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Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s

quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as
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FIG. 2: Lattice-QCD equation of state at high T and zero density compared to the

three-regime model. In the low-T hadronic regime, the sum of the low-lying

mesons, the open-string (meson) gas multiplied by the flavor factor, and the

closed-string (glueball) gas fits the lattice data well. In the intermediate stringy

regime, the thermodynamics is approximated by the contributions from glueballs

and quarks with masses varied from the bare to the constituent values. In the

high-T regime above Td, the QGP with deconfined quarks and gluons with masses

varied from zero to MGB/2 is presented.

(excited mesons) together with the negligibly small glueballs results in the entropy

density in good agreement with the lattice-QCD data. This is a little surprising, for

the open-string spectrum grows with the Hagedorn temperature of TH = 285 MeV,

which is almost twice the crossover temperature, Tc, from mesons into quarks. The

intermediate regime brackets the lattice data with the model computation dominated

by an ideal gas of quarks with masses varied from the bare to the constituent values.
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FIG. 9: Ratio of the chiral condensate at finite temperature to that at zero temperature.

The lattice data are taken from Ref. [81]. The averaged sigma term per quark,

ω̄ → 30 MeV, is obtained from the best fit to the lattice-QCD data and it is varied

within 15–60 MeV to account for uncertainty. The blue curve corresponds to the

first term in the square bracket in Eq. (41), and the orange curve includes the

contribution from the second term in the square bracket in Eq. (41).

while question is how to characterize the region at finite baryon density properly.

Establishing the understanding there is complicated by the fact that the Hagedorn

temperature for baryons may not be the same as that for mesons and glueballs [65].

This is because of the more complicated string structure of baryons compared to

mesons and glueballs. One more, and somehow related, question is how to charac-

terize the region of transition between Quarkyonic Matter and the SQGB phase. In

the SQGB, chiral symmetry is likely to be restored, but in Quarkyonic Matter, chiral

symmetry is broken by spatially inhomogeneous condensations. It is an intriguing

35

σ̄ = 15 MeV

σ̄ = 60 MeV

⟨ψ̄ψ⟩T ≈ ⟨ψ̄ψ⟩0 −
∂p(M)

∂M
σM

mq



Dense QCD matter
In this talk, we focus on
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states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s

quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
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What we know 
For 3-flavor QCD : G = SU(3)f × U(1)B

●Superfluid(dilute phase) 
Baryon pair condensation

SU(3)f × U(1)B → SU(3)f

Λ ∼ udsΔ = ⟨ΛΛ⟩ ≠ 0

●Color super conductor (dense phase)
“quark pair condensate”

= − ϵijkϵabc⟨(qR)b
j (CqR)c

k⟩(ΦL)i
a = ϵijkϵabc⟨(qL)b

j (CqL)c
k⟩

SU(3)f × U(1)B → SU(3)f



Hadronic superfluid Color flavor locked phase (CFL phase) 

μB
Symmetry breaking patter is the same

⇒Quark hadron continuity

Schafer and Wilczek (’99)

cf. Hatsuda, Tachibana, Yamamoto, Baym (’06)

Quark hadron continuity

u s
d

Alford, Rajagopal, Wilczek (’99)Tamagaki ('70), Hoffberg et al (’70)

Baryons ⇒ Quarks 
Vector meson ⇒ GluonsExcitations

超流動相



Ideal dual Quarkyonic (IdylliQ) model

Sti!ening of matter in quark-hadron continuity: a mini-review

+ 𝜔
𝜔𝜀=1
𝜗

(𝜛)ω(𝜛sh ε 𝜛)ω(𝜛 ε 𝜛bu)

+ 𝜔
𝜔𝜀=0
𝜗

(𝜛)ω(𝜛 ε 𝜛sh) . (17)

The solution of 𝜔𝜗 in the region where 𝜔𝜀 = 0 can be
expressed as a linear combination of two basis functions
𝜚± that satisfy the homogeneous equation 𝜍[𝜚±] = 0.
Explicitly the form is 𝜔

𝜔𝜀=0
𝜗

= 𝜑+𝜚+(𝜛) + 𝜑ε𝜚ε(𝜛). In
contrast, in the region where 𝜔𝜀 = 1, the solution is given by
𝜔
𝜔𝜀=0
𝜗

= 𝛻+𝜚+(𝜛) + 𝛻ε𝜚ε(𝜛) +𝜕
3
𝜑

. Here, the large constant
term of ℵ(𝜕3

𝜑
) must be canceled by the contributions from

the homogeneous solutions to ensure physical consistency,
particularly with the Pauli exclusion principle. We have four
coe!cients, but the condition 𝜔𝜗(𝜛  ϑ)  0 allows us to
eliminate one coe!cient, 𝜑+. Consequently, we are left with
three free parameters, along with the matching scale 𝜛bu (or
equivalently ℶbu), which must be determined by imposing
continuity and the sum rule constraint across the di"erent
domains of the distribution.

