

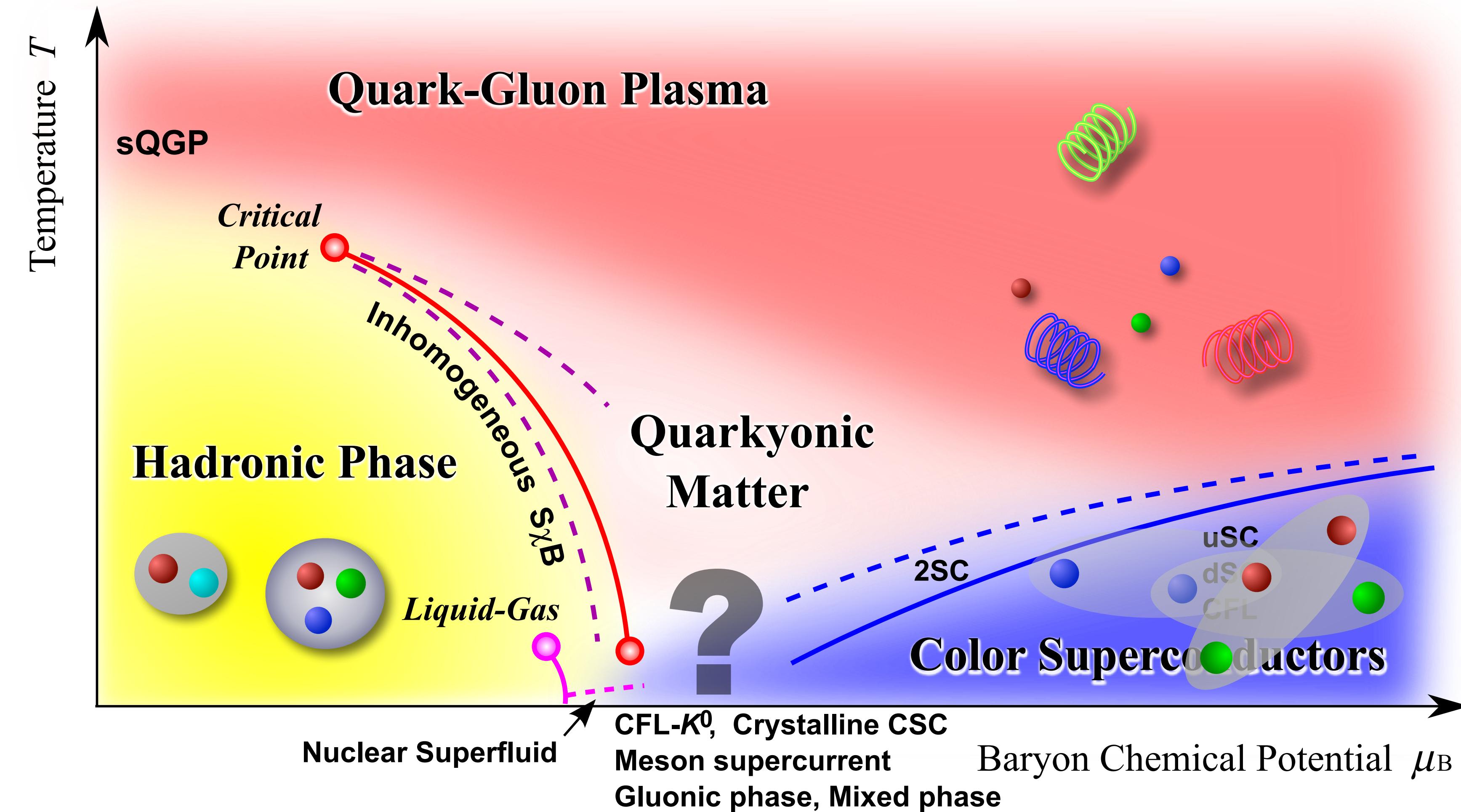
How do hadrons connect to quark–gluon matter?

Yoshimasa Hidaka
(YITP, Kyoto University, iTHEMS, RIKEN)

based on: Fujimoto, Fukushima, YH, McLerran, Phys. Rev. D 112, 074006 (2025)
Hayata, YH, Nishimura, JHEP 07, 106 (2024)
Fujikura YH, in progress
Hayata, YH, Kondo, JHEP 03 (2025) 006

QCD phase diagram

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001

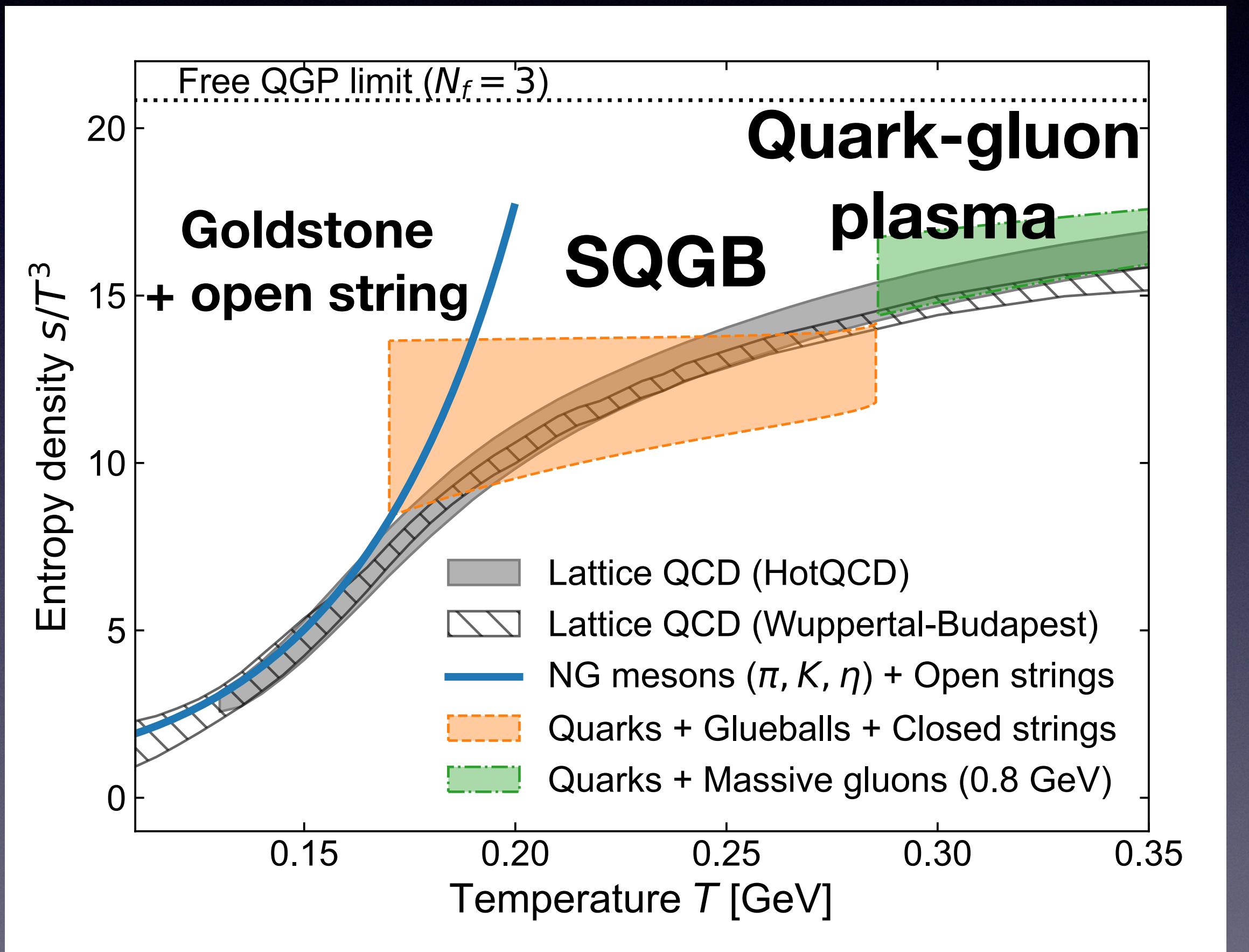
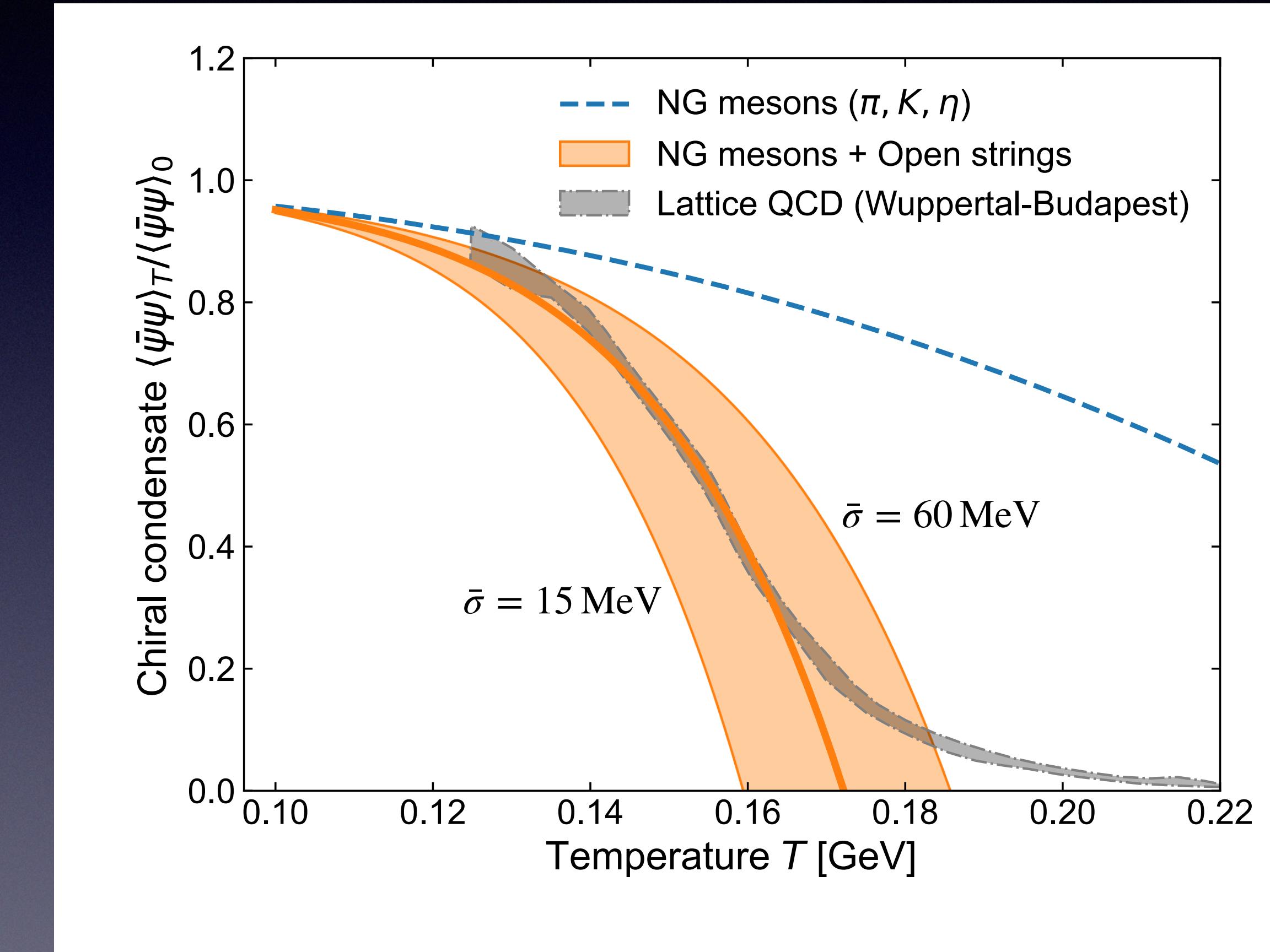


