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(TD)DFT: (Time-dependent) density functional theory
LACM: Large amplitude collective motion
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Atomic and nuclear interactions
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Total neutron cross section

From Bohr and Mottelson, Nuclear Structure Vol.1
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Optical potential

From Bohr and Mottelson, Nuclear Structure Vol.1
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Mean-field description with effective mass

* Mean free path: 4 > R encourage us a mean-field
description of nuclei
« However,

— Naive mean-field model fails.
— TN et al., RMP 88, 045004 (2016)



Momentum-dependent potential

TN et al., Rev. Mod. Phys. 88 (2016) 045004
« State-dependent potential

VF — <V> + T% + % Bohr-Mottelson, Vol. 1

— Shallower for particles with a weaker binding

 Momentum dependence Weisskopf (1957)
— The lowest order — “Effective mass” Empirically
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Known for many years
« Vautherin-Brink (1972)

1 A
E = Ez(ti + el-)
=1

— ..., It is well-known that it is not possible to fit the radius, s.p. energies,
and total binding energy of 10 and 4°Ca ... [Kerman (1968) ]

— However, the situation is different for Density Functional Model

1w Density functional
= Density-dep. int.




Static calculation (ground state)
/ Pair density

Minimization of energy 6E[p, k] =0

h—A A U U
(ot () =5 ()

Kohn-Sham-Bogoliubov equations
(Hartree-Fock-Bogoliubov equations)



Nuclear deformation and giant resonances

* Unified, universal, & non-empirical description
* Universal energy density functional: E[p]

* One of the most successful applications of nuclear DFT



Shape evolution: Ry,
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Dynamic calculation (excited states)

in 2 (On =(h"1 A ) Ui
ot \ V, —A* —(h ="/ \ W,
Linear response:

Time-dependent calculation with an initial kick
or
Quasiparticle RPA calculation



Finite amplitude method
TN, Inakura, Yabana, PRC 76, 024318 (2007)

* A computationally advantageous approach to the linear response
calculations

* Extensive studies of nuclear excitations, reactions, beta decays, etc.

* Giant resonances: TN et al. (2007), Inakura&TN&Yabana (2009,2011,2013),
Avogadro&TN (2011), Stoitsov et al. (2011), Niksic et al. (2013), Liang&TN (2014),
Kortelainen et al. (2015), Oishi et al. (2016), Washiyama&TN (2017), Sun&Liu
(2017), Sun et al. (2019), Sun (2021), Sun&Meng (2022), Sasaki et al. (2022),
Washiyama et al. (2024)

e Low-lying collective states: Avogadro&TN (2013), Hinohara et al. (2013)

* NG modes: Hinohara&Nazarewicz (2016), Petrik&Kortelainen (2018)

* (Double-)Beta decay: Mustonen et al. (2014), Mustonen&Engel (2016), Shafer et
al. (2016), Ney et al. (2020), Hinohara&Engel (2022)

 Collective model: Wen&TN (2016,2017,2020,2022), Washiyama et al. (2021),
Washiyama et al. (2024)



Deformation splitting of photoabsorption peaks
Yoshida and TN, Phys. Rev. C 83, 021404 (2011)
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Isoscalar Giant monopole & quadrupole resonances

IS-GMR

Coupling due

®

2 to deformation

Yoshida and TN, Phys. Rev. C 88, 034309 (2013)
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Large amplitude collective motion

 Calculation of collective mass parameters using the linear
response calculation 60
7V (deg) I

« Shape fluctuation: 1°Pd Vg

154Sm
 e.g.) Quadrupole shape d.o.f.: (8,y) L
20 4=

Constraint EDF NN TN
6(Elp,kl —2Q) =0 & &\

0
6

TN, Matsuyanagi, Matsuo, Yabana, RMP 88, 045004 (2016)



Improved inertial functions

Cranking formula for collective mass

a particle total mass

(0|32 ) (nl52-[0) + c-c. R
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Feasible with FAM
without matrix diagonalization

Wen, TN, PRC 105 (2022) 034603



5D collective Hamiltonian with improved inertial functions

Shape fluctuation/coexistence Washiyama, Hinohara, TN, PRC 109, L051301 (2024)
Superposition of different shapes: (8,y)

o
0.4 0.6 0

5DCH: 5D collective Hamiltonian

H = Tyip + Trot + V(B,¥)
1 e o1 P :
Tvib = 5 Dpg (B, ¥IB + Dy (B, VIBY + 5 Dy (B, )Y D (cranking)
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5D collective Hamiltonian with improved inertial functions
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Sub-barrier fusion reaction

* Few-body model
» Time-dependent wave-packet (TDWP) method

— Neutron-halo nuclei: Fusion suppression at subbarrier energies

« TDDFT-based collective model

— Alpha reactions
— Fusion hindrance due to the collective mass



ions above the Coulomb barrier

React

“Partial”-space particle-number projection

Simenel, C., 2010, Phys. Rev. Lett. 105, 192701.

TDHF

o
GRAZING w/ evap. \\W  TDHF+GEMINI

Expt. Y.X. Watanabe et al.

Real-time simulation
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Wave packet dynamics of fusion reaction

Radial Schroedinger equation for [=0

e h o d’ ,
with incident Gaussian wave packet Zhau(’”af)= {—TFJFV(’”)HW(’”)}”("J)
m ar
. 2
”(’”’to):eXp[_’kr_M'”_’%) J lto et al., PLB 637, 53 (2006)
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Construction of low-energy reaction model

Model Hamiltonian Correspondence: R © M(R)

d 1 d LIL+1) B
{_ dR 2M(R) dR t= I(R) + V(R)} Y1 (R) = ELy(R)
Microscopically calculating V(R), M(R), I (R)

Can we reproduce the following asymptotic values at R — co?
How good is the usage of these values?

M(R) = g, I(R) = pugR?



Effect of effective mass: m”
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a-1°0 fusion (alpha reaction)

5

0
Z (fm)

K. Wen, T. N., PRC 105 (2022) 034603; EPJWC 306, 01006 (2024)



M(R) (m*/m<1)
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Alpha reaction: %0 + a

Fusion reaction:
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Summary
 EDF method: Universal description of nuclear structure and reaction
* Shape phase transition & Giant resonances: Deformation splitting/coupling
* 150(p, pd)*N knockout reaction (on-going)
« TDWP method for fusion: Fusion suppression for neutron-halo nuclei
* LACM: Inertial parameter effects on low-energy spectra & alpha reaction

* Collaboration
* T. Ochi (Univ. Tsukuba; D1)
N. Hinohara (Univ. Tsukuba)
M. Ito (Kansai Univ.)
K. Washiyama (CiDER, Osaka Univ.)
K. Wen (KEK)
K. Yoshida (RCNP, Osaka Univ.)
K. Yabana (Univ. Tsukuba)
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