Applying the operator 𝜍 to the expression of 𝜔𝜗, we
find that the continuity of 𝜔𝜗 and its first derivate at the
matching points 𝜛sh and 𝜛bu is required. If this continuity is
not satisfied, the condition 0 ∱ 𝜔𝜀 ∱ 1 would be violated
by the ℷ-functions and their derivatives in the expression
of 𝜔𝜀 . To avoid such unphysical contributions, the coef-
ficients in front of these ℷ- and ℷ

ϖ-functions must cancel.
This requirement yields two matching conditions (continuity
and di"erentiability) at each boundary point, 𝜛bu and 𝜛sh,
resulting in four constraints in total. These are su!cient
to determine all four unknowns—three coe!cients in the
ansatz for 𝜔𝜗, and the boundary momentum 𝜛bu. The explicit
construction and solution of these conditions are provided in
Fujimoto et al. (2024b).

We have just derived the momentum shell solution for
𝜔𝜀 which is dual to a quark Fermi sea with a di"used
Fermi surface in 𝜔𝜗. In this regime, matter is characterized
by a dense quark Fermi sea in the bulk, while baryons
define the Fermi surface. This construction provides a con-
crete realization of the quarkyonic matter concept originally
proposed in McLerran and Pisarski (2007). The idea that
baryons occupy a momentum shell—surrounding a quark
core—was first conjectured in McLerran and Reddy (2019)
as a mechanism to achieve rapid sti"ening of the equation
of state (EOS). For seminal works in this direction, see, e.g.,
Jeong, McLerran and Sen (2020); Duarte, Hernandez-Ortiz
and Jeong (2020b,a); Zhao and Lattimer (2020).

It is often argued that the low momentum part should be
dominated by baryons, while quarks should prevail at high
momentum, see, for instance, the discussion in Koch and
Vovchenko (2023). However, our model calculations reveal
the opposite trend. The essential factor is not the momentum
scale itself, but rather the availability of phase space for
forming spatially localized composite particles. This view-
point o"ers a more physically grounded interpretation of the
results obtained in the IdylliQ model.

Figure 5: The sti!ening of the equation of state is associated
with the transition from baryonic to quark matter, which
is triggered by quark saturation. Baryon-baryon interactions,
mediated by quark exchanges, smooth out this transition.

At high density, the formation of composite particles
requires appropriate superpositions of multiple quark quan-
tum states, arranged to minimize the total energy. However,
such configurations are feasible only when ample phase
space is available to support the required superpositions. As
quark states become increasingly occupied, this freedom is
lost. Once the quark phase space is saturated, a baryonic
description ceases to be natural.

In contrast, near the Fermi surface, ample phase space
remains available, allowing for optimized superpositions of
quark states. It is important to note that the saturated quark
Fermi sea is color-singlet due to the complete occupation
of all color states. However, in the unsaturated region, not
all superpositions of quark states automatically satisfy the
color-singlet constraint. A natural class of color-singlet con-
figurations near the Fermi surface is provided by baryonic
states. Whether these baryonic excitations further organize
into more complex paired states remains an open question
for future analysis.

3.3. Equations of state
EOS in quarkyonic matter rapidly sti"ens from the

pre- to post-saturation regime. Before quark saturation sets
in, baryonic matter remains largely non-relativistic. How-
ever, once saturation occurs, quarks fill the low-momentum
phase space, forcing baryons into higher-momentum states,
thereby making them relativistic. If baryons could occupy
momentum states up to the momentum ℸ⊳ with full proba-
bility (i.e., 𝜔𝜀 = 1), the relativistic regime ℸ⊳ ϱ ⊲𝜀 would
only be reached at a very high density, 0𝜀 ϱ ⊲

3
𝜀
ϱ 10000.

Taking the quark Pauli blocking constraint into account,
however, baryons occupy low momentum states only with
the probability ϱ 1ς𝜕3

𝜑
. As a result, relativistic baryons

emerge at much lower densities, around 0𝜀 ϱ ⊲
3
𝜀
ς𝜕3

𝜑
ϱ

φ3 ϱ 500.
The explanation of sti" EOS within baryonic descrip-

tions appears highly exotic. In fact, generating such baryon
distributions from conventional nuclear models—even with
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(ii) We ignore the density dependence of the internal quark
momentum distribution 𝜔. In realistic settings, the width
of 𝜔 in momentum space is expected to shrink as baryons
swell in dense matter. However, to retain tractability, we fix
𝜔 throughout. (iii) We adopt a specific functional form for 𝜔
that allows for an analytic inversion of the sum rule, enabling
us to express 𝜀𝜗 as a functional of the quark distribution 𝜀𝜛.
Explicitly, we take:

𝜔(𝜚) = 2𝜍2

ω3
𝜑
ε𝜚ϑω

𝜚ϑω , (11)

which is the inverse of the operator

𝛻 = εϖ2
𝜚
+ 1

ω2 , 𝛻
⌋
𝜔(𝛚 ε 𝛆)

⌈
= (2𝜍)3𝜕(𝛚 ε 𝛆) . (12)

With this we can express 𝜀𝜗 as

𝜀𝜗(ℵℶ𝜚) =
ω2

ℵ3
ℶ

𝛻
⌋
𝜀𝜛(𝜚)

⌈
. (13)

For instance, in a domain where quark states are saturated,
i.e., 𝜀𝜛(𝜚) = 1, then the derivative term vanishes and we
obtain 𝜀𝜗(ℵℶ𝜚) = 1ϑℵ3

ℶ
.

