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Atomic and nuclear interactions
Bohr, Mottelson, Nuclear Structure Vol.1 
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Total neutron cross section
From Bohr and Mottelson, Nuclear Structure Vol.1 

Oscillatory behaviors

Nuclear transparency

Oscillation amplitude

More transparent at 
lower energies
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Energy dependence: 𝑑𝑉
𝑑𝐸

Optical potential
From Bohr and Mottelson, Nuclear Structure Vol.1 

Effective mass
𝑚∗

𝑚 = 1 −
𝑑𝑉0
𝑑𝐸 ≈ 0.7

𝑉(𝐸) = 𝑉0(𝐸) + 𝑖𝑊(𝐸)

Mean-free path larger 
than nuclear size
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Mean-field description with effective mass

• Mean free path: 𝜆 ≫ 𝑅 encourage us a mean-field 
description of nuclei

• However,
– Naïve mean-field model fails.
– TN et al., RMP 88, 045004 (2016)



Momentum-dependent potential

• State-dependent potential

– Shallower for particles with a weaker binding
• Momentum dependence

– The lowest order → “Effective mass”
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Known for many years
• Vautherin-Brink (1972)

– …, it is well-known that it is not possible to fit the radius, s.p. energies, 
and total binding energy of 16O and 40Ca ...  [Kerman (1968) ]

– However, the situation is different for Density Functional Model
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Static calculation (ground state)

ℎ − 𝜆 Δ
−Δ∗ − ℎ − 𝜆 ∗

𝑈𝜇
𝑉𝜇

= 𝐸𝜇
𝑈𝜇
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Minimization of energy

Kohn-Sham-Bogoliubov equations
(Hartree-Fock-Bogoliubov equations)

𝛿𝐸 𝜌, 𝜅 = 0

Pair density



Nuclear deformation and giant resonances

• Unified, universal, & non-empirical description
• Universal energy density functional: 𝐸 𝜌

• One of the most successful applications of nuclear DFT



Shape evolution: 𝑅4/2
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Shape phase transition

spherical deformed

Increasing neutrons

Phonon 
excitation Rotational 

excitation

Nuclear 
surface 
vibration



Nuclear deformation predicted by DFT
Intrinsic Q moment

\begin{align*}

\langle 

http://maru.bonyari.jp/texclip/texclip.php?s=/begin%7balign*%7d/langle%20/hat%7bQ%7d_%7b20%7d/rangle/end%7balign*%7d


Dynamic calculation (excited states)

𝑖ℏ
𝜕
𝜕𝑡

𝑈𝜇
𝑉𝜇

= ℎ − 𝜆 Δ
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Linear response:
Time-dependent calculation with an initial kick

or
Quasiparticle RPA calculation



Finite amplitude method

• A computationally advantageous approach to the linear response 
calculations

• Extensive studies of nuclear excitations, reactions, beta decays, etc.
• Giant resonances: TN et al. (2007), Inakura&TN&Yabana (2009,2011,2013), 

Avogadro&TN (2011), Stoitsov et al. (2011), Niksic et al. (2013), Liang&TN (2014), 
Kortelainen et al. (2015), Oishi et al. (2016), Washiyama&TN (2017), Sun&Liu
(2017), Sun et al. (2019), Sun (2021), Sun&Meng (2022), Sasaki et al. (2022), 
Washiyama et al. (2024)

• Low-lying collective states: Avogadro&TN (2013), Hinohara et al. (2013)
• NG modes:  Hinohara&Nazarewicz (2016), Petrik&Kortelainen (2018)
• (Double-)Beta decay: Mustonen et al. (2014), Mustonen&Engel (2016), Shafer et 

al. (2016), Ney et al. (2020), Hinohara&Engel (2022)
• Collective model: Wen&TN (2016,2017,2020,2022), Washiyama et al. (2021), 

Washiyama et al. (2024)

TN, Inakura, Yabana, PRC 76, 024318 (2007)



\begin{align*}
\langle 
\hat{Q}_{20}\rangle

Deformation splitting of photoabsorption peaks

SkM* functional

Intrinsic Q moment

Yoshida and TN, Phys. Rev. C 83, 021404 (2011)
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Isoscalar Giant monopole & quadrupole resonances

𝑁 = 82

𝑁 = 84

𝑁 = 86

𝑁 = 88

𝑁 = 90

𝑁 = 92

IS-GMR IS-GQR

Exp: M. Itoh et al., PRC 68, 064602 (2003).