Finite-Temperature

we proposed Spaghetti of quarks with glueballs (SQGB)

There are three regimes

See Yuki's talk

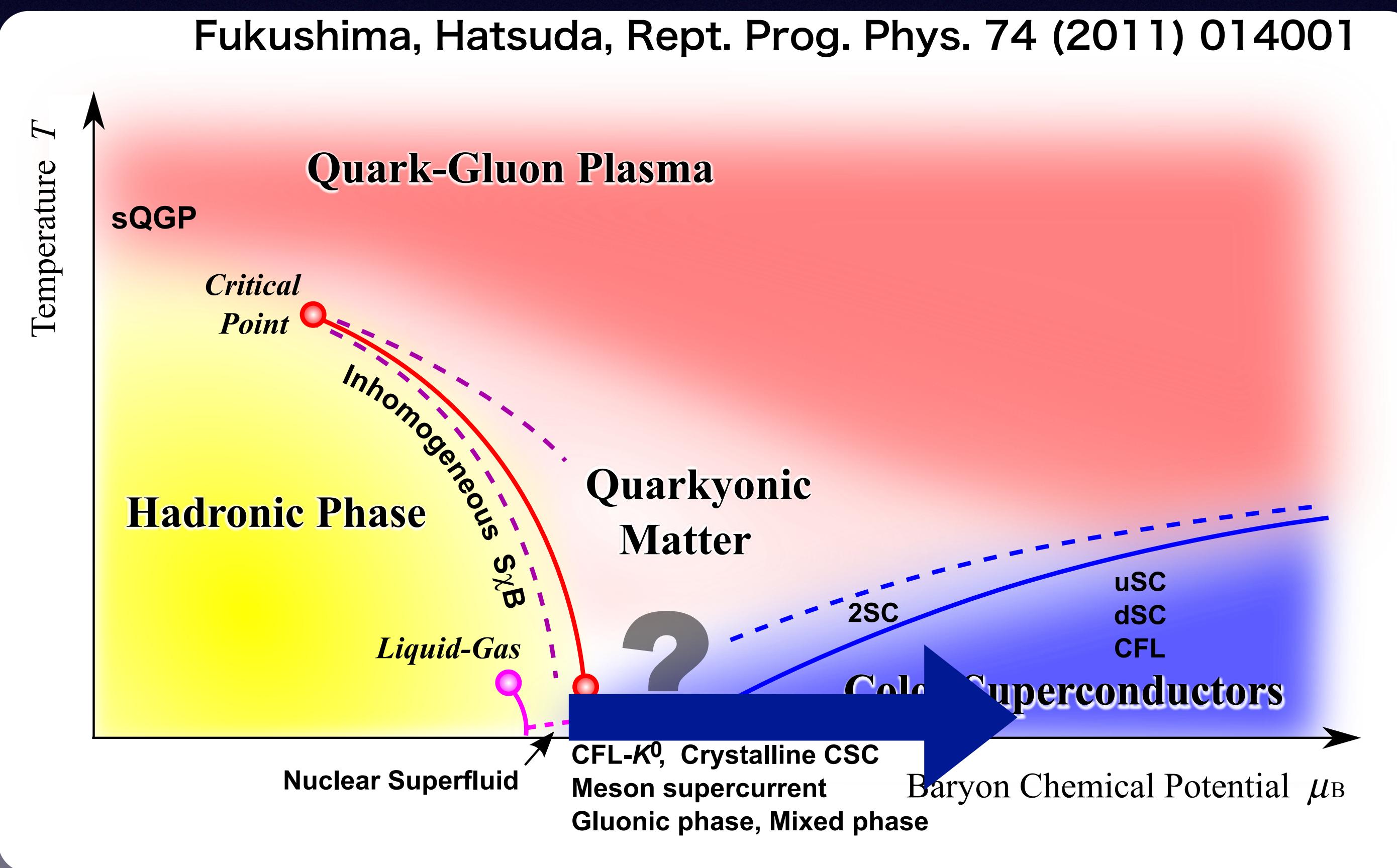


$$\langle\bar{\psi}\psi\rangle_T \approx \langle\bar{\psi}\psi\rangle_0 - \frac{\partial p(M)}{\partial M} \frac{\sigma_M}{m_q}$$

In this talk, we focus on

Dense QCD matter

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001



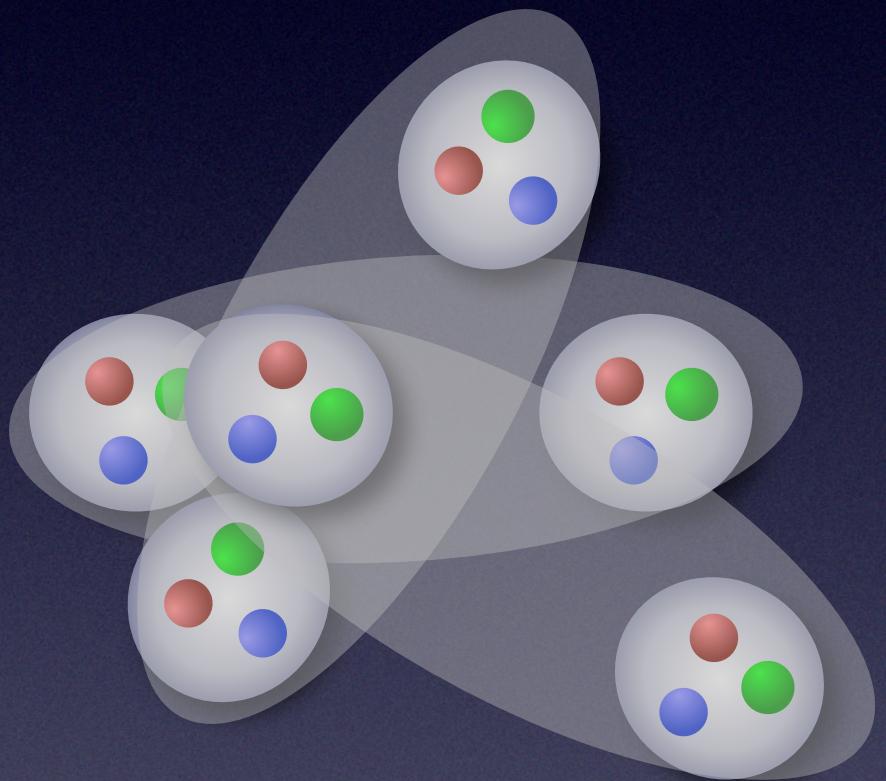
What we know

For 3-flavor QCD : $G = SU(3)_f \times U(1)_B$

What we know

For 3-flavor QCD : $G = SU(3)_f \times U(1)_B$

- Superfluid(dilute phase)



Baryon pair condensation

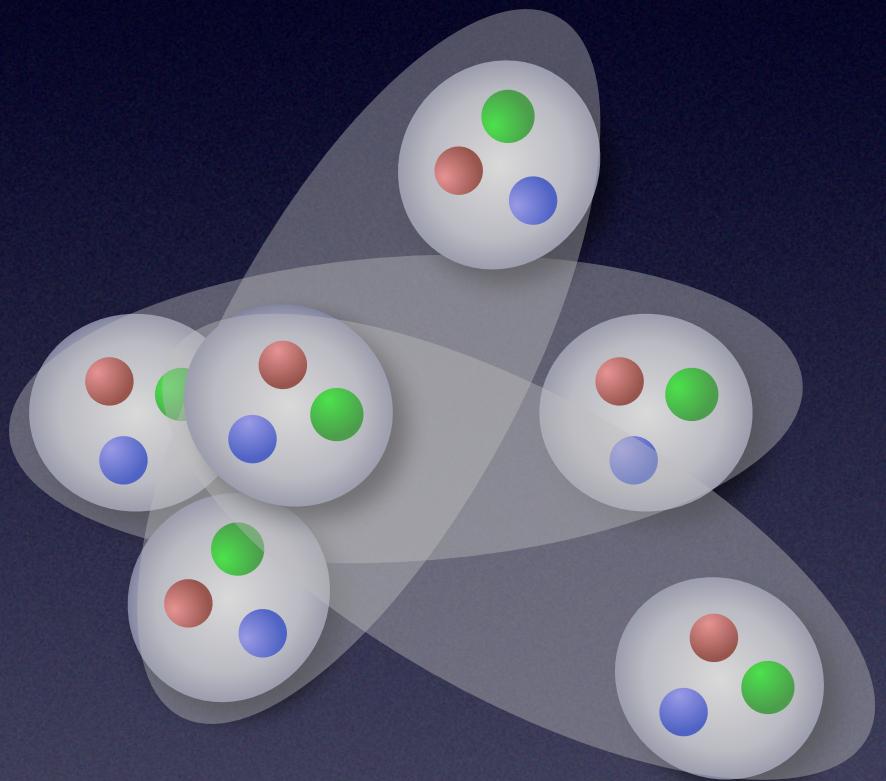
$$\Delta = \langle \Lambda \Lambda \rangle \neq 0 \quad \Lambda \sim uds$$

$$SU(3)_f \times U(1)_B \rightarrow SU(3)_f$$

What we know

For 3-flavor QCD : $G = SU(3)_f \times U(1)_B$

- Superfluid(dilute phase)

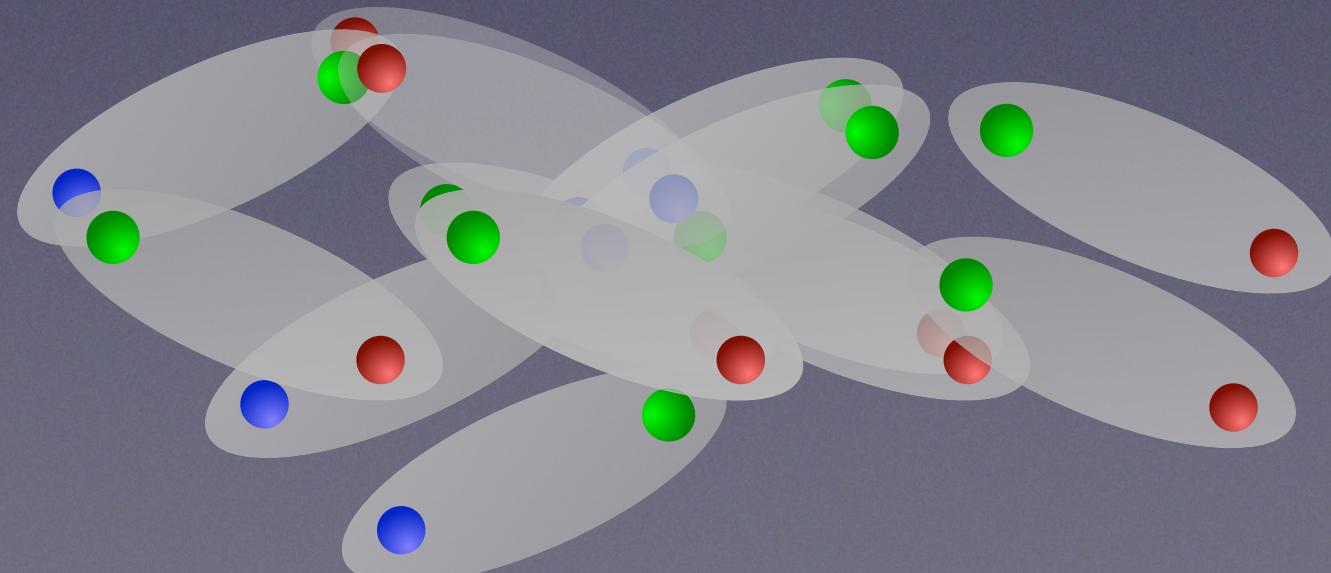


Baryon pair condensation

$$\Delta = \langle \Lambda \Lambda \rangle \neq 0 \quad \Lambda \sim uds$$

$$SU(3)_f \times U(1)_B \rightarrow SU(3)_f$$

- Color super conductor (dense phase)