One might question the necessity of assumption (iii),
particularly since the chosen Yukawa form of the distribution
𝜔 may appear unrealistic. The rationale, however, lies in our
desire to capture the qualitative behavior of 𝜀𝜗 at high den-
sity. In this regime, we possess physical intuition grounded
in quark-based descriptions—for instance, the emergence of
a quark Fermi sea. Our interest lies in the densities that are
high but still within the vicinity of the crossover regime,
where such quark-based intuitions are becoming applica-
ble, yet hadronic features remain relevant. Conversely, at
low density, we have reasonable intuition for 𝜀𝜗 , and we
can compute 𝜀𝜛 using the sum rule. Thus, by adopting
assumption (iii), we can bridge the low- and high-density
regimes using two complementary descriptions. This dual
perspective o!ers a more robust framework than one relying
solely on either hadronic or quark degrees of freedom.

Now the rest is straightforward; we minimize ℷ by op-
timizing 𝜀𝜗 at each momentum. While the logic is sim-
ple, the methodology warrants clarification. To perform the
minimization subject to a fixed baryon density ℸ𝜗 , we must
impose this constraint during the variation of 𝜀𝜗(⊳). A
practical way to enforce this is to consider paired variations
in momentum space such that

𝜕𝜀𝜗(𝛝1) + 𝜕𝜀𝜗(𝛝2) = 0 . (14)

This condition ensures that the total baryon density remains
unchanged during the variation. The corresponding change
in the energy density is then given by

𝜕ℷ = ⊲𝜗(⊳1)𝜕𝜀𝜗(𝛝1) + ⊲𝜗(⊳2)𝜕𝜀𝜗(𝛝2)
=
⌋
⊲𝜗(⊳1) ε ⊲𝜗(⊳2)

⌈
𝜕𝜀𝜗(𝛝1) . (15)

This condition implies that relocating a particle from 𝛝2 to
𝛝1 reduces the total energy if ⌉𝛝2⌉ > ⌉𝛝1⌉. Consequently,
the optimal distribution 𝜀𝜗(⊳) must concentrate particles

Figure 2: 𝜀
𝜗

and 𝜀
𝜛

before quark saturation.

Figure 3: 𝜀
𝜗

and 𝜀
𝜛

at quark saturation.

Figure 4: 𝜀
𝜗

and 𝜀
𝜛

after quark saturation.

at low momenta. We define ⊳sh as the largest momentum
below which 𝜀𝜗 is nonzero. Then, we conclude that 𝜀𝜗(⊳)
vanishes for ⊳ > ⊳sh, while it is maximized for ⊳ ∱ ⊳sh. The
maximum value that 𝜀𝜗 can attain is governed by the sum
rule constraint. If no quark momentum states are saturated,
then 𝜀𝜗 can reach the maximum value of 1, recovering the
standard ideal gas distribution, 𝜀

ideal
𝜗

(⊳) = ϱ(⊳sh ε ⊳).
However, when some domain in quark momentum space is
saturated, the sum rule enforces a bound on 𝜀𝜗 , limiting it to
a maximum of 1ϑℵ3

ℶ
. This reflects the duality between the

saturation of quark states and the suppression of baryonic
occupation probabilities.

The final question is how to smoothly patch together the
regions with di!erent behaviors of the baryon momentum
distribution 𝜀𝜗 , namely the saturated region 𝜀𝜗(⊳) = 1ϑℵ3

ℶ
,

the free region 𝜀𝜗(⊳) = 1, and the unoccupied region
𝜀𝜗(⊳) = 0. The appropriate form turns out to be

𝜀𝜗(⊳) =
1
ℵ3

ℶ

ϱ(⊳bu ε ⊳) + ϱ(⊳sh ε ⊳)ϱ(⊳ ε ⊳bu) . (16)

The domain ⊳ ∱ ⊳bu is dual to 𝜀𝜛 = 1. For the domain
⊳bu ∱ ⊳ ∱ ⊳sh, baryons are free from the quark saturation
constraint and hence 𝜀𝜗 can reach 1, the maximum. When
⊳ > ⊳sh, 𝜀𝜗(⊳) drops to zero.