Yoshida and TN, Phys. Rev. C 88, 034309 (2013)
Coupling due 
to deformation

Nuclear
self-consistency

Sm



Large amplitude collective motion

• Calculation of collective mass parameters using the linear 
response calculation

• Shape fluctuation: 110Pd
• e.g.) Quadrupole shape d.o.f.: (𝛽, 𝛾)

TN, Matsuyanagi, Matsuo, Yabana, RMP 88, 045004 (2016)

Constraint EDF
𝛿(𝐸 𝜌, 𝜅 − 𝜆 ෠𝑄) = 0



Improved inertial functions

Improved inertial functions 
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Wen, TN, PRC 105 (2022) 034603

𝑚∗

𝑚 = 1
𝑚∗

𝑚 = 0.8

𝛼 particle total mass

Feasible with FAM
without matrix diagonalization
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Cranking formula for collective mass

Wrong values
Need an artificial factor of 1.2 − 1.4



𝐻 = 𝑇vib + 𝑇rot + 𝑉 𝛽, 𝛾

𝑇vib =
1
2
𝐷𝛽𝛽 𝛽, 𝛾 ሶ𝛽2 + 𝐷𝛽𝛾 𝛽, 𝛾 ሶ𝛽 ሶ𝛾 +

1
2
𝐷𝛾𝛾 𝛽, 𝛾 ሶ𝛾2

𝑇rot =
1
2
ℐ𝑘 𝛽, 𝛾 Ω𝑘2

Washiyama, Hinohara, TN, PRC 109, L051301 (2024)

5D collective Hamiltonian with improved inertial functions

5DCH: 5D collective Hamiltonian

Shape fluctuation/coexistence
Superposition of different shapes: (𝛽, 𝛾)

𝐷
𝐷(cranking)



Cranking Exp

110Pd

5D collective Hamiltonian with improved inertial functions

Significant improvement over the cranking mass



Sub-barrier fusion reaction

• Few-body model
• Time-dependent wave-packet (TDWP) method

– Neutron-halo nuclei: Fusion suppression at subbarrier energies
• TDDFT-based collective model

– Alpha reactions
– Fusion hindrance due to the collective mass



Real-time simulation

  

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

● 衝突径数の大きいとき  (3 fm < b)

● 衝突径数の小さいとき  (b < 3 fm)

 K. Sekizawa

58Ni  +208Pb    at Elab=328.4 MeV
28 8230 126TDHF計算の結果:

核子の移行確率核子の移行確率

: 粒子数射影法

208Pb

58Ni

+符号

―符号

荷電平衡

くびれ構造の形成と断裂

Wed., 18 February, 2015MNT reactions and QF processes in TDHF theory 11/26

“Partial”-space particle-number projection

Sekizawa, PRC 96, 014615 (2017)

Reactions above the Coulomb barrier
Simenel, C., 2010, Phys. Rev. Lett. 105, 192701.

136Xe + 198Pt
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Wave packet dynamics of fusion reaction

( )rV

( )rW

Radial Schroedinger equation for l=0

Flux absorbed by W(r)
represents fusion.

with incident Gaussian wave packet
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00 exp, rrikrtru −−−=  Ito et al., PLB 637, 53 (2006)



Construction of low-energy reaction model

Model Hamiltonian

−
𝑑
𝑑𝑅

1
2𝑀(𝑅)

𝑑
𝑑𝑅

+
𝐿(𝐿 + 1)
2𝐼(𝑅)

+ 𝑉 𝑅 𝜓𝐿 𝑅 = 𝐸𝐿𝜓𝐿 𝑅

Microscopically calculating 𝑉 𝑅 ,𝑀 𝑅 , 𝐼(𝑅)

Can we reproduce the following asymptotic values at 𝑅 → ∞?
How good is the usage of these values?

𝑀 𝑅 = 𝜇𝑅, 𝐼 𝑅 = 𝜇𝑅𝑅2

Correspondence: 𝑅 𝑀(𝑅)



Effect of effective mass: 𝑚∗
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⍺-16O fusion (alpha reaction)

K. Wen, T. N., PRC 105 (2022) 034603; EPJWC 306, 01006 (2024)



𝑀 𝑅 ( Τ𝑚∗ 𝑚 ≤ 1)

𝑀 𝑅 = 𝜇𝑅 (𝑅 → ∞)

16O + α

𝑚∗ < 𝑚∗ < 𝑚∗ = 𝑚

𝑅
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“Point-particle approx.”

𝐼red
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Fusion reaction:
Astrophysical S-factor

With 𝑀 𝑅 , 𝐼(𝑅)

With 𝜇𝑅, 𝐼red

𝐵3 = 25 MeV fm5

Fusion hindrance due 
to the inertial mass



Summary
• EDF method: Universal description of nuclear structure and reaction
• Shape phase transition & Giant resonances: Deformation splitting/coupling
• 16O(𝑝, 𝑝𝑑)14N knockout reaction (on-going)
• TDWP method for fusion: Fusion suppression for neutron-halo nuclei
• LACM: Inertial parameter effects on low-energy spectra & alpha reaction

• Collaboration
• T. Ochi (Univ. Tsukuba; D1)
• N. Hinohara (Univ. Tsukuba)
• M. Ito (Kansai Univ.)
• K. Washiyama (CiDER, Osaka Univ.)
• K. Wen (KEK)
• K. Yoshida (RCNP, Osaka Univ.)
• K. Yabana (Univ. Tsukuba)
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