“quark pair condensate”

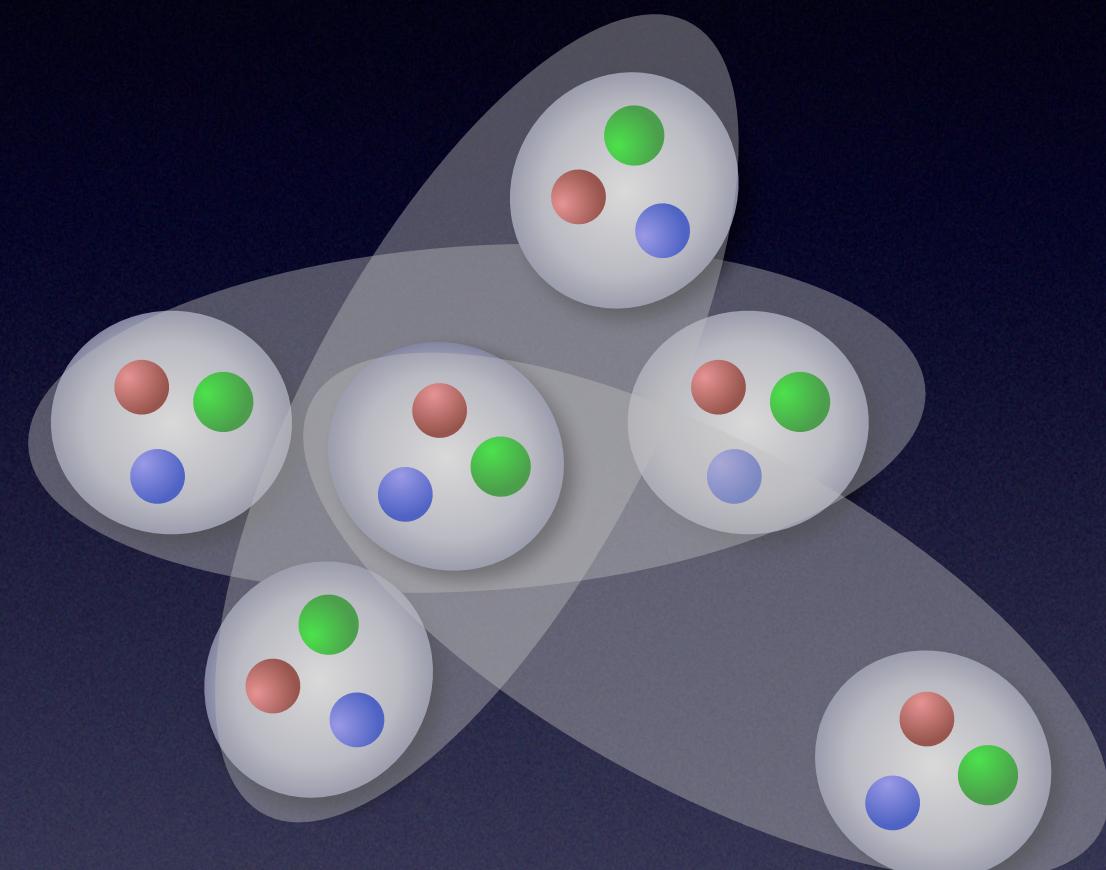
$$(\Phi_L)^i_{\textcolor{red}{a}} = \epsilon^{ijk} \epsilon_{\textcolor{red}{a}\textcolor{blue}{b}\textcolor{green}{c}} \langle (q_L)_j^{\textcolor{blue}{b}} (Cq_L)_k^{\textcolor{red}{c}} \rangle = - \epsilon^{ijk} \epsilon_{\textcolor{red}{a}\textcolor{blue}{b}\textcolor{green}{c}} \langle (q_R)_j^{\textcolor{blue}{b}} (Cq_R)_k^{\textcolor{red}{c}} \rangle$$

$$SU(3)_f \times U(1)_B \rightarrow SU(3)_f$$

Quark hadron continuity

Hadronic superfluid

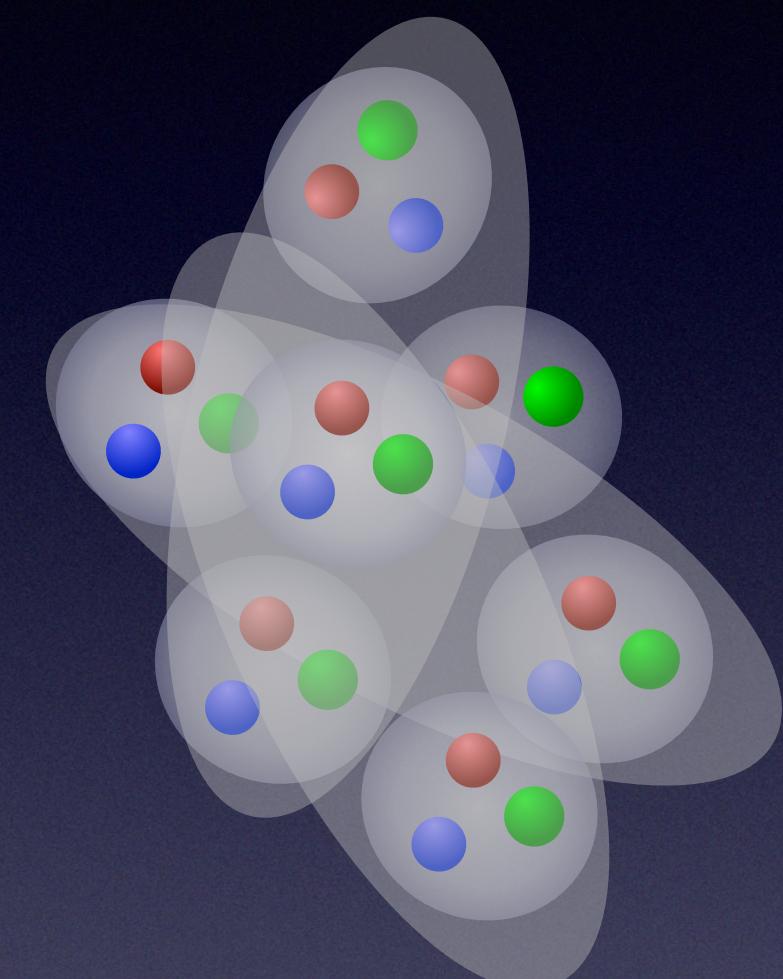
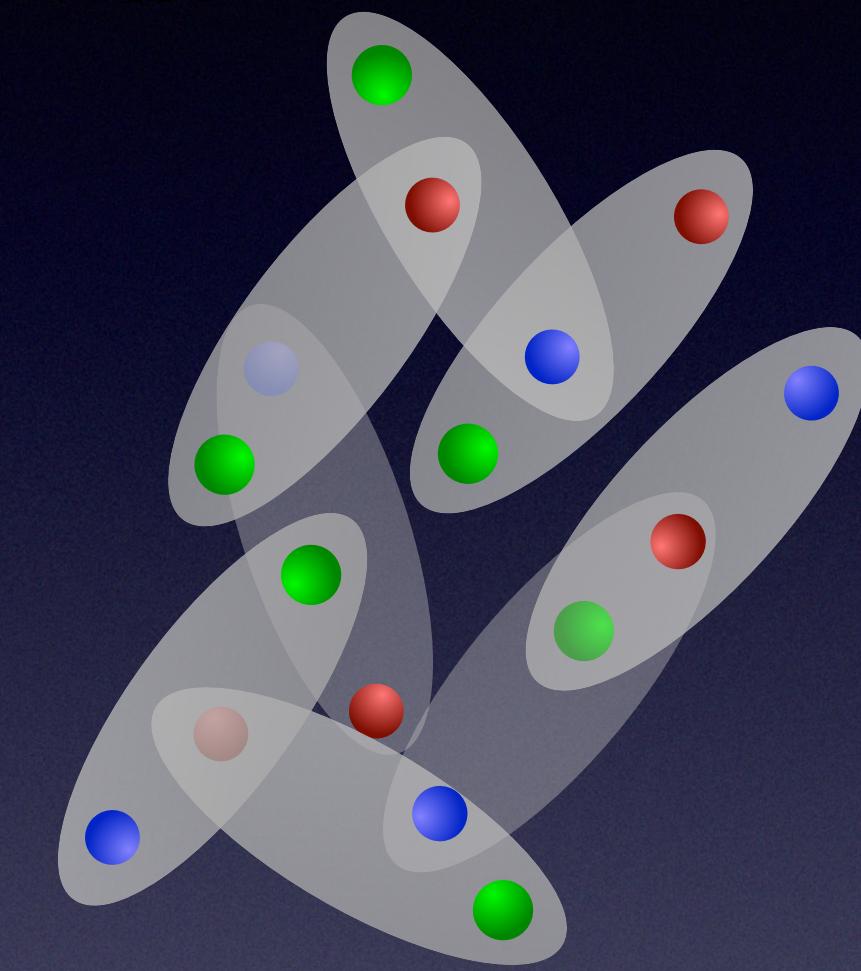
Tamagaki ('70), Hoffberg et al ('70)



Color flavor locked phase (CFL phase)

Alford, Rajagopal, Wilczek ('99)