The above 𝜀𝜗(⊳) is dual to (we define ℵℶ𝜚bu ∲ ⊳bu and
ℵℶ𝜚sh ∲ ⊳sh)

𝜀𝜛(𝜚) = ϱ(𝜚bu ε 𝜚)
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particularly since the chosen Yukawa form of the distribution
𝜔 may appear unrealistic. The rationale, however, lies in our
desire to capture the qualitative behavior of 𝜀𝜗 at high den-
sity. In this regime, we possess physical intuition grounded
in quark-based descriptions—for instance, the emergence of
a quark Fermi sea. Our interest lies in the densities that are
high but still within the vicinity of the crossover regime,
where such quark-based intuitions are becoming applica-
ble, yet hadronic features remain relevant. Conversely, at
low density, we have reasonable intuition for 𝜀𝜗 , and we
can compute 𝜀𝜛 using the sum rule. Thus, by adopting
assumption (iii), we can bridge the low- and high-density
regimes using two complementary descriptions. This dual
perspective o!ers a more robust framework than one relying
solely on either hadronic or quark degrees of freedom.

Now the rest is straightforward; we minimize ℷ by op-
timizing 𝜀𝜗 at each momentum. While the logic is sim-
ple, the methodology warrants clarification. To perform the
minimization subject to a fixed baryon density ℸ𝜗 , we must
impose this constraint during the variation of 𝜀𝜗(⊳). A
practical way to enforce this is to consider paired variations
in momentum space such that

𝜕𝜀𝜗(𝛝1) + 𝜕𝜀𝜗(𝛝2) = 0 . (14)

This condition ensures that the total baryon density remains
unchanged during the variation. The corresponding change
in the energy density is then given by

𝜕ℷ = ⊲𝜗(⊳1)𝜕𝜀𝜗(𝛝1) + ⊲𝜗(⊳2)𝜕𝜀𝜗(𝛝2)
=
⌋
⊲𝜗(⊳1) ε ⊲𝜗(⊳2)

⌈
𝜕𝜀𝜗(𝛝1) . (15)

This condition implies that relocating a particle from 𝛝2 to
𝛝1 reduces the total energy if ⌉𝛝2⌉ > ⌉𝛝1⌉. Consequently,
the optimal distribution 𝜀𝜗(⊳) must concentrate particles

Figure 2: 𝜀
𝜗

and 𝜀
𝜛

before quark saturation.

Figure 3: 𝜀
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and 𝜀
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Figure 4: 𝜀
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after quark saturation.

at low momenta. We define ⊳sh as the largest momentum
below which 𝜀𝜗 is nonzero. Then, we conclude that 𝜀𝜗(⊳)
vanishes for ⊳ > ⊳sh, while it is maximized for ⊳ ∱ ⊳sh. The
maximum value that 𝜀𝜗 can attain is governed by the sum
rule constraint. If no quark momentum states are saturated,
then 𝜀𝜗 can reach the maximum value of 1, recovering the
standard ideal gas distribution, 𝜀

ideal
𝜗

(⊳) = ϱ(⊳sh ε ⊳).
However, when some domain in quark momentum space is
saturated, the sum rule enforces a bound on 𝜀𝜗 , limiting it to
a maximum of 1ϑℵ3

ℶ
. This reflects the duality between the

saturation of quark states and the suppression of baryonic
occupation probabilities.

The final question is how to smoothly patch together the
regions with di!erent behaviors of the baryon momentum
distribution 𝜀𝜗 , namely the saturated region 𝜀𝜗(⊳) = 1ϑℵ3

ℶ
,

the free region 𝜀𝜗(⊳) = 1, and the unoccupied region
𝜀𝜗(⊳) = 0. The appropriate form turns out to be

𝜀𝜗(⊳) =
1
ℵ3

ℶ

ϱ(⊳bu ε ⊳) + ϱ(⊳sh ε ⊳)ϱ(⊳ ε ⊳bu) . (16)

The domain ⊳ ∱ ⊳bu is dual to 𝜀𝜛 = 1. For the domain
⊳bu ∱ ⊳ ∱ ⊳sh, baryons are free from the quark saturation
constraint and hence 𝜀𝜗 can reach 1, the maximum. When
⊳ > ⊳sh, 𝜀𝜗(⊳) drops to zero.

The above 𝜀𝜗(⊳) is dual to (we define ℵℶ𝜚bu ∲ ⊳bu and
ℵℶ𝜚sh ∲ ⊳sh)

𝜀𝜛(𝜚) = ϱ(𝜚bu ε 𝜚)
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(ii) We ignore the density dependence of the internal quark
momentum distribution 𝜔. In realistic settings, the width
of 𝜔 in momentum space is expected to shrink as baryons
swell in dense matter. However, to retain tractability, we fix
𝜔 throughout. (iii) We adopt a specific functional form for 𝜔
that allows for an analytic inversion of the sum rule, enabling
us to express 𝜀𝜗 as a functional of the quark distribution 𝜀𝜛.
Explicitly, we take:

𝜔(𝜚) = 2𝜍2

ω3
𝜑
ε𝜚ϑω

𝜚ϑω , (11)

which is the inverse of the operator

𝛻 = εϖ2
𝜚
+ 1

ω2 , 𝛻
⌋
𝜔(𝛚 ε 𝛆)

⌈
= (2𝜍)3𝜕(𝛚 ε 𝛆) . (12)

With this we can express 𝜀𝜗 as

𝜀𝜗(ℵℶ𝜚) =
ω2

ℵ3
ℶ

𝛻
⌋
𝜀𝜛(𝜚)

⌈
. (13)

For instance, in a domain where quark states are saturated,
i.e., 𝜀𝜛(𝜚) = 1, then the derivative term vanishes and we
obtain 𝜀𝜗(ℵℶ𝜚) = 1ϑℵ3

ℶ
.

