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1. Introduction

* Nuclear equation of state (EOS) for dense matter

e Nuclear weak reactions with neutrino

Core-collapse mechanism of massive stars
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- Gravitational energy released by core-collapse: ~103erg
- Explosion energy (Kinetic energy of mass ejecta): ~10°! erg /24



Nuclear EOS for core-collapse simulations
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Representative EOS for core-collapse simulations

Model Nuclear Degrees Mmax Riamg E publ. References (Rev. Mod. Phys. 89 (2017) 015007)
Interaction of Freedom (Mg) (km) avail.
H&W SKa n,p, o, {(Ai, Zi)} 2.21% 139° n El Eid and Hillebrandt (1980); Hillebrandt et al. (1984)
LS180 LS180 n,p,a, (A, Z) 1.84 12.2 0.27 y Lattimer and Swesty (1991)
LS220 LS220 n,p,a, (A, Z) 2.06 12.7 0.28 y Lattimer and Swesty (1991)
LS375 LS375 n,p,a, (A, Z) 2.72 14.5 0.32 y Lattimer and Swesty (1991)
STOS TM1 n,p,a,(A,Z) 2.23 14.5 0.26 y Shen et al. (1998); Shen et al. (1998, 2011)
FYSS TM1 n,p,d,t,h,a,{(A;, Z;)} 2.22 144 0.26 n Furusawa et al. (2013b)
HS(TM1) TM1* n,p,d,t,h,a, {(Ai, Zi)} 2.21 145 0.26 y Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA) TMA* n,p,d,t, h,a, {(Ai, Zi)} 2.02 139 0.25 'y Hempel and Schaffner-Bielich (2010)
HS(FSU) FSUgold* mn,p,d,t,h,a,{(A;, Z;)} 1.74 12.6 0.23 y Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3) NL3* n,p,d,t,h,a,{(A:i, Z;)} 2.79 14.8 0.31 y Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2) DD2 n,p,d,t,h,a,{(Ai, Z;)} 2.42 13.2 0.30 y Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU) IUFSU* n,p,d,t,h,a,{(A;, Z;)} 1.95 12.7 0.25 y Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo SFHo n,p,d,t,h,a,{(Ai, Z;)} 2.06 11.9 0.30 y Steiner et al. (2013a)
SFHx SFHx n,p,d,t,h,a,{(Ai, Z;)} 2.13 12.0 0.29 y Steiner et al. (2013a)
SHT(NL3) NL3 n,p, o, {(A;i, Z;)} 2.78 149 0.31 y Shen et al. (2011b)
SHO(FSU) FSUgold n,p, o, {(Ai, Zi)} 1.75 12.8 0.23 y Shen et al. (2011a)
SHO(FSU2.1)| FSUgold2.1 n,p,a,{(Ai, Zi)} 2.12 13.6 0.26 y Shen et al. (2011a)

+ Nuclear EOS tables based on the Liquid drop model with Skyrme interaction by A. S. Schneider (2017)

Microscopic EOS with bare nuclear potentials
« TNTYST EOS: Variational (AV18 +UIX) + Thomas-Fermi method (NPA961(2017)78)
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Current Status of Supernova Simulations

EOS dependence in core-collapse supernova simulations is
gradually being investigated.

- More than 20 EOSs applicable to the simulations
(only two EOSs were available about 10 years ago)

TODAY’S TALK

« Overview of our supernova EOS with the variational many-body theory
« [ts application to neutron star and core-collapse supernova simulations

 Recent improvement in neutrino reaction rates
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2. Nuclear EOS with the cluster variational method

Nuclear Hamiltonian — Z VQ + ZT/Z i3 e Z V; i k
12m / i<j<k \
\
Argonne v18 (AV18) pot. Urbana IX (UIX) pot.
o o
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* Argonne vi8 potential: V;; = Y Y [Vcu(rij) + sVr(rij)Stij + sVsol(rij)(Lij - )
(PRC 51 (1995) 38) t=05=0

2
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* Urbana IX potential: Vijig. = U Z 2

(PRL 74 (1995) 4396) oye
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E/N [MeV]

Energy per nucleon for uniform matter

Dr @:: The Fermi-gas wave function
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Nuclear EOS at finite T and low density

* Finite temperature

Free energy at finite temperature F/N 1is calculated with the variational method proposed by Schmidt and Pandharipande.
(Phys. Lett. 87B(1979) 11, PRC 75(2007) 035802))

* Non-uniform phase

Thomas-Fermi approximation 1s adopted to calculate the heavy nuclei in low-density nuclear matter.
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Home Page of Variational EOS Table

