denote nucleons and pions, re-
spectively, while green-shaded ellipses denote the correspond-
ing ⇡N amplitudes.

In this Letter we demonstrate that peripheral neutron-
↵ scattering can serve as a particularly clean probe of the
long-range tail of the 3NF. This process is advantageous
compared to other few-body scattering processes, due
to the high inelastic threshold and the isoscalar nature
of the ↵-particle that suppresses the OPE [20, 21], see
Fig. 1. However, an ab initio study of a five-body scatter-
ing is a challenging task from the numerical perspective.
The first ab initio study of n↵ scattering using realis-
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 Probing long-range 3NF in peripheral n-α scattering
Yilong Yang, EE, Jie Meng, Lu Meng, Pengwei Zhao, PRL 135 (25) 172502

Calculate the  GS energy  in a harmonic trap (for ) using  
VMC + neural network and apply the Busch formula: 

5Hel ϵl l = 2

Busch et al., Found. Physical. 28 (2008) 549; 

Suzuki et al., PRA 80 (2009) 033601

k2l+1 cot δl(ϵl) = (−1)l+1(4μω)l+1/2 Γ[(3 + 2l)/4 − ϵl /(2ω)]
Γ[(1 − 2l)/4 − ϵl /(2ω)]



 Probing χ symmetry in peripheral n-α scattering
Yilong Yang, EE, Jie Meng, Lu Meng, Pengwei Zhao, PRL 135 (25) 1725023

Here, R = (r1, r2, . . . , rA) and Ôp=2-6
ij

are two-body spin-

isospin operators, Ôp=2-6
ij

= ⌧i · ⌧j ,�i · �j ,�i · �j⌧i ·
⌧j , Sij , Sij⌧i · ⌧j , with Sij = 3�i · rij�j · rij � �i · �jr2ij .
The central correlation functions U ,V are represented by
a permutation-invariant neural network [46, 47]. The
distances of nucleon pairs are used as inputs to ensure
the translational and rotational invariance of the trial
wave function [48]. The spin-isospin dependent correla-
tion function W takes the following form

Wp

ij
(R) = ⇢pW

 
AX

k=1

�W(rij , rik, rjk)

!
(7)

Here, the generalized backflow transformation is imple-
mented to take into account correlation e↵ects [52], which
has been shown to augment the performance of neural-
network wave function for nuclei [49, 50].

In present calculations, all the feed-forward neural net-
works (⇢s and �s) are comprised of one fully connected
hidden layer with 32 nodes each. The output dimensions
of �s are also taken to be 32. The output dimension is
1 for ⇢U,V and 5 for ⇢W , the latter corresponding to the
five two-body spin-isospin operators with p = 2-6. The
parameters in the neural networks are trained by varia-
tional Monte Carlo (VMC), i.e., minimizing the energy
expectation iteratively [51].

Starting from the trained neural-network wave func-
tion, we carry out the GFMC calculations to project out
the lowest J⇡ = 5

2

+
eigenstate via the imaginary time

propagation [22],

lim
⌧!1

e�H⌧ | T iJ⇡ ! | 0iJ⇡ . (8)

It is carried out by a sequence of short-time propaga-
tion e�H�⌧ using a branching random walk algorithm
with importance sampling [53, 54]. When performing the
GFMC propagation, one has to deal with the sign prob-
lem that causes large statistical fluctuations at large ⌧ .
Following the previous GFMC calculations of n↵ scatter-
ing [23], we use a transient estimate to mitigate the sign
problem. We first perform the constrained-path propaga-
tion [54], which suppresses the sign problem, and then re-
lease the constraints to obtain the final result. Such tran-
sient estimates result in significantly improved estimates
compared to those without performing constrained-path
propagation at first. See Supplemental Material [55] for
more details on the present GFMC calculations with
neural-network wave functions.

Figure 2 depicts the D-wave n↵ phase shifts predicted
with the chiral nuclear Hamiltonian from LO to N2LO, as
functions of the center-of-mass energy Ecm. Each point
in the figure corresponds to a single GFMC calculation
using a HO trap. The values of HO frequency ! are cho-
sen such that the oscillator lengths b =

p
2/(mN!) are

in the range of b = 4-6 fm, much larger than the NN in-
teraction range and the size of ↵ particle. We have tested

FIG. 2. (Color online). Phase shifts for n↵ scattering in the
2D 5

2
channel as a function of the center-of-mass energy ob-

tained from LO to N2LO. The empty symbols are the GFMC
computed results and their error bars include the GFMC
statistical uncertainty and the estimated uncertainty of the
BERW formula. The bands are fits of the GFMC computed
results described in the text. The stars are from an R-matrix
analysis of the experimental n↵ elastic scattering data [45].