One might question the necessity of assumption (iii),
particularly since the chosen Yukawa form of the distribution
𝜔 may appear unrealistic. The rationale, however, lies in our
desire to capture the qualitative behavior of 𝜀𝜗 at high den-
sity. In this regime, we possess physical intuition grounded
in quark-based descriptions—for instance, the emergence of
a quark Fermi sea. Our interest lies in the densities that are
high but still within the vicinity of the crossover regime,
where such quark-based intuitions are becoming applica-
ble, yet hadronic features remain relevant. Conversely, at
low density, we have reasonable intuition for 𝜀𝜗 , and we
can compute 𝜀𝜛 using the sum rule. Thus, by adopting
assumption (iii), we can bridge the low- and high-density
regimes using two complementary descriptions. This dual
perspective o!ers a more robust framework than one relying
solely on either hadronic or quark degrees of freedom.

Now the rest is straightforward; we minimize ℷ by op-
timizing 𝜀𝜗 at each momentum. While the logic is sim-
ple, the methodology warrants clarification. To perform the
minimization subject to a fixed baryon density ℸ𝜗 , we must
impose this constraint during the variation of 𝜀𝜗(⊳). A
practical way to enforce this is to consider paired variations
in momentum space such that

𝜕𝜀𝜗(𝛝1) + 𝜕𝜀𝜗(𝛝2) = 0 . (14)

This condition ensures that the total baryon density remains
unchanged during the variation. The corresponding change
in the energy density is then given by

𝜕ℷ = ⊲𝜗(⊳1)𝜕𝜀𝜗(𝛝1) + ⊲𝜗(⊳2)𝜕𝜀𝜗(𝛝2)
=
⌋
⊲𝜗(⊳1) ε ⊲𝜗(⊳2)

⌈
𝜕𝜀𝜗(𝛝1) . (15)

This condition implies that relocating a particle from 𝛝2 to
𝛝1 reduces the total energy if ⌉𝛝2⌉ > ⌉𝛝1⌉. Consequently,
the optimal distribution 𝜀𝜗(⊳) must concentrate particles
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at low momenta. We define ⊳sh as the largest momentum
below which 𝜀𝜗 is nonzero. Then, we conclude that 𝜀𝜗(⊳)
vanishes for ⊳ > ⊳sh, while it is maximized for ⊳ ∱ ⊳sh. The
maximum value that 𝜀𝜗 can attain is governed by the sum
rule constraint. If no quark momentum states are saturated,
then 𝜀𝜗 can reach the maximum value of 1, recovering the
standard ideal gas distribution, 𝜀

ideal
𝜗

(⊳) = ϱ(⊳sh ε ⊳).
However, when some domain in quark momentum space is
saturated, the sum rule enforces a bound on 𝜀𝜗 , limiting it to
a maximum of 1ϑℵ3

ℶ
. This reflects the duality between the

saturation of quark states and the suppression of baryonic
occupation probabilities.

The final question is how to smoothly patch together the
regions with di!erent behaviors of the baryon momentum
distribution 𝜀𝜗 , namely the saturated region 𝜀𝜗(⊳) = 1ϑℵ3

ℶ
,

the free region 𝜀𝜗(⊳) = 1, and the unoccupied region
𝜀𝜗(⊳) = 0. The appropriate form turns out to be

𝜀𝜗(⊳) =
1
ℵ3

ℶ

ϱ(⊳bu ε ⊳) + ϱ(⊳sh ε ⊳)ϱ(⊳ ε ⊳bu) . (16)

The domain ⊳ ∱ ⊳bu is dual to 𝜀𝜛 = 1. For the domain
⊳bu ∱ ⊳ ∱ ⊳sh, baryons are free from the quark saturation
constraint and hence 𝜀𝜗 can reach 1, the maximum. When
⊳ > ⊳sh, 𝜀𝜗(⊳) drops to zero.