超流動相



Symmetry breaking pattern is the same

⇒ Quark hadron continuity

Excitations

Baryons ⇒ Quarks

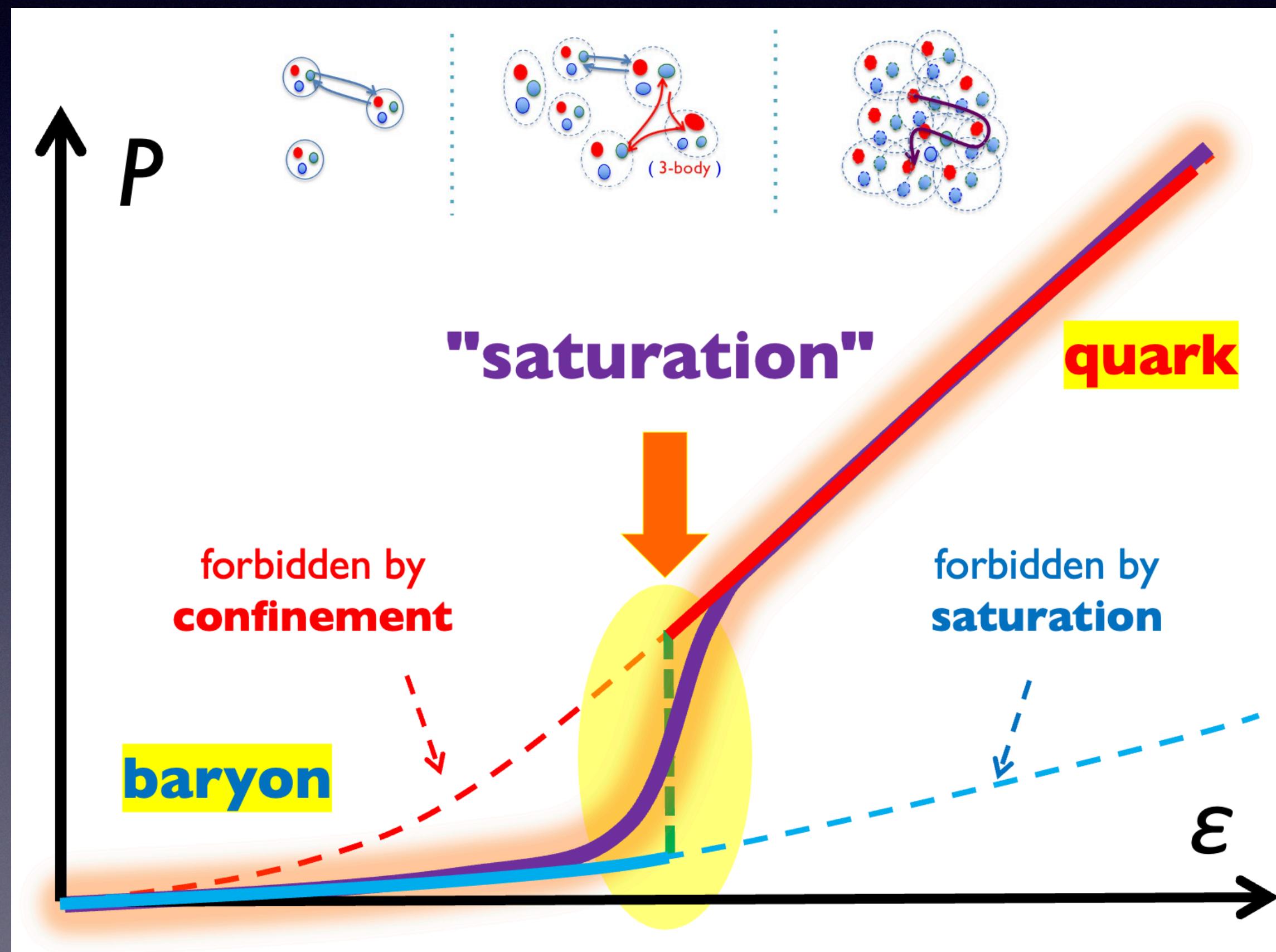
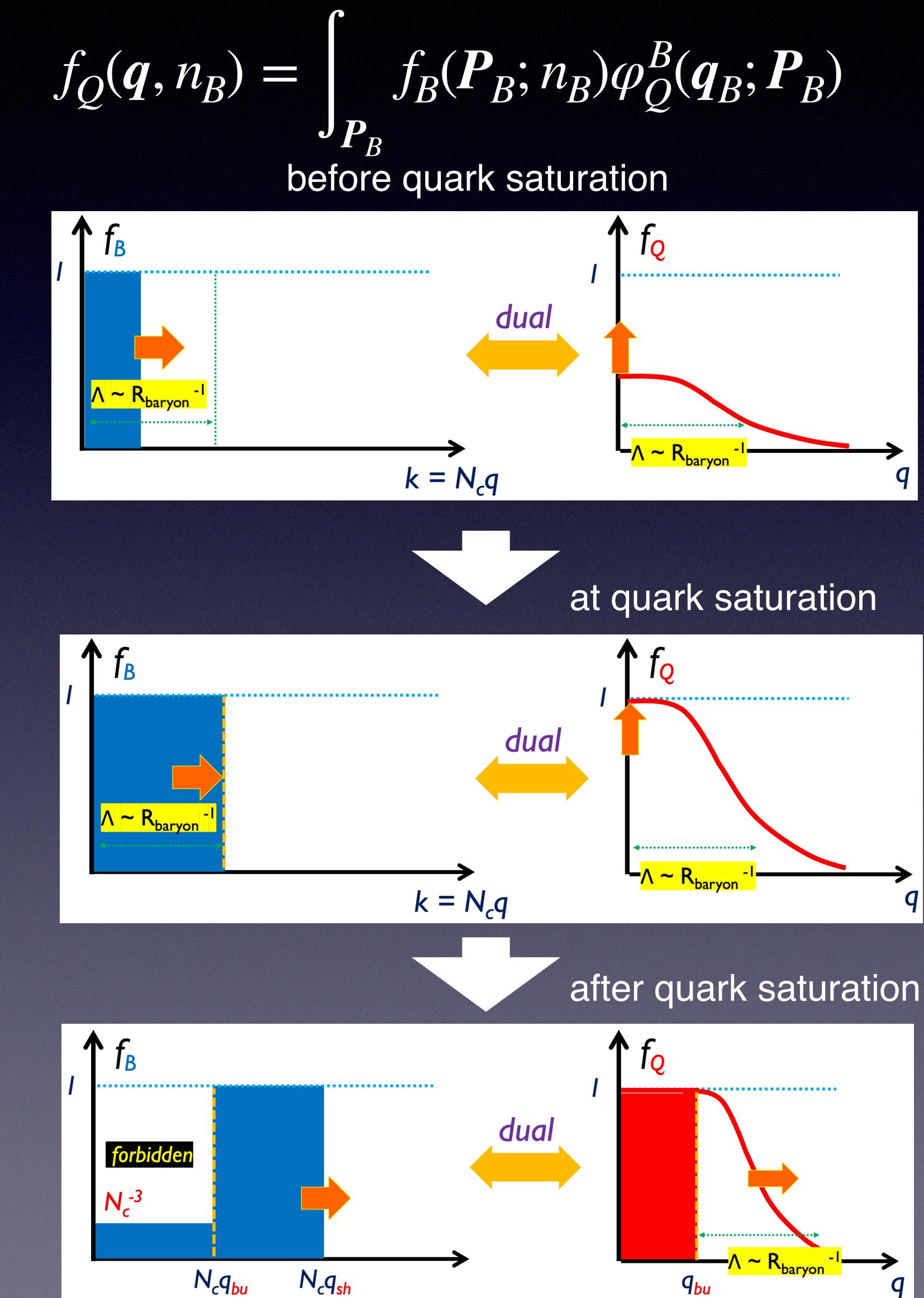
Vector meson ⇒ Gluons

cf. Hatsuda, Tachibana, Yamamoto, Baym ('06)

Ideal dual Quarkyonic (IdylliQ) model

Kojo ('21), McLerran, Reddy ('19), Fujimoto, Kojo, McLerran ('24)

Figure is taken from Kojo, [2412.20442](https://arxiv.org/abs/2412.20442)



Study of QCD_2

**Numerical calculations
can be done by using tensor network technique**

(Bosonization technique also useful.)

Kojo ('11), Lajer, Konik, Pisarski, Tsvelik ('21)

- **Finite box simulation**

Hayata, YH, Nishimura, JHEP 07 (2024) 106

- **Infinite Volume simulation**

work in progress with Yohei Fujikura

(dimensionless)QCD₂ Hamiltonian

$$J = \frac{ag_0}{2}, w = \frac{1}{2g_0a}, m = m_0/g_0 \quad \text{We use } g_0 = 1 \text{ unit}$$

$$H/g_0 = J \sum_{n=1}^{N-1} E_i^2(n) \quad \text{Electric field term}$$

$$+ w \sum_{n=1}^{N-1} \left(\chi^\dagger(n+1) U(n) \chi(n) + \chi^\dagger(n) U^\dagger(n) \chi(n+1) \right)$$

Hopping term

$$+ m \sum_{n=1}^N (-1)^n \chi^\dagger(n) \chi(n) \quad \text{Mass term}$$

As a variational ansatz of wave function

- We employ a matrix product state

$$|\psi\rangle = \sum_{\{n_i\}} |n_1\rangle \cdots |n_N\rangle \text{tr} M_1^{n_1} \cdots M_N^{n_N}$$

$$[M_i^{n_i}]_{ij} : D \times D \text{ matrix}$$

- Optimize the wave function by density matrix renormalization group technique

$$E = \min_{\psi} \langle \psi | H | \psi \rangle$$

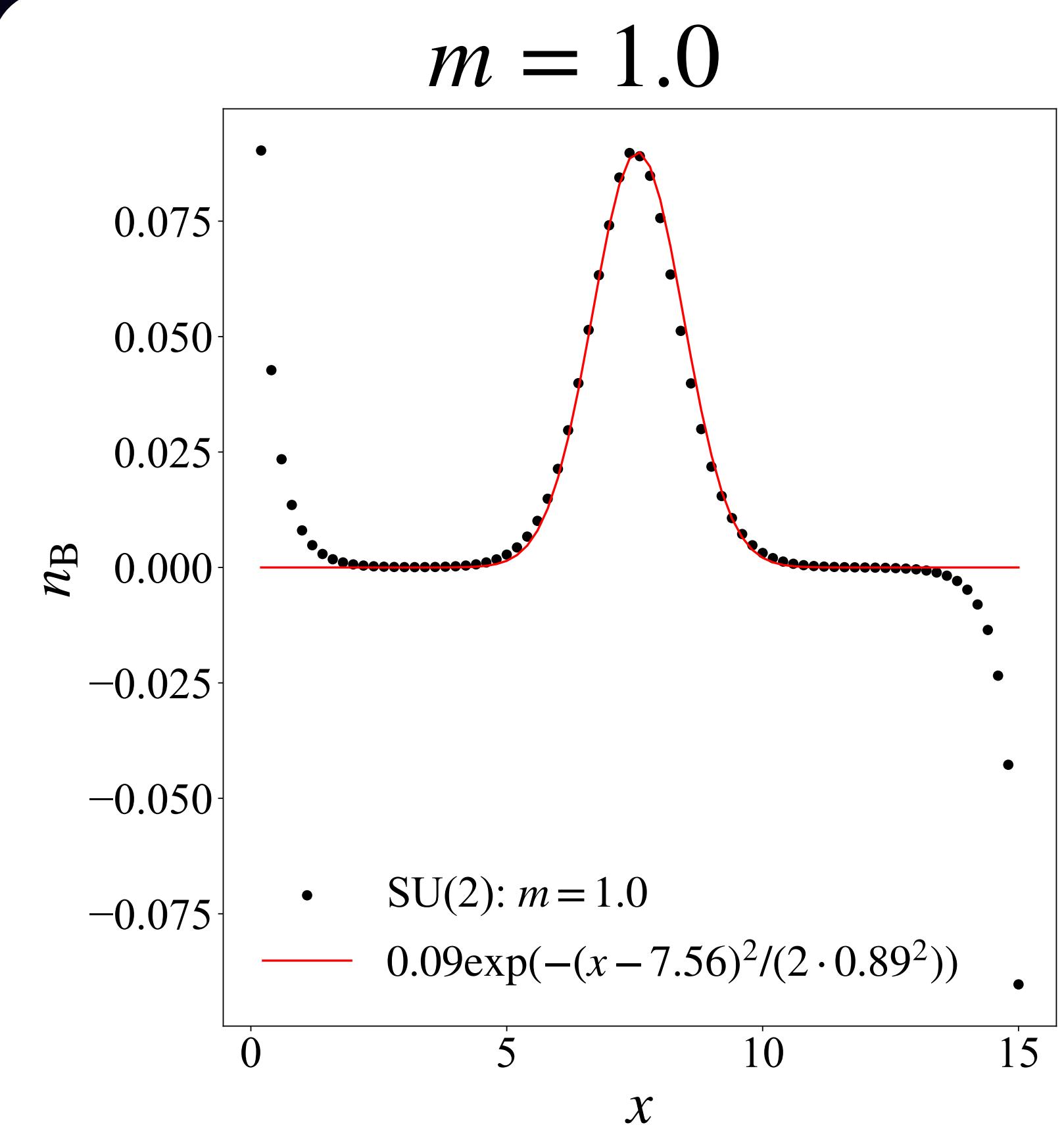
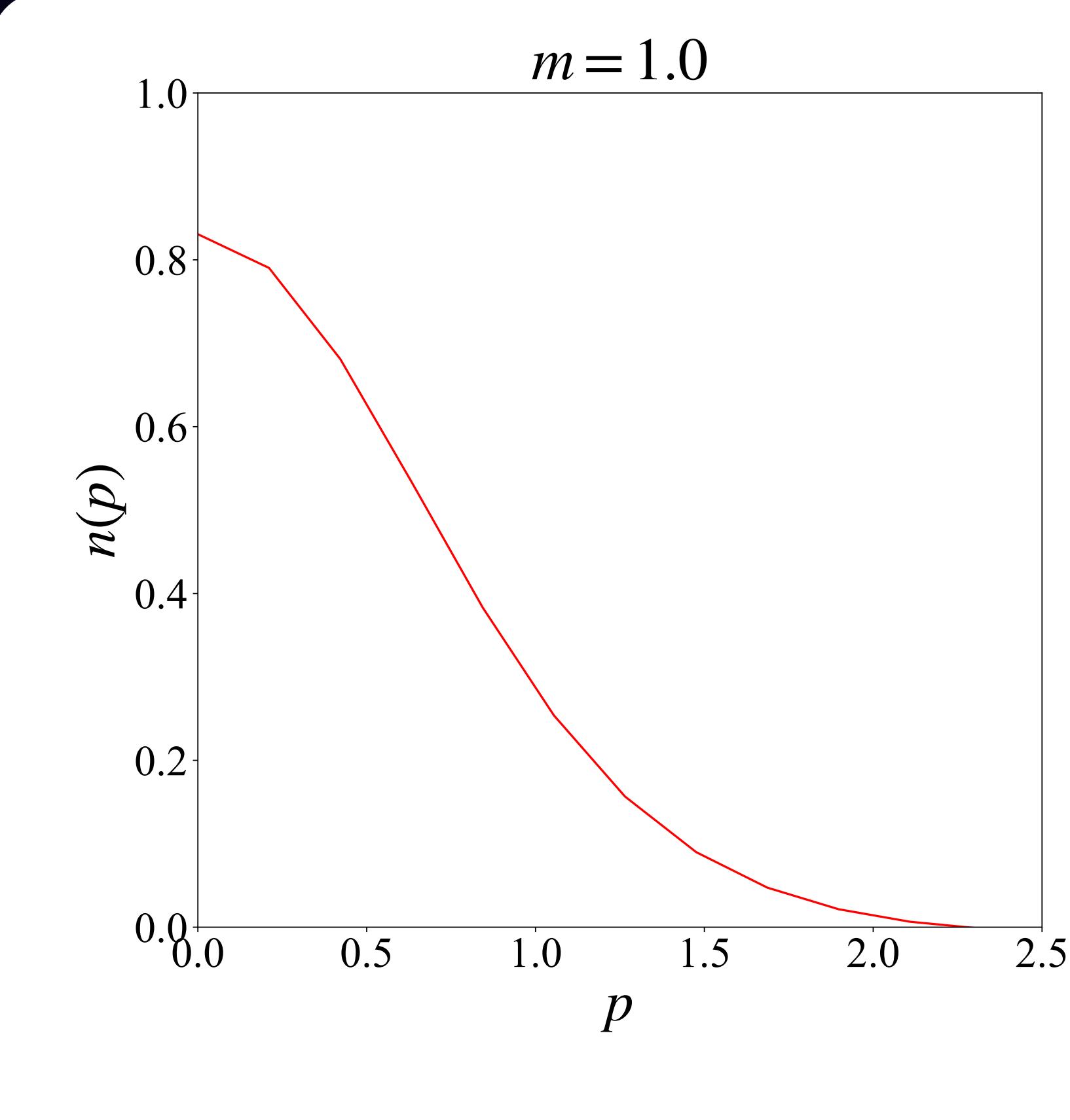
We employ iTensor library for a finite box system