http://www.np.ph;s waseda . ac Jp/FOS/

User's Guide |
Equation of state for nuclear matter W L
q User Note for the Variational EOS Table
-1.2 3 -4 | 2
Equation of state (EOS) based on the variational man H. Togashi™, K. Nakazato®, H. Suzuki’, and M. Takano
matter, the EOS is constructed with the cluster variat IRIKEN Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198, Japan
pOtQ ntial and the Urbana IX three-body nuclear poter 2Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
. i . . . . 3Faculty of Arts and Science, Kyushu University, Fukuoka 891-0395, Japan
apprOXImatlon. Alpha partncle e L also taken inty 4Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
This EOS table is open for general use in any studies
referred to in your publication. March 8, 2017
Abstract
. This is a guide for users of the nuclear equation of state (EOS) table based on the
User's GUlde (rea Argonne v18 two-body and Urbana IX three-body potentials. We construct the nuclear
uim EOS using the cluster variational method for uniform matter and the Thomas-Fermi
calculation for non-uniform matter.
EOS tables
e0s2Zzi )
,_P_w ccccecececceceec . _t
Logl@(Temp) Temp N | D
-1.000000E+00 1.000000E-01 u merlca a a
5.100E+00 7.581427E-11 1.000E-02 -1.51699BE+00 7.968970E+00 1.427632E+01 1.004453E+02
Contact 5.200E+00 9.544451E-11 1.000E-02 -1.49468B4E+00 7.968916E+00 1.405264E+01 1.005867E+02
5.300E+00 1.201575E-10 1.000E-02 -1.472371E+00 7.9688B62E+00 1.38B2B97E+01 1.007294E+02
5.400E+00 1.512693E-10 1.000E-02 -1.450059E+00 7.068800E+00 1.360532E+01 1.008713E+02
o Hajime Togas 5.500E+00 1.90436BE-10 1.000E-02 -1.42774BE+00 7.96B8757E+00 1.338169E+01 1.010151E+02
o 5.600E+00 2.39745BE-10 1.000E-02 -1.405439E+00 7.968705E+00 1.315807E+01 1.011550E+02
Nishina Centi 5.700E+00 3.018220E-10 1.000E-02 -1.383130E+00 7.96B8653E+00 1.293447E+01 1.013009E+02
2-1 Hirosawa, Wary, sanaa oo U 190, Japan f
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3. Supernova simulation with standard reaction rates

Core-collapse supernova simulations are performed with the following three nuclear EOSs.
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Application to core-collapse simulations

1D neutrino-radiation hydrodynamics simulations
(HT et al.,, PTEP 023D05 (2014))

 EOS: Togashi/ Shen / LS220 / LS180

* Progenitor model : 9.6 Mg / 15 Mg/ 30 Mg
* Neutrino Transport: Directly solve the Boltzmann equation

(Nakazato, Sumiyoshi & HT, PASJ 73 (2021) 639)

Radial trajectories of mass elements

°
Progenitor model : 9.6 Mg Progenitor model: WW 15Mg
(provided by A. Heger) (Astrophys. J. Suppl. 101 (1995) 181)
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Thermodynamic profiles in SN simulations

The numbers (1)—(5) :the times when the central density reaches 101°, 101, 1012, 1013, 104 g/cm?
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Neutrino Luminosity and Average Energy

[Post-bounce phase)
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4. Neutrino-nucleon reaction rates consistent with the EOS

Effect of the nuclear EOS is not so large in emitted neutrino
from 1D core-collapse supernova simulation. (~1s)

~

For a more sophisticated simulations to understand the supernova mechanism,

we aim to construct nuclear reaction rates with neutrino in a self-consistent manner.

Difficulties in applying to astrophysical simulations

* Wide range of 7, Y,, ng and neutrino energy £

 Interaction rates need to be given in analytical forms!

(Computer memory is already fully occupied by the EOS table)
15/24



Neutrino reaction rates adopted in the simulations

7

1. Electron-type neutrino absorption on neutrons 5. Electron-type neutrino absorption on nuclei )
Ve +n<re +p Ve + A A+e”
2. Electron-type antineutrino absorption on protons | 6. Neutrino coherent scattering on nuclei
v.+peet +n v+ A v+ A
3. Neutrino bremsstrahlung in NN collisions 7. Neutrino scattering on electrons
N4+N & N+N+v+Dp v+e <v+te
4. Neutrino scattering on nucleons 8. Electron-positron pair annihilation and creation
v+ N+ v+ N e +et v+
9. Plasmon decay and creation
We aim to calculate the neutrino reaction rates in a nuclear medium y

by using the cluster variational method.
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l. Neutrino Charged Current Reactions on Nucleons

p e P e
1. Electron-type neutrino absorption on neutrons: W
Ve t N4> € —+D o ~
n \Y n \Y

Emissivity [s1]:

dpn dp dpe
Y, T.E,) = 2h2G2 cos? (1 224/ / p/
G(nB, pr 4 ) h GF cos” ¢ ( +39A)( 7T) (27‘(’7&)3 (27Th)3 (27Th)3

X O(Ep+ Ee — En — E,)6°(Pp + Pe — Pn — Pu) fu(En) [1 = fo(Ep))][1 — fe(Ee))]

1 1

Occupation probabilities obtained from the variational method are applied.

1
o &i(k) — po; RS
it = {1+ exp| ZEHNL g = 2K

Uy; - Determined by the normalization condition m;* : Variational parameter
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Neutrino Emissivity with the Variational Method

Procedure by Bruenn (APJS 58 (1985) 771)

° 53(pp T Pe — Pn — pV) ~ 53(1713 - pn)
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Summary

Nuclear EOS and Neutrino Reaction Rates are

consistently developed based on the cluster variational method

for core-collapse supernova simulations.

« The EOS dependence in core-collapse supernova simulations is gradually being investigated.
« Uncertainty in neutrino reaction rates in nuclear matter is still large.

 Nuclear medium effects on neutrino emissivity becomes relatively large at high-density region.

4 )
« Analytical expression of the interaction rates

Future Plans « Supernova simulations with the obtained neutrino reaction rates
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