The above 𝜀𝜗(⊳) is dual to (we define ℵℶ𝜚bu ∲ ⊳bu and
ℵℶ𝜚sh ∲ ⊳sh)

𝜀𝜛(𝜚) = ϱ(𝜚bu ε 𝜚)
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Figure is taken from Kojo, 2412.20442 before quark saturation

at quark saturation

after quark saturation

Kojo (’21), McLerran, Reddy ('19), Fujimoto,  Kojo,  McLerran (’24)

fQ(q, nB) = ∫PB

fB(PB; nB)φB
Q(qB; PB)

https://arxiv.org/abs/2412.20442


Study of QCD2
Numerical calculations  
can be done by using tensor network technique

(Bosonization tequnique also useful.)
Kojo (’11), Lajer, Konik, Pisarski, Tsvelik (’21)

●Finite box simulation

●Infinite Volume simulation 
work in progress with Yohei Fujikura

Hayata, YH, Nishimura, JHEP 07 (2024) 106

https://doi.org/10.1016/j.nuclphysa.2011.12.002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.054035
https://doi.org/10.1007/JHEP07(2024)106


(dimensionless)   HamiltonianQCD2

H/g0 = J
N−1

∑
n=1

E2
i (n)

+w
N−1

∑
n=1

(χ†(n + 1)U(n)χ(n) + χ†(n)U†(n)χ(n + 1))

+m
N

∑
n=1

(−1)nχ†(n)χ(n)

Electric field term

Hopping term

Mass term

J =
ag0

2
, w =

1
2g0a

, m = m0/g0 We use  unitg0 = 1



●We employ a matrix product state

●Optimize the wave function by  
density matrix renormalization group technique

|ψ⟩ = ∑
{ni}

|n1⟩⋯ |nN⟩trMn1
1 ⋯MnN

N

[Mni
i ]ij :  matrixD × D

E = min
ψ

⟨ψ |H |ψ⟩
We employ iTensor library for a finite box system

As a variational ansatz of wave function



Numerical results



Color SU(2)，1 flavor，vacuum
single baryon state J = 1/20 w = 5 V = 15

Baryon size ~ 1

volumedimℋ = 2300

m = 1.0
Quark distribution functionBaryon number density



 Hamiltonian Lattice simulation QCD2
with density matrix renormalization technique

Tomoya Hayata, YH, Nishimura (’23)

Two color QCD Nf = 1
dimℋ = 2480dimℋ = 2320

Free quark



 Hamiltonian Lattice simulation QCD2
with density matrix renormalization technique

Three color QCD, Nf = 1 dimℋ = 2144

Pressure Quark distribution

Free baryon

Free quark

Tomoya Hayata, YH, Nishimura (’23)



Inhomogeneous phase in QCD2
corresponding to ‘quarkyonic chiral spirals’ Kojo, Hidaka, McLerran, Pisarski (2010)

dimℋ = 2320

dimℋ = 2320

SU(2)

SU(3)

ΔΣ = ⟨q̄q(x)⟩ − ⟨q̄q(x)⟩μ=0



Wave number dependence
dimℋ = 2320V = 40J = 1/8 w = 2

Wave number dependence
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Wave number dependence
dimℋ = 2320V = 40J = 1/8 w = 2

Wave number dependence Hadronic picture
If hadron interactions are repulsive

1/nB

1/nBdistance ⇒ k = 2πnB

Quark picture
If interactions between quarks 
Fermi surface is unstable

k = 2pF = 2πnBdensity wave ⇒



Infinite volume

Translation symmetry is restored

⇒ Tomonaga-Luttinger liquid

No continuous symmetry breaking occurs in (1+1)d

Hadronic to quark Luttinger liquid cross over

Using Variational Uniform Matrix Product State，Fujikura, YH (work in progress)

Correlation function of baryons has oscillation

⇒consistent with Quarkyonic picture

Zauner-Stauber, Vanderstraeten, Fishman, Verstraete, Haegeman (’18)
Sti!ening of matter in quark-hadron continuity: a mini-review

(ii) We ignore the density dependence of the internal quark
momentum distribution 𝜔. In realistic settings, the width
of 𝜔 in momentum space is expected to shrink as baryons
swell in dense matter. However, to retain tractability, we fix
𝜔 throughout. (iii) We adopt a specific functional form for 𝜔
that allows for an analytic inversion of the sum rule, enabling
us to express 𝜀𝜗 as a functional of the quark distribution 𝜀𝜛.
Explicitly, we take:

𝜔(𝜚) = 2𝜍2

ω3
𝜑
ε𝜚ϑω

𝜚ϑω , (11)

which is the inverse of the operator

𝛻 = εϖ2
𝜚
+ 1

ω2 , 𝛻
⌋
𝜔(𝛚 ε 𝛆)

⌈
= (2𝜍)3𝜕(𝛚 ε 𝛆) . (12)

With this we can express 𝜀𝜗 as

𝜀𝜗(ℵℶ𝜚) =
ω2

ℵ3
ℶ

𝛻
⌋
𝜀𝜛(𝜚)

⌈
. (13)

For instance, in a domain where quark states are saturated,
i.e., 𝜀𝜛(𝜚) = 1, then the derivative term vanishes and we
obtain 𝜀𝜗(ℵℶ𝜚) = 1ϑℵ3

ℶ
.