Numerical results

Color SU(2), 1 flavor, vacuum

single baryon state $\dim \mathcal{H} = 2^{300}$ $J = 1/20$ $w = 5$ volume $V = 15$

Baryon number density Quark distribution function



Baryon size ~ 1

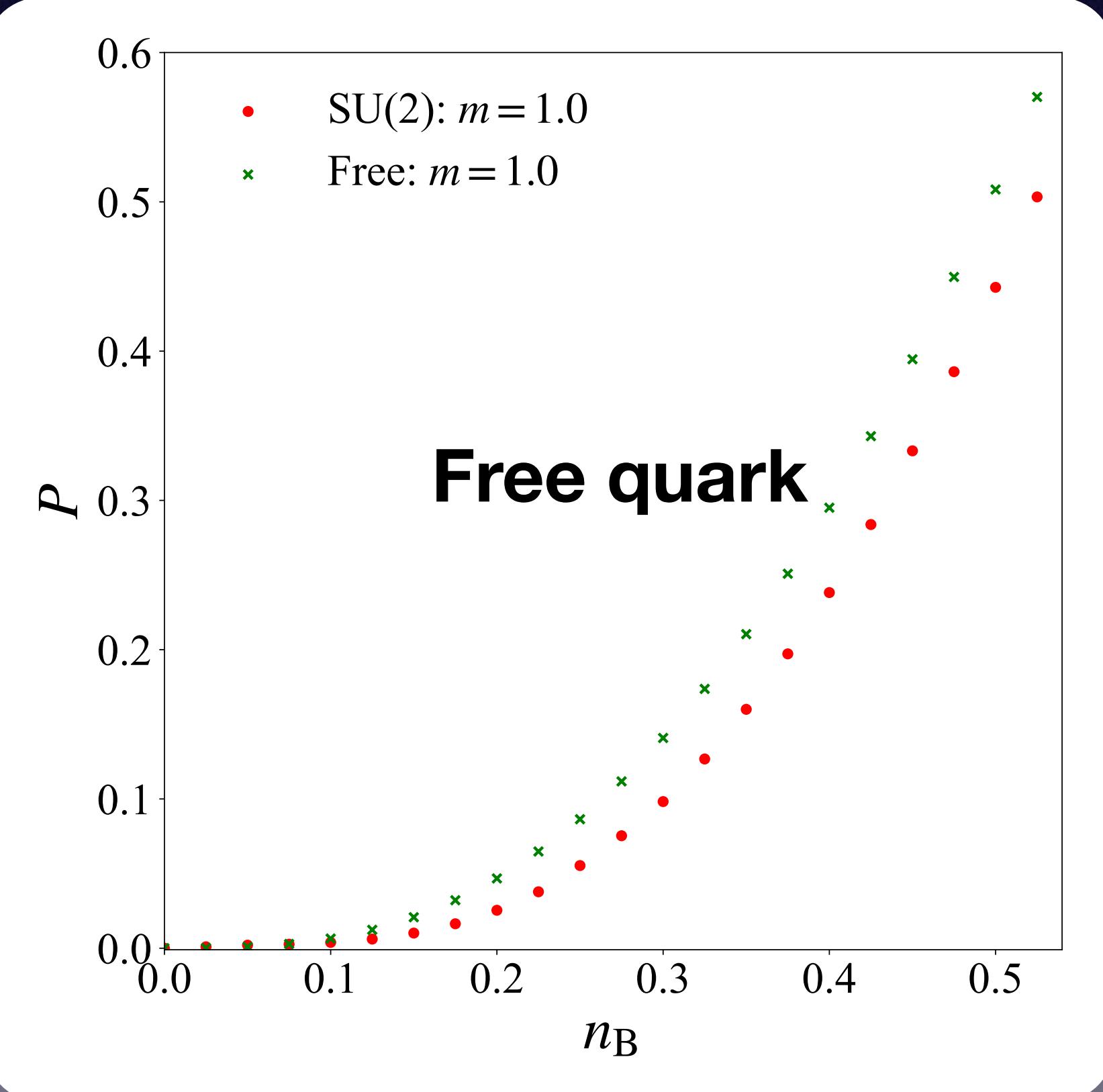
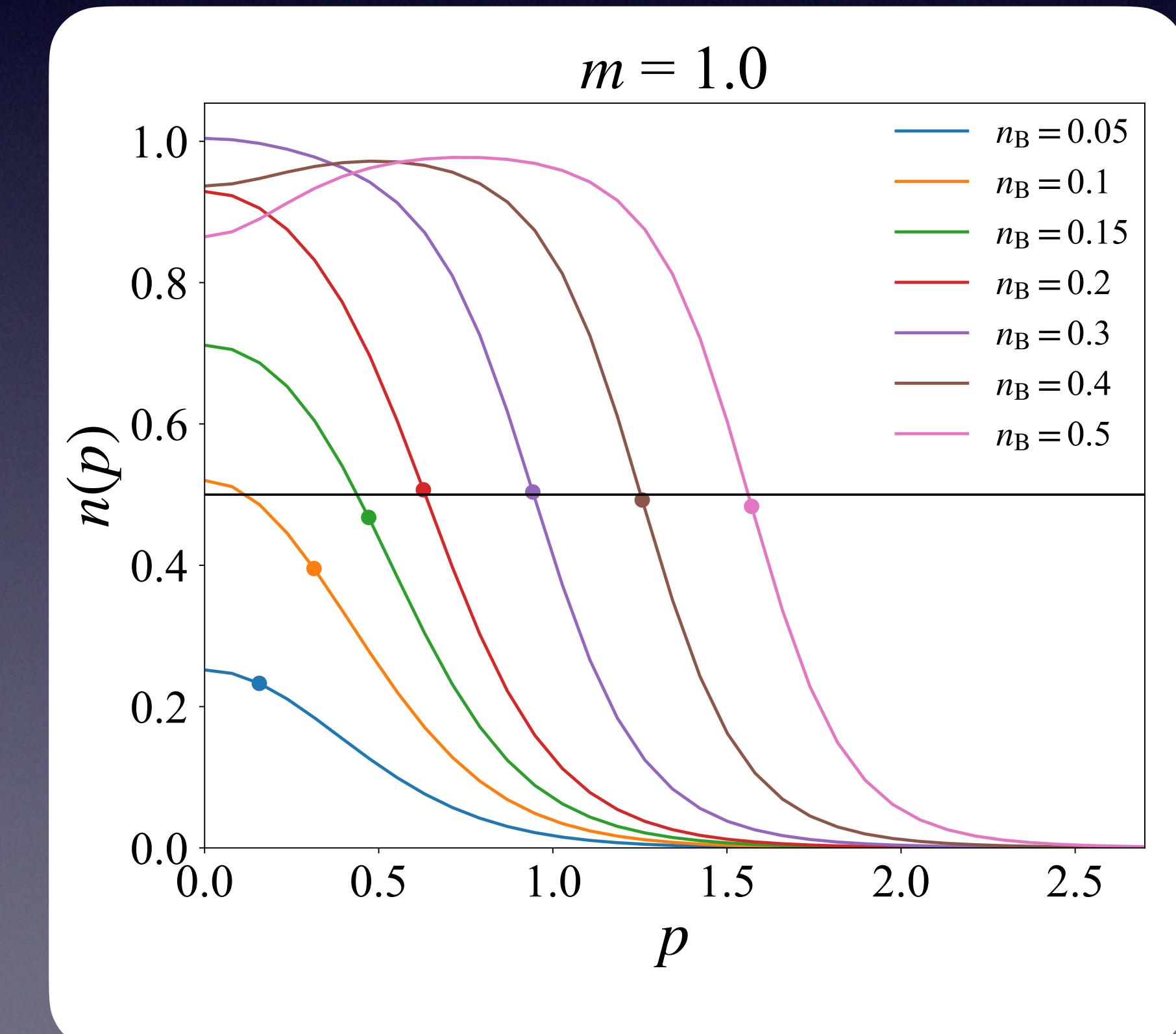
QCD₂ Hamiltonian Lattice simulation with density matrix renormalization technique