that the BERW formula with HO traps b = 4-6 fm yield
quite accurate D-wave phase shifts for the NN scatter-
ing with only ⇠ 10% relative error [55]. We include this
relative error in the uncertainty estimate for each point,
in addition to the GFMC statistical uncertainty. The
smallness of the phase shifts suggests that the scattering
in the 2D 5

2
channel is perturbative. Therefore, we fit the

computed phase shifts using

tan �n↵(k) = �a2k
5 +O(k7) (9)

, where a2 stands for the scattering “length” and k =p
2µEcm is the n↵ relative momentum with µ = 4mN/5

the reduced mass.
We compare the predictions of the D-wave n↵ phase

shifts to those from an R-matrix analysis of the exper-
imental n↵ elastic scattering data [45]. The LO chi-
ral Hamiltonian gives vanishing D-wave n↵ phase shifts.
This is expected as the one-pion exchange between the
neutron and the ↵ particle is suppressed since, consid-
ering the n↵ scattering being perturbative, an insertion
of the one-pion exchange vanishes between the isoscalar
initial and final ↵ states. The leading nonvanishing con-
tribution appears at NLO when the chiral TPE NN
force enters, but significantly overestimates the R-matrix
phase shifts. The N2LO corrections significantly reduce
the predicted phase shifts and bring the theoretical pre-
dictions closer to the R-matrix phase shifts.
The N2LO corrections consist of the subleading chiral

TPE NN force and the leading chiral 3N forces. Fig-
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
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It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
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It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.
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Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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mixing DimReg with Cutoff regularization in the Schrödinger equation violates χ-symmetry 
EE, Krebs, Reinert, Front. in Phys. 8 (2020)

D. B. Kaplan ~ INT ~ 4/19/16

DANGER: momentum cutoff for pions breaks chiral symmetry!

Why?  A lattice regulator seems straight forward: 

• Σ on each site 
• chirally invariant hopping term: Σn† Σn+1 
• SU(2) invariant Haar path integral measure

…but a momentum cutoff on the pion field violates chiral symmetry:
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I propose gradient flow as a finite range regulator for nucleon-nucleon interactions; it resembles

a momentum cuto↵ by imposing a Gaussian pion form factor, but which explicitly preserves chiral

symmetry by introducing new interaction vertices, making it of possible analytical and numerical

utility for the e↵ective field theory treatment of nuclear interactions.

PACS numbers:

I. INTRODUCTION

Chiral perturbation theory has proved to be a useful formalism for computing low energy meson and nucleon
interactions in a controlled and predictive expansion consistent with the symmetries of QCD. The expansion is
in powers of the ratio of particle momenta or meson masses, divided by a strong interaction parameter taken to be
⇤� ⇠ 1 GeV. For precise results it is necessary to go beyond tree level at which point one encounters divergent radiative
corrections. For many applications it is most convenient to use the mass-independent MS renormalization scheme.
However a completely local regulator is not suited for all applications, such as chiral nucleon-nucleon interactions. In
the Weinberg expansion for the two-nucleon interaction, for example, at leading order one must solve the Schrödinger
equation for the nucleons in the one pion exchange (OPE) potential. This potential is singular; in the S = 0 channel,
the singularity behaves as a �-function at the origin which poses no challenges to renormalize, but in the S = 1 channel
the singularity behaves as 1/r3 at the origin, a potential which has no ground state even if one adds local counterterms,
which behave at the origin as a �-function or its derivatives. Regulating the theory by imposing a UV cuto↵ on the
momenta of the pions makes the calculation finite, but causes new problems since such a regulator violates chiral
symmetry, necessitating a complicated procedure to restore the symmetry by adding appropriate counterterms at each
order in the chiral expansion. Such cuto↵s are used in practice, but the literature is somewhat obscure as to whether
this procedure is indeed been carried out in a way that preserves the chiral symmetry in the high order expansions
of nuclear interactions being used today. If not one has lost the main advantage of using the chiral e↵ective theory
— having a systematic way to estimate theoretical errors at each order in the calculation. In this paper I construct a
regularization procedure that e↵ectively provides a gaussian cuto↵ on the momenta of exchange pions, while explicitly
preserving chiral symmetry.

It might seem counterintuitive that a momentum cuto↵ on the pion fields violates chiral symmetry. After all, it is
evident that one can implement a nonlinear sigma model on the lattice. One defines a unitary matrix-valued nonlinear
sigma field as

⌃ = e
2i⇡aTa/f⇡ , Ta 2 SU(2) (1)

at each lattice site, where f⇡ is the pion decay constant, and ⇡
a(x) are the pion fields; one then includes hopping

terms in the action, and integrates over the SU(2) invariant Haar measure. In this procedure the pion momenta are
evidently limited by |k|  ⇡/a, where a is the lattice spacing. It is tempting to assume then that if a lattice regulator
can be chirally invariant, so can a momentum cuto↵ regulator in the continuum, but that is not true. A simple way
to see this is to consider the continuum pion field configuration ⇡1 = ⇡2 = 0, ⇡3 = A cos kx. We impose a momentum
cuto↵ ⇤ and choose k . ⇤. Under an infinitesimal chiral transformation �⌃ = i✓/2{�1,⌃} we find the pions transform
to linear order in ✓ as