One might question the necessity of assumption (iii),
particularly since the chosen Yukawa form of the distribution
𝜔 may appear unrealistic. The rationale, however, lies in our
desire to capture the qualitative behavior of 𝜀𝜗 at high den-
sity. In this regime, we possess physical intuition grounded
in quark-based descriptions—for instance, the emergence of
a quark Fermi sea. Our interest lies in the densities that are
high but still within the vicinity of the crossover regime,
where such quark-based intuitions are becoming applica-
ble, yet hadronic features remain relevant. Conversely, at
low density, we have reasonable intuition for 𝜀𝜗 , and we
can compute 𝜀𝜛 using the sum rule. Thus, by adopting
assumption (iii), we can bridge the low- and high-density
regimes using two complementary descriptions. This dual
perspective o!ers a more robust framework than one relying
solely on either hadronic or quark degrees of freedom.

Now the rest is straightforward; we minimize ℷ by op-
timizing 𝜀𝜗 at each momentum. While the logic is sim-
ple, the methodology warrants clarification. To perform the
minimization subject to a fixed baryon density ℸ𝜗 , we must
impose this constraint during the variation of 𝜀𝜗(⊳). A
practical way to enforce this is to consider paired variations
in momentum space such that

𝜕𝜀𝜗(𝛝1) + 𝜕𝜀𝜗(𝛝2) = 0 . (14)

This condition ensures that the total baryon density remains
unchanged during the variation. The corresponding change
in the energy density is then given by

𝜕ℷ = ⊲𝜗(⊳1)𝜕𝜀𝜗(𝛝1) + ⊲𝜗(⊳2)𝜕𝜀𝜗(𝛝2)
=
⌋
⊲𝜗(⊳1) ε ⊲𝜗(⊳2)

⌈
𝜕𝜀𝜗(𝛝1) . (15)

This condition implies that relocating a particle from 𝛝2 to
𝛝1 reduces the total energy if ⌉𝛝2⌉ > ⌉𝛝1⌉. Consequently,
the optimal distribution 𝜀𝜗(⊳) must concentrate particles

Figure 2: 𝜀
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and 𝜀
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before quark saturation.

Figure 3: 𝜀
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and 𝜀
𝜛
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Figure 4: 𝜀
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and 𝜀
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after quark saturation.

at low momenta. We define ⊳sh as the largest momentum
below which 𝜀𝜗 is nonzero. Then, we conclude that 𝜀𝜗(⊳)
vanishes for ⊳ > ⊳sh, while it is maximized for ⊳ ∱ ⊳sh. The
maximum value that 𝜀𝜗 can attain is governed by the sum
rule constraint. If no quark momentum states are saturated,
then 𝜀𝜗 can reach the maximum value of 1, recovering the
standard ideal gas distribution, 𝜀

ideal
𝜗

(⊳) = ϱ(⊳sh ε ⊳).
However, when some domain in quark momentum space is
saturated, the sum rule enforces a bound on 𝜀𝜗 , limiting it to
a maximum of 1ϑℵ3

ℶ
. This reflects the duality between the

saturation of quark states and the suppression of baryonic
occupation probabilities.

The final question is how to smoothly patch together the
regions with di!erent behaviors of the baryon momentum
distribution 𝜀𝜗 , namely the saturated region 𝜀𝜗(⊳) = 1ϑℵ3

ℶ
,

the free region 𝜀𝜗(⊳) = 1, and the unoccupied region
𝜀𝜗(⊳) = 0. The appropriate form turns out to be

𝜀𝜗(⊳) =
1
ℵ3

ℶ

ϱ(⊳bu ε ⊳) + ϱ(⊳sh ε ⊳)ϱ(⊳ ε ⊳bu) . (16)

The domain ⊳ ∱ ⊳bu is dual to 𝜀𝜛 = 1. For the domain
⊳bu ∱ ⊳ ∱ ⊳sh, baryons are free from the quark saturation
constraint and hence 𝜀𝜗 can reach 1, the maximum. When
⊳ > ⊳sh, 𝜀𝜗(⊳) drops to zero.

The above 𝜀𝜗(⊳) is dual to (we define ℵℶ𝜚bu ∲ ⊳bu and
ℵℶ𝜚sh ∲ ⊳sh)

𝜀𝜛(𝜚) = ϱ(𝜚bu ε 𝜚)
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Thought experiment : rotating neutron stars

CFL phase

Hadronic 
superfluid

Quantum vortex

Cherman, Sen, Yaffe (’19)
Vortices in CFL phase has nontrivial magnetic flux

Is it topological phase？

That is not  topological phase. Hirono, Tanizaki (’19)

Hayashi (’23)

The magnetic flux smoothly disappears  
from the CFL phase to the hadronic phase.

Vortices as phase probes

Is there a possibility that something  
happens on vortices?