Tomoya Hayata, YH, Nishimura ('23)

Two color QCD $N_f = 1$

$\dim \mathcal{H} = 2^{320}$

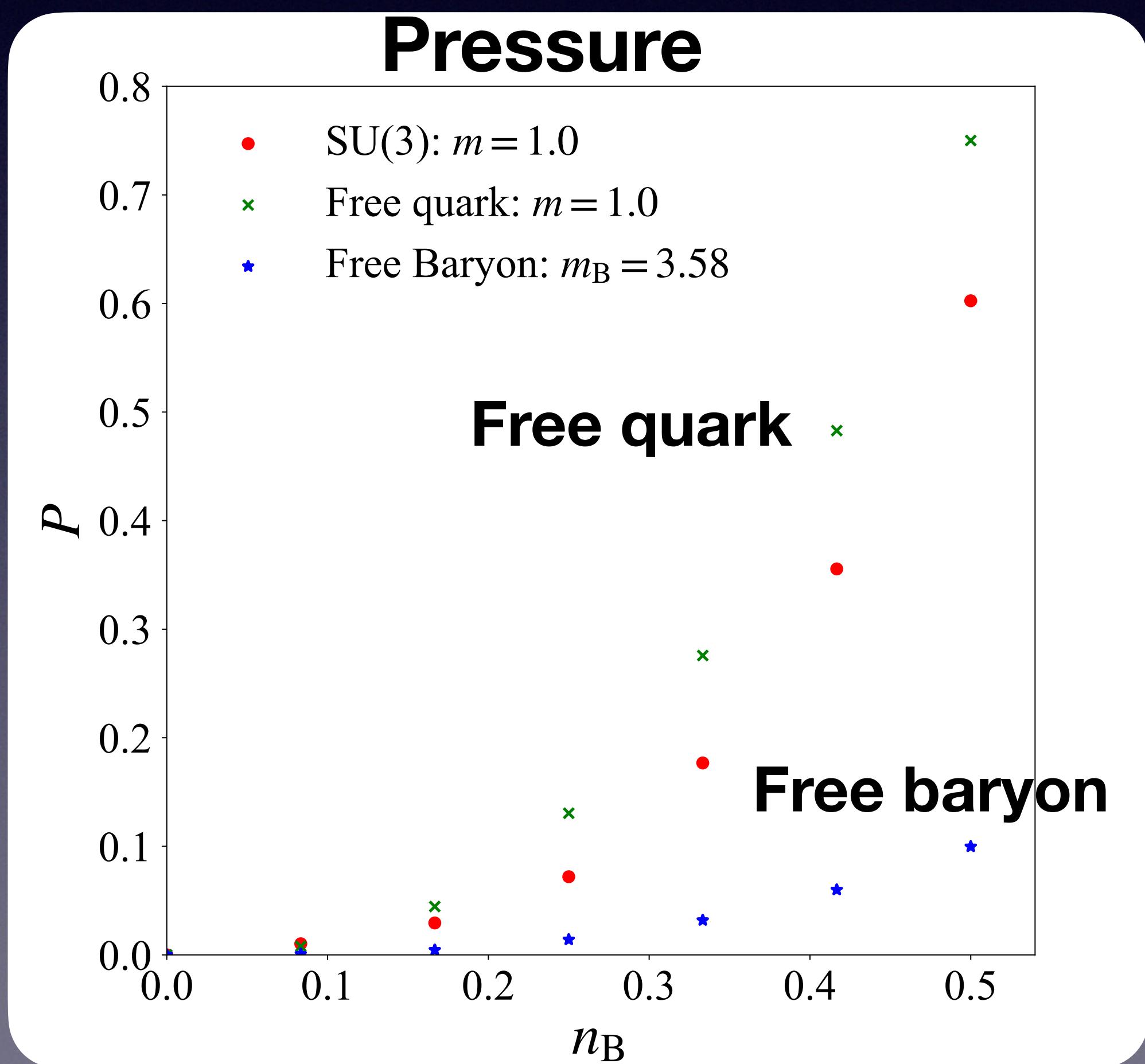
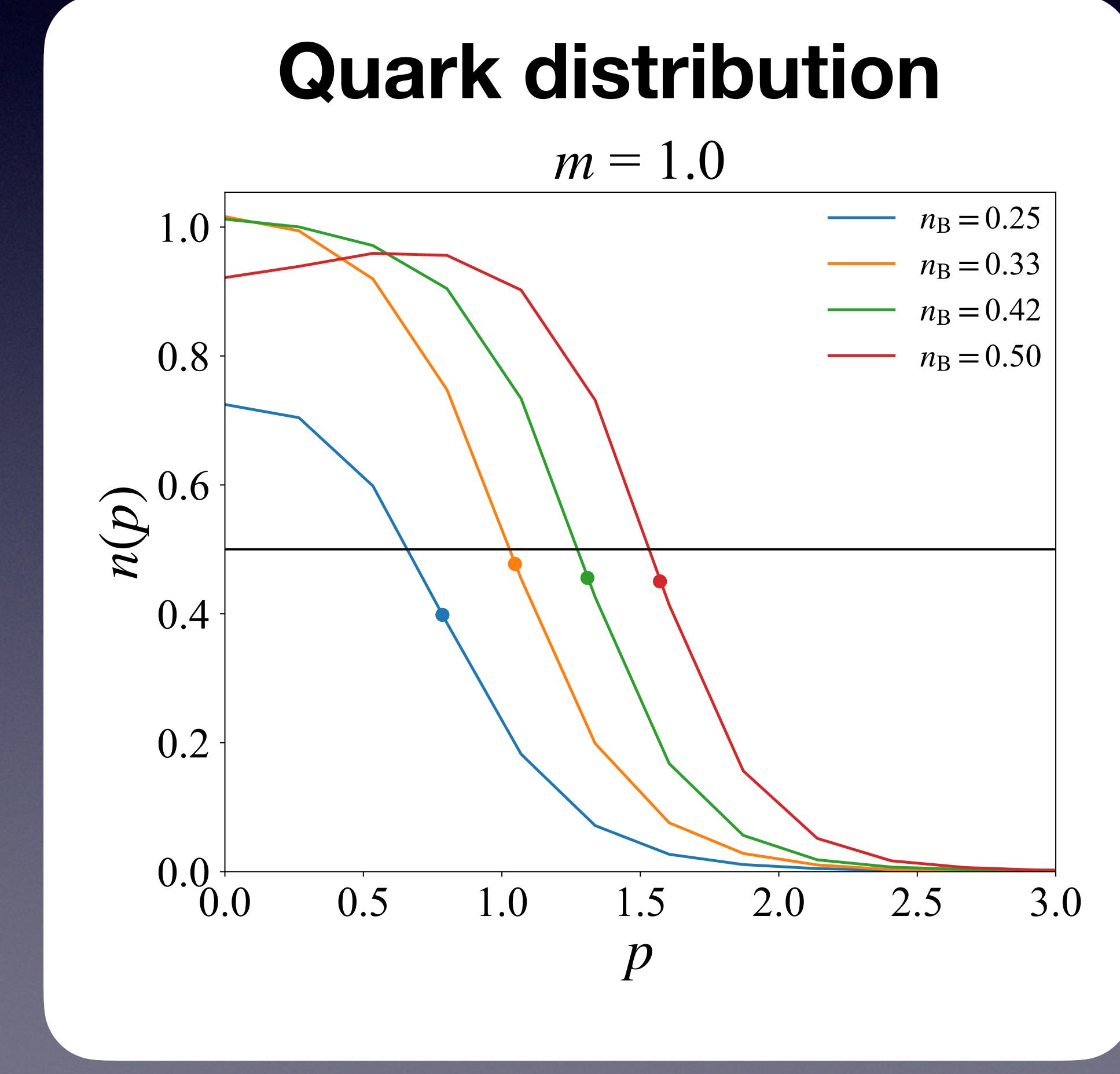
$\dim \mathcal{H} = 2^{480}$



QCD₂ Hamiltonian Lattice simulation with density matrix renormalization technique

Tomoya Hayata, YH, Nishimura ('23)

Three color QCD, $N_f = 1$ $\dim \mathcal{H} = 2^{144}$

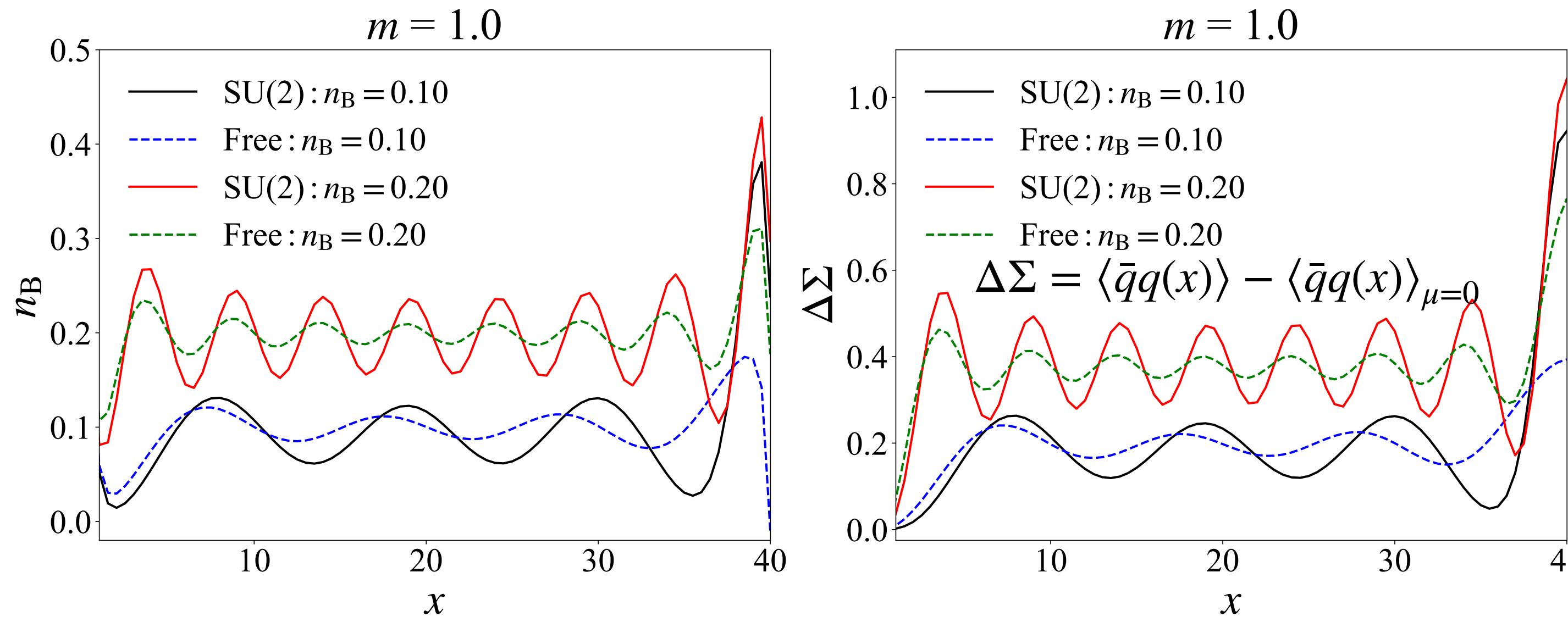


Inhomogeneous phase in QCD_2

corresponding to ‘quarkyonic chiral spirals’ Kojo, Hidaka, McLerran, Pisarski (2010)