�⇡2,3 = 0 , �⇡1(x) = ✓⇡3(x) cot
⇡3(x)
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and we see that the transformed ⇡1 field must contain an infinite tower of harmonics with wave numbers
0,±2k,±4k, . . .. However this chiral transformation cannot be realized since we have imposed a momentum cut-
o↵ ⇤, as all of the harmonics except the k = 0 mode are excluded by the cuto↵. it makes no qualitative di↵erence
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of nuclear interactions being used today. If not one has lost the main advantage of using the chiral e↵ective theory
— having a systematic way to estimate theoretical errors at each order in the calculation. In this paper I construct a
regularization procedure that e↵ectively provides a gaussian cuto↵ on the momenta of exchange pions, while explicitly
preserving chiral symmetry.

It might seem counterintuitive that a momentum cuto↵ on the pion fields violates chiral symmetry. After all, it is
evident that one can implement a nonlinear sigma model on the lattice. One defines a unitary matrix-valued nonlinear
sigma field as

⌃ = e
2i⇡aTa/f⇡ , Ta 2 SU(2) (1)

at each lattice site, where f⇡ is the pion decay constant, and ⇡
a(x) are the pion fields; one then includes hopping

terms in the action, and integrates over the SU(2) invariant Haar measure. In this procedure the pion momenta are
evidently limited by |k|  ⇡/a, where a is the lattice spacing. It is tempting to assume then that if a lattice regulator
can be chirally invariant, so can a momentum cuto↵ regulator in the continuum, but that is not true. A simple way
to see this is to consider the continuum pion field configuration ⇡1 = ⇡2 = 0, ⇡3 = A cos kx. We impose a momentum
cuto↵ ⇤ and choose k . ⇤. Under an infinitesimal chiral transformation �⌃ = i✓/2{�1,⌃} we find the pions transform
to linear order in ✓ as

�⇡2,3 = 0 , �⇡1(x) = ✓⇡3(x) cot
⇡3(x)

f⇡
= ✓f⇡

"
1� 1

3

✓
⇡3(x)

f⇡

◆2

� 1

45

✓
⇡3(x)

f⇡

◆4

+ . . .

#
(2)

and we see that the transformed ⇡1 field must contain an infinite tower of harmonics with wave numbers
0,±2k,±4k, . . .. However this chiral transformation cannot be realized since we have imposed a momentum cut-
o↵ ⇤, as all of the harmonics except the k = 0 mode are excluded by the cuto↵. it makes no qualitative di↵erence

⇤Electronic address: dbkaplan@uw.edu

e.g.:
implies:

π3 = plane wave ⇒ δπ1 involves all harmonics…cannot satisfy if require k ≤ Λ
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Ô[�i,⌧i,~qi]

(~q 2
2 +M2)(~q 2

3 +M2)(~q 2
4 +M2)

h
2~�1 · ~q12f

234
⇤ + ~�1 · ~q1

�
2f

123
⇤ � f

134
⇤ � f

234
⇤

�i

+
g
4

128F 6

~�1 · ~q1 Ô[�i,⌧i,~qi]
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Ô[�i,⌧i,~qi]

(~q 2
2 +M2)(~q 2

3 +M2)(~q 2
4 +M2)

h
2~�1 · ~q12f

234
⇤ + ~�1 · ~q1

�
2f

123
⇤ � f

134
⇤ � f

234
⇤

�i

+
g
4

128F 6

~�1 · ~q1 Ô[�i,⌧i,~qi]
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Ô[�i,⌧i,~qi]

(~q 2
2 +M2)(~q 2

3 +M2)(~q 2
4 +M2)

h
2~�1 · ~q12f

234
⇤ + ~�1 · ~q1

�
2f

123
⇤ � f

134
⇤ � f

234
⇤

�i

+
g
4

128F 6

~�1 · ~q1 Ô[�i,⌧i,~qi]
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 Summary and outlook

The chiral symmetry of QCD and its breaking pattern play the key role for un-
derstanding low-energy nuclear physics

Chiral EFT has already been developed into a precision tool in the NN sector!

Frontiers and challenges:

Precision physics beyond the 2N system (the 3NF challenge)
— high-precision 3NFs (gradient flow method) and 3N scattering

— ab-initio theory for heavier nuclei and reactions

Chiral EFT as a tool to deal with nuclear effects (SM and BSM): PV, EDM, 0νββ,…

— precision test of chiral EFT for nuclear forces & electroweak currents in nuclei

EFT and lattice-QCD

Thank you for your attention