Our answer is YES! (at least in QCD like theory)
Phase transition on the vortex



cf. Motrunich, Senthil (’05)

Field strength Scalar field 
(phase dof)

Gauge field

βg

βH

“Confined”

Superfluid

Phase diagram

Coulomb

U(1)gauge :

U(1)global :

ℤ2F :

Symmetry

φ1 → φ1 + θ
φ2 → φ2 − θ
φ1 → φ2
φ2 → φ1

φ1 → φ1 − λ
φ2 → φ2 − λ
Aμ → Aμ + Δμλ

Δμφa(x) = φa(x + ̂μ) − φa(x)

<latexit sha1_base64="xeV07ORi7ehZIxTjZXRtidt1Xkw=">AAADxHichVLLbtNAFL2ueZTwSAobBJuIUJSKEk2iKi2ISuWhqsu2IW2lurLG7iSx6pfscWiwwgewYMuCFUgsEJ/Bhh9g0U9ALFuJDQvOOAkEoYYZeebOufecuXN9rdB1YsnYkTalnzl77vz0hdzFS5ev5AszV7fiIIls0bQDN4h2LB4L1/FFUzrSFTthJLhnuWLbOnii/NtdEcVO4D+TvVDsebztOy3H5hKQWXjdWM7dMywhudkuGnHimenhvOElDw0/6Rt2EBuuaMnyqpkCVFj5cM6InHZHzuWKQ+LaOLE/sPlydb42JmA8FS5ClUiXR2HHMTmU7j5SyJikWSixyv2lxdpCvfivUa2wbJRoONaDGS1PBu1TQDYl5JEgnyRslzjFmLtUJUYhsD1KgUWwnMwvqE85cBNECURwoAdY2zjtDlEfZ6UZZ2wbt7j4IjCLNMu+so/smH1hn9g39vNUrTTTULn0sFsDrgjN/KvrjR//ZXnYJXX+sCbmLKlFS1muDnIPM0S9wh7wuy/eHDcebM6md9h79h35v2NH7DNe4HdP7A8bYvPthHxaWHvQ8uCZVDkHd3LUSVV5H2sLU2UU4hU9MBQeT1BIf79Zotaq4qNoH97n2V/wshgf+inwCJr9zBoxI1hphvbRUaO2KZ5ubNUq1XqlvrFQWnk87K1pukm3qIz+WaQVWqN1auLuE+2GVtJu66u6q8d6Mgid0oaca/TX0F/+AtLw5/M=</latexit>

S = →ωg

∑

x,µ<ω

cos (Fµω(x))→ ωH

∑

x,µ

∑

a=1,2

cos (!µεa(x) +Aµ(x))

lattice modelU(1)gauge × U(1)global



cf. Motrunich, Senthil (’05)

Field strength Scalar field 
(phase dof)

Gauge field

βg

βH

“Confined”

Superfluid

Phase diagram

Coulomb

U(1)gauge :

U(1)global :

ℤ2F :

Symmetry

φ1 → φ1 + θ
φ2 → φ2 − θ
φ1 → φ2
φ2 → φ1

φ1 → φ1 − λ
φ2 → φ2 − λ
Aμ → Aμ + Δμλ Strong coupling Weak coupling

Δμφa(x) = φa(x + ̂μ) − φa(x)
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cf. Motrunich, Senthil (’05)

Field strength Scalar field 
(phase dof)

Gauge field
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βH
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Superfluid

Phase diagram

Coulomb

U(1)gauge :

U(1)global :

ℤ2F :

Symmetry

φ1 → φ1 + θ
φ2 → φ2 − θ
φ1 → φ2
φ2 → φ1

φ1 → φ1 − λ
φ2 → φ2 − λ
Aμ → Aμ + Δμλ Strong coupling Weak coupling

vortex transition？

Δμφa(x) = φa(x + ̂μ) − φa(x)
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There are two ‘phases’ on a vortex
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There are two ‘phases’ on a vortex

φ1
φ2

Weak coupling

φ1
φ2

randomized junctions

 unbroken 
Strong coupling

ℤ2F

This is analogous to the Ising model
 broken phase ℤ2

↑↑↑↑↑↑ ↑↑↑↑↑↑

↑↑↑↑↑↑ ↑↑↑↑↑↑

domain wall

random configuration
 unbroken phase ℤ2

 broken phaseℤ2F



Numerical simulation 

At weak coupling  
long-range correlation 

Spontaneous symmetry  
breaking

Phase transition  
on a vortex0 2 4 6 8
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Critical point
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Implications from Vortex phase transition
Single vortex transition does not mean bulk phase transition
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∼ fbulk +
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No sigular behavior at V → ∞



Implications from Vortex phase transition
Single vortex transition does not mean bulk phase transition

ftotal =
Ftotal

V
∼ fbulk +

L
V

fvortex

No sigular behavior at V → ∞

CFL phase

Hadronic 
superfluid

vortex

In the case of high rotation where
nvrotex = Nvortex/Vperp ≠ 0

ftotal =
Ftotal

V
∼ fbulk + nvortex fvortex

can be singular  
at the vortex phase transition point



Summary
Finite-temperature QCD:

Finite-density QCD:

We have proposed Quark Spaghetti with Glue Balls

We discussed crossover between Hadronic and quark matter
We examined QCD in (1+1)d using tensor network technique.


⇒Hadronic to quark Luttinger liquid cross over

We found the phase transition on a vortex in  model  
⇒ some phase transition might occur in highly rotating QCD matter

U(1) × U(1)

How about real QCD?