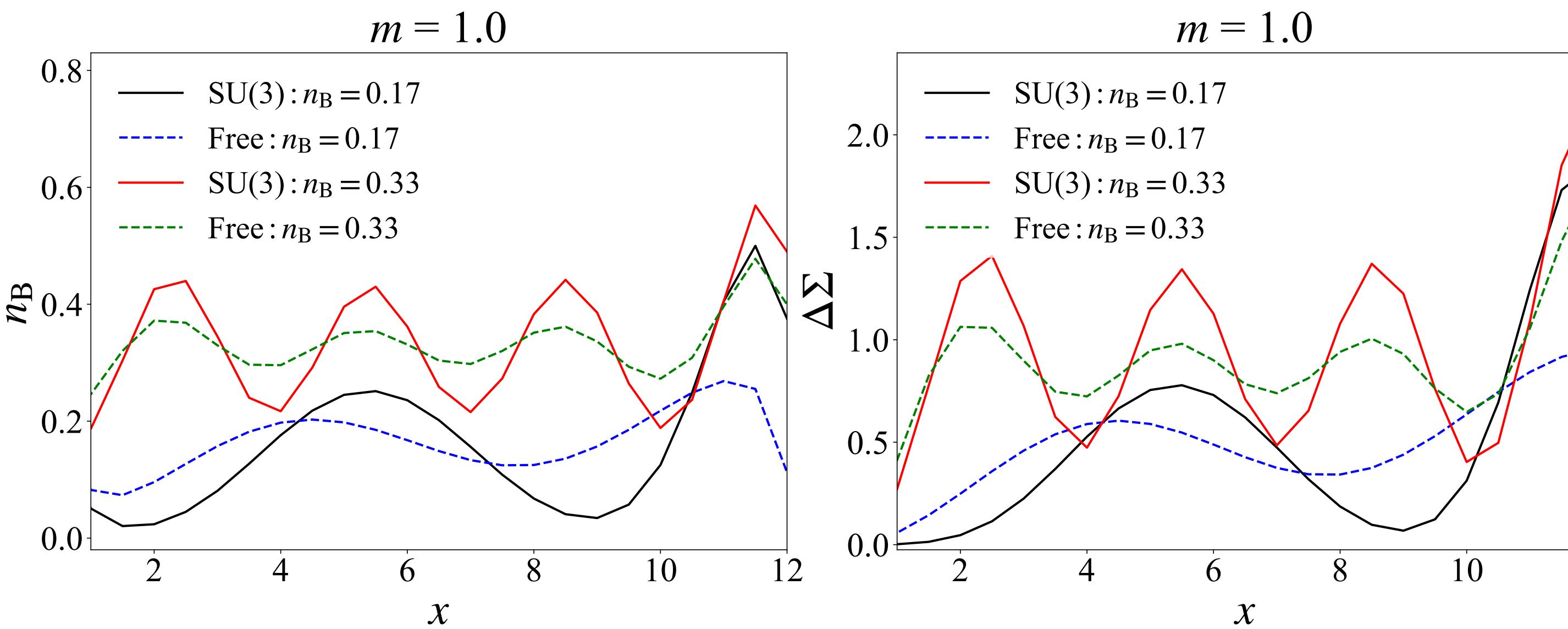
SU(2)

$\dim \mathcal{H} = 2^{320}$



SU(3)

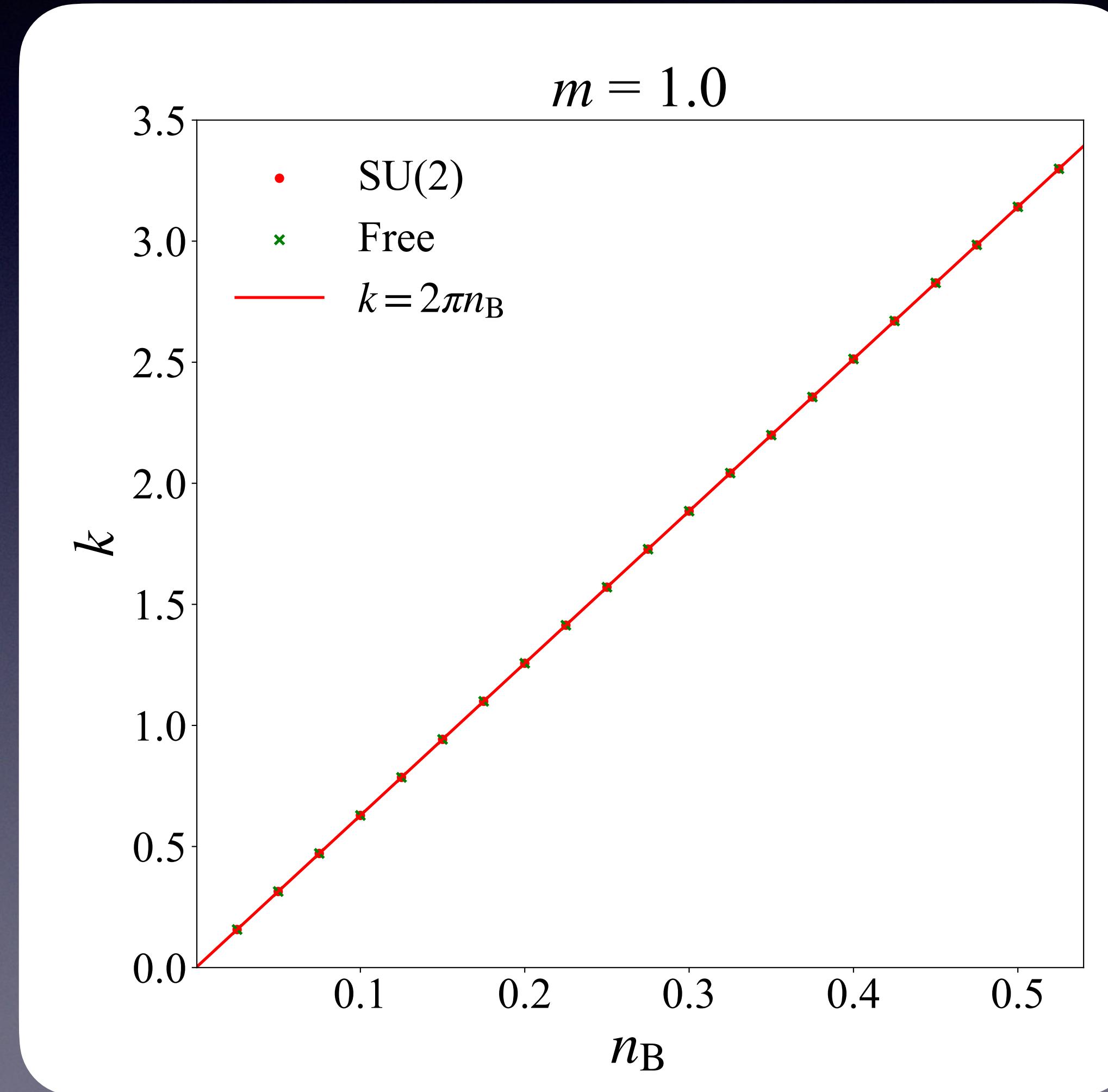
$\dim \mathcal{H} = 2^{320}$



Wave number dependence

$J = 1/8$ $w = 2$ $V = 40$ $\dim \mathcal{H} = 2^{320}$

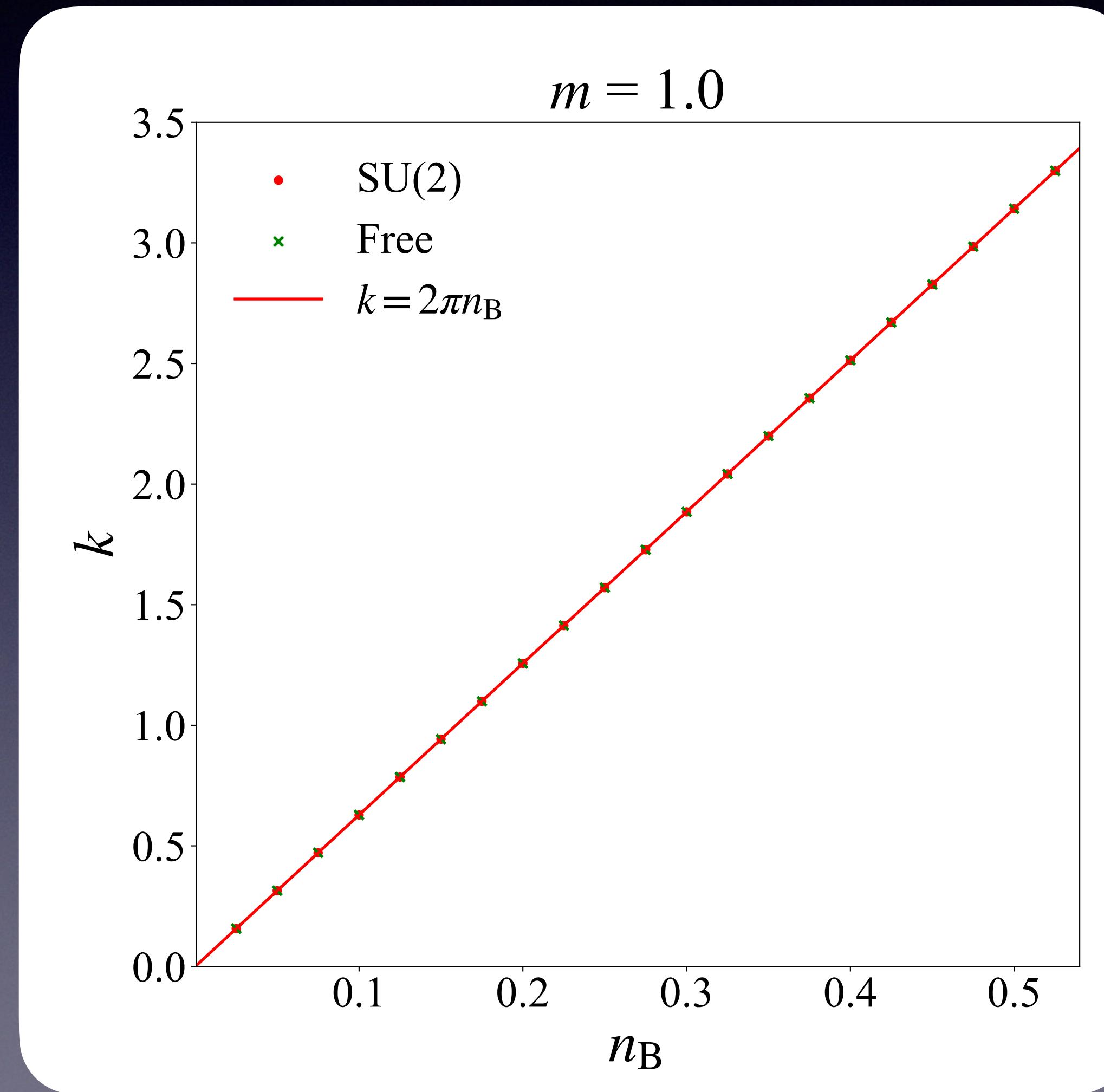
Wave number dependence



Wave number dependence

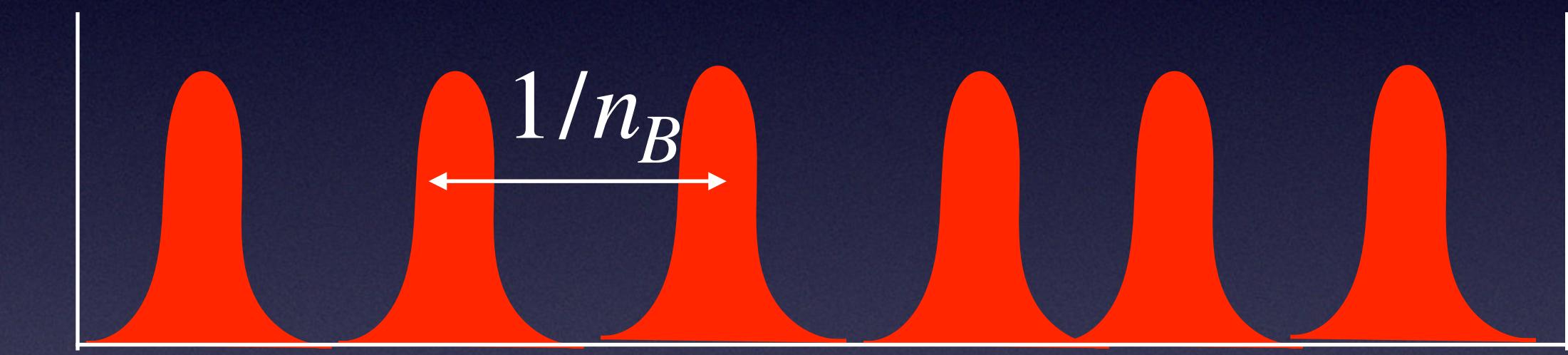
$$J = 1/8 \quad w = 2 \quad V = 40 \quad \dim \mathcal{H} = 2^{320}$$

Wave number dependence



Hadronic picture

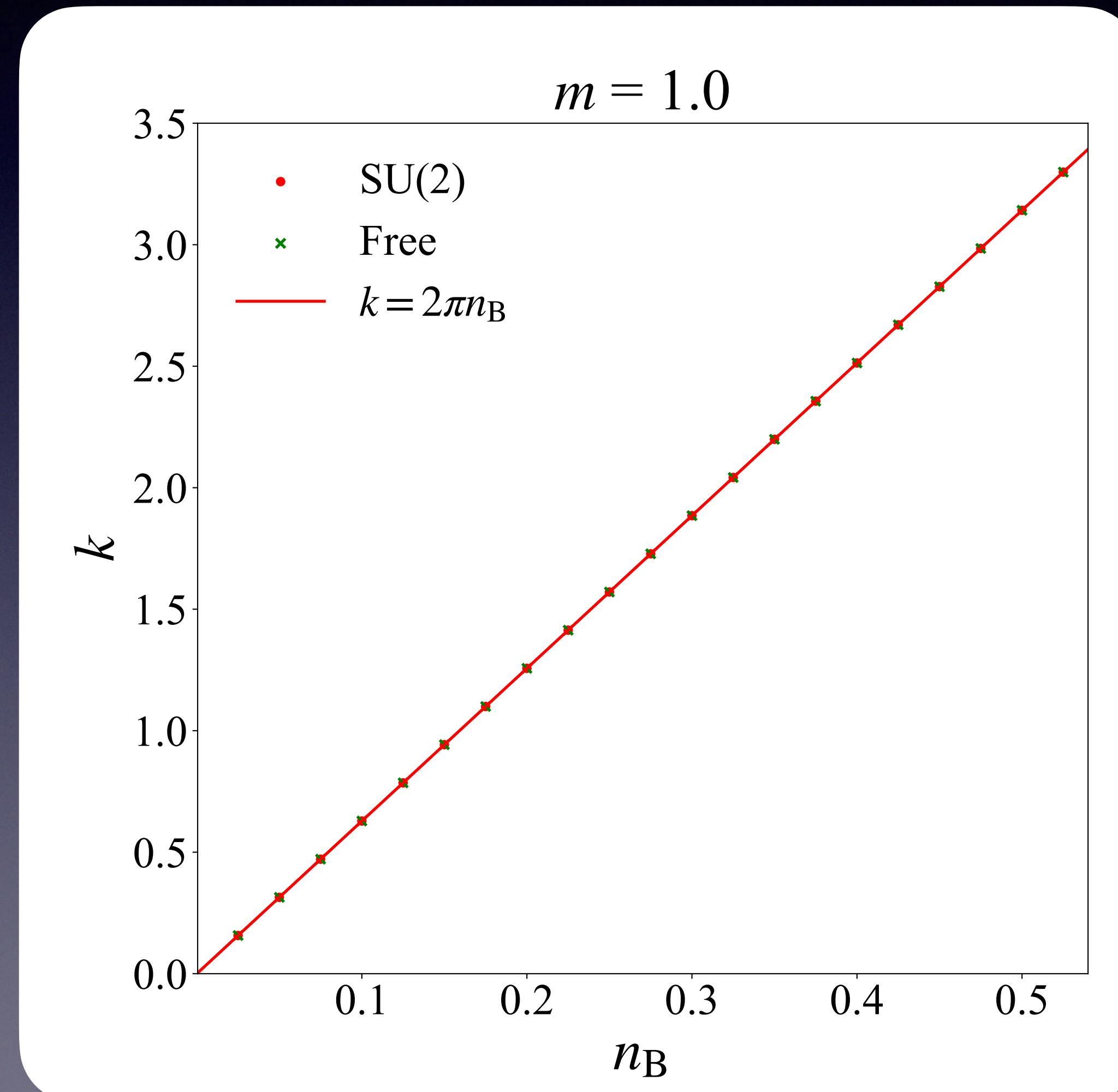
If hadron interactions are repulsive



Wave number dependence

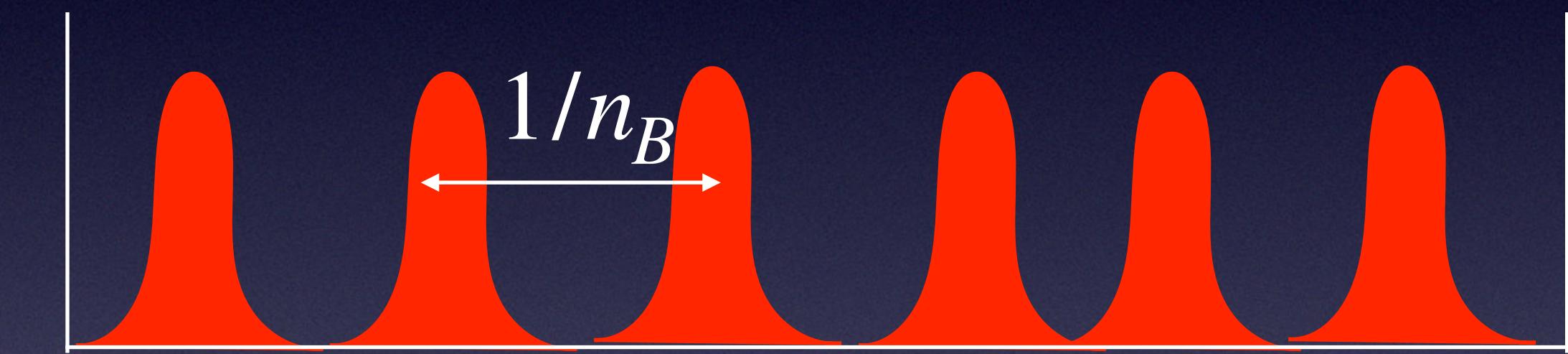
$$J = 1/8 \quad w = 2 \quad V = 40 \quad \dim \mathcal{H} = 2^{320}$$

Wave number dependence



Hadronic picture

If hadron interactions are repulsive



distance $1/n_B \Rightarrow k = 2\pi n_B$

Quark picture

If interactions between quarks
Fermi surface is unstable

⇒ density wave $k = 2p_F = 2\pi n_B$

Infinite volume

Using Variational Uniform Matrix Product State, Fujikura, YH (work in progress)

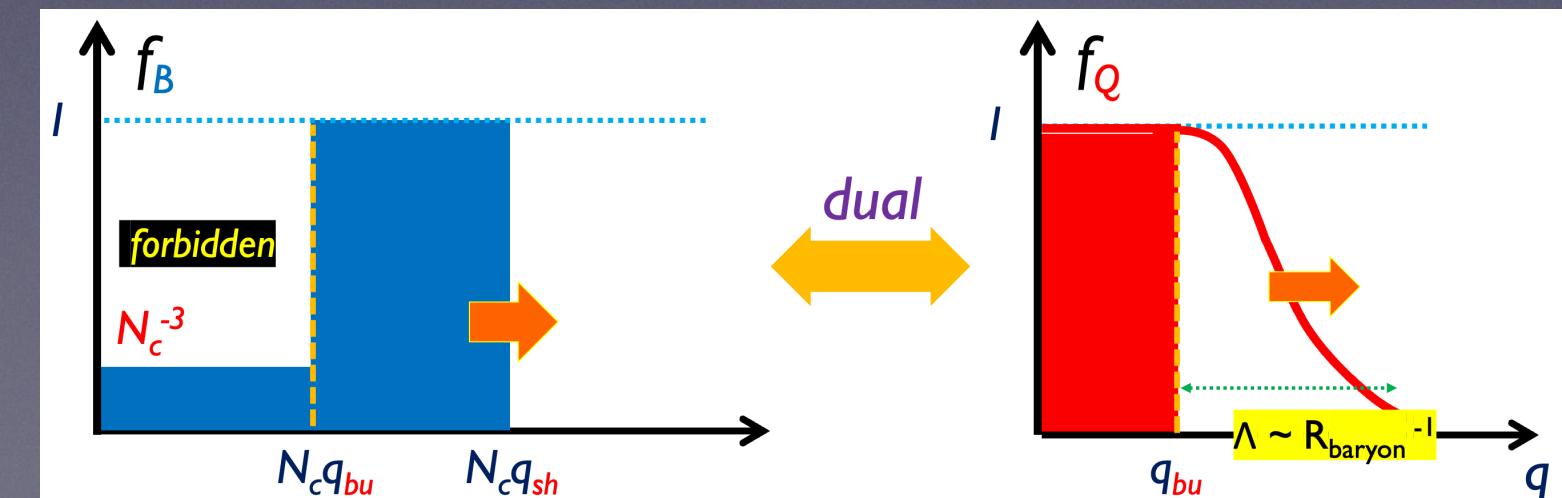
Zauner-Stauber, Vanderstraeten, Fishman, Verstraete, Haegeman ('18)

No continuous symmetry breaking occurs in (1+1)d

Translation symmetry is restored
⇒ Tomonaga-Luttinger liquid

Hadronic to quark Luttinger liquid cross over

Correlation function of baryons has oscillation
⇒ consistent with Quarkyonic picture



Thought experiment : rotating neutron stars

Vortices as phase probes

Quantum vortex

Thought experiment : rotating neutron stars

Vortices as phase probes

Vortices in CFL phase has nontrivial magnetic flux
Is it topological phase ? Cherman, Sen, Yaffe ('19)

Thought experiment : rotating neutron stars

Vortices as phase probes

Vortices in CFL phase has nontrivial magnetic flux

Is it topological phase ? Cherman, Sen, Yaffe ('19)

That is not topological phase. Hirono, Tanizaki ('19)

Thought experiment : rotating neutron stars

Vortices as phase probes

Vortices in CFL phase has nontrivial magnetic flux

Is it topological phase ? Cherman, Sen, Yaffe ('19)

That is not topological phase. Hirono, Tanizaki ('19)

The magnetic flux smoothly disappears
from the CFL phase to the hadronic phase.

Hayashi ('23)

Thought experiment : rotating neutron stars

Vortices as phase probes

Quantum vortex

Vortices in CFL phase has nontrivial magnetic flux

Is it topological phase ? Cherman, Sen, Yaffe ('19)

That is not topological phase. Hirono, Tanