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What is the |-Love-Q relation?

Many observables of neutron stars strongly depend on the EoS

G. F. Burgio et.al., Prog. Part. Nucl. Phys. 120, 103879 (2021)
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What is the |-Love-Q relation?

Surprisingly, some combinations of observables of NS (and QS) do not depend on the EoS:

Universal relation
- honmsensitive Characterize the spinnin . Q

_ I _ Q , —-
I = W; Q=-— M3s2|’ kﬁ‘d Characterize the tidal deformation

e.d., I-Love-Q relation (Yagi-Yunes 2013)
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Origin of I-Love-Q7?

Since the I-Love-Q relations were discovered, several studies have been carried out

to understand their origin:

Many numerical studies exist (e.g., Yagi+2014, Stein+2014, Chatziioannou+2014, ... )

But analytical understanding remains limited

- Assuming phenomenological density profile (Sham+2015)

,',.2
e(r) =€, (1 — 5?)
- Simplified EoS (Yagi+2014, Chan+2015)

e(p) = co+c1p + cp* + -+

Can we analytically explain the universality using a more realistic EoS?



Model and Notation
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1. Model: slow-rotation & small tidal-deformation (Hartle+1967, Hinderer 2008)

dp  (e+p)(c+4mr’p)

de  (dmer? —¢)(1 — 2¢)’
dr r

de  Awer? — ¢’

dN 4mr?p + ¢

de T (dmer? —e)(1—2¢)°

Yy 23

dH(] o ,8?’
de  4dmer? —c’
dap 2Hqr €+p 3 2(c+4nr2p)’
&= —on(5e+9 © 4 2T AR
_de (4mer? —¢) (1 —2c) [ W()F+ P+ 2 ) + r? + r2 (1 — 2¢)

* (4mer? —¢) (1 — 2¢)

[~1+c+2mr(e —p)],

with Piecewise polytropic EoS

€(p)

2. Collective notation

- AT
ﬁiwrpjl"v :

PN S P < PN+1,

0 = {p, r, N; HO; ﬁ; w1, ¢) KZ) hZ}

m(r)

3.Usec = ——asan expansion parameter (instead of )

Surface of star:

c=C<05

C: compactness of star

|

duwn or

de  Amer2—c’
dp 41 —m(e+p)r’}¢ — 16m(e + p)wnr

de (dmer? — ¢)(1 — 2¢)
dK,  dhy 1 1—3c—4mr?p 1—c+4mr?p
de de ' (4mer? — ) [ (1—2¢) 2 r(1—2¢)? ‘{Lz]"
ﬁ:7176+4ﬂ'7‘2p@ 1 {iNOQ
de (1—=2¢) de  (4dmer? —c)L12
(3hs + 2ks) — Amr2(e +p)(he + S Nw?) 1+ 8mr2p
(1—2c) r(1— 2c)2“2] ‘
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Analvytical Strategy

Let U = {I, Q, k5%}: the I-Love-Q quantities
2. Evaluate at the surface O(C) = 0(c = C)

1. Specify the general form of the series
solution O(c) satisfying the initial and boundary
conditions

ZI(DN), Zr(.N) some integration constants
not determined by BC and IC

IC, BC

e.g., 0(c)~ z- (N) (N))

nk,f

dO—FO'
dc (;¢)

(LHS)~ Y ¢ Onke C" (z;’v))k (iﬁ"’))g (RHS)~ X7, ¢ Oniee €™ (E,SN))R (fﬁN))g

—>

0(C) ~ z Ongee C™ (Eg’v))k (Eﬁ’v)){)

3. From O(C), one can express
‘U as the C-expanded form

UC) ~ Z Upypep CT (EISN))’C (EISN))E

nk,f

l

4. From U, (C) and U,(C), eliminate C to
obtain the I-Love-Q expansion U, (U,)
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Yagi-Yunes 2013

I-Love-Q expansion

For small X, X,

_ (5
Consistent logul(UQ;EéN) N ~ = ~log Uy + Z Mk

k.n1,n2€Np

For Large X, X,

log Uy (Us; S(N) S(N)) ~ log S(N) + log Ml(%goo (7v)
o n nai 7k +nil—3n
+ Z Z Z Mtkgnl n2) 'YN)( (N]) 1(2(1\’)) 2u 1 2 .

ni€LnzgeNyg kel
|n1|+k>0

Inconsistent
o 2 0
loghy (Ua; £, B) ~ Z10g B+ 30 S ST Mg () (B57)m (B

n1ENg no€Z keNg
k—ni-n.>0

logul(u-);i(N) E(N)) IogE( )+10gM(000 ('}’N)
o N —n
+3003 Mg ) () B

nasCZ% kN
k—n2>0

= N\ Zp, i3kt |n|—n
5D MO S DDA RI AR AR AR

n1€Z\{0} n2€Z keNg
k+|n1|—n220
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Why universal? 1. Memory Loss

E(p)A log‘ul

~<
Il

YL

> D logU,

The I-Love-Q relations transition between the
results obtained for individual single-polytropic EoS



8/12
Why universal? 1. Memory Loss

e(p)}
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YL

> D logU,

The I-Love-Q relations transition between the
results obtained for individual single-polytropic EoS
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Why universal? 1. Memory Loss

From the expansion for small Ep, X

Memory loss

e(p)}

>Dp logU,

The I-Love-Q relations transition between the
results obtained for individual single-polytropic EoS
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Why universal? 1. Memory Loss

From the expansion for small E'p, X

Memory loss

10° 1

e of
poion

10" = -
> p 10 10°

The I-Love-Q relations transition between the
results obtained for individual single-polytropic EoS
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Why universal? 2. Newtonian analysis

Variations in y control the residual EoS

A
logly . '1 M (i) — ML ()
Y =Yu Y 4

dependence .
O > 4 s
10&:& Ml {z/{g} ~ —{ l(}ﬂ‘ Z/f;r + Mt?]g ) A
N . -
N ma-?;nlan r
Up to this constant term, the expansion 1s
. .. > logU,
completely fixed by the Newtonian limit.
e.g., I-Q relation:
“’g(y) = —3.195 x (1 — 0.0091y2 + 0.049y* + 0(y*)) <
89
For typical EoS, y < 0.6: Error is at most about 0.6% = _s..]
log log
M
(YH?OQ (Y1) < 0.006 3215
(ve)

y-dependence 1s very weak, 1.e. universality
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Summary

- Analytical verification of universal relations

- Working assumptions:
slow rotation, weak tidal deformation, and a piecewise-polytropic EoS

* Origin of universality

- Memory loss: The I-Love-Q relations transition between the results
obtained for individual single-polytropic EoS

- Small variation induced by changing the single-polytrope EoS



BacKup: Physical Quantities

Measure of Spinning: Linear Response to an external gravitational field:
* Tidal Deformability

« Moment of Inertia | . .

+ (Spin) Quadrupole moment Q0 O

Qij = —AEj;
) (Quadrupole moment) = - (Tidal Deformability) X (External field)

« (Electric) Tidal Love number

. 1
tid 5
kzl ""AXC XMS

C=M/R



Backup: Construction of O(c)

* In each polytropic region, we can find the ()4
general solution

do - N
— =F(0;0) e(p) = Kyp™

& S
.Y R
0(c) ~ ¢ ) One™ (b < p(e) < Pys1) | ] )
n=0 i i i P
“a”= determined by the initial condition Ge nie ral solu Ii ons i 0 (C) A
- General solutions are discontinuous at the transition points in eiach p olyilropic région
R
| ,a” i / i
ol IR B
" :/ ‘:’ -
- i i




Backup: Construction of O(c)

* In each polytropic region, we can find the ()4
general solution

do - N
— =F(0;0) e(p) = Kyp™

dc -
.Y R
0(c) ~ ¢ ) One™ (b < p(e) < Pys1) ; ]
= | T &
“a”= determined by the initial condition i i i 0 (C) A

- General solutions are discontinuous at the transition points
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Backup: Construction of O(c)

* In each polytropic region, we can find the ()4
general solution

do - N
— =F(0;0) e(p) = Kyp™

dc i
%) \L i
0(c) ~ ¢ ) One™ (b < p(e) < Pys1) ;
n=0 i >p
“a”= determined by the initial condition i 0 (C) A

- General solutions are discontinuous at the transition points

* We find the integration constants for p and r (%, X, )
can be used to connect these solutions.

€—> Other integration constants are fixed by the boundary conditions

__________‘____‘______________________________
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Backup: Construction of O(c)

* In each polytropic region, we can find the ()4
general solution

do ,
— =F(0;0) e(p) = Kyp™

dc i
%) \L i
0(c) ~ ¢ ) One™ (b < p(e) < Pys1) ;
n=0 i >p
“a”= determined by the initial condition i 0 (C) A

Continuity

S(1) s(1
0.5

- General solutions are discontinuous at the transition points

* We find the integration constants for p and r (%, X, )
can be used to connect these solutions.

€—> Other integration constants are fixed by the boundary conditions p =T




Backup: Construction of O(c)

* In each polytropic region, we can find the ()4
general solution

do ,
— =F(0;0) e(p) = Kyp™

Boundary

- General solutions are discontinuous at the transition points L.
condition

dc i
Y ; |
0(c) ~ ¢ ) One™ (b < p(e) < Pys1) ; ; )
n=0 i i P
“a”= determined by the initial condition i i 0 (C) A

* We find the integration constants for p and r (%, %, )
can be used to connect these solutions. e.g.,

rescalinﬁ @

€—> Other integration constants are fixed by the boundary conditions

_________@__




Backup: Role of other expansions

Rapid changes in EoS breaks the universality

Yy = 0.1
1ogu1(u2;i;N),SgN)) ~ log S(N) +long(?)gfn,0)(’YN) E(p) A Z Z # 0
30D Y M SN E® )y
ni€Zno€Ng  kENg
o | 1stPT w/ huge latent heat
togthy 0y 27, 50) ~ 2log SN+ 3TN ST MIE () (S (240) g _
ni1EMg na€Z keNg yL I O|74
k—ni1—ny>0
logul(U>,E(N) E( )) log)_‘_}é )—I—logM](%%O’O)(‘YN) Zp, Zr — p
£ D My ) S I >
ng EZkkENU €(p) — KNp’YNr
DD 3 M ) E M E) S
n1€Z\{0} na€Z keNg =
ket |n1|—m2>0 + SLy
v 0.7-=01 + ¥
—= 0.0 s
1074 ---- 070 ""#Mt‘

* When X, %, is too large, the form of expansion is modified,
and log-log structure of expansion disappears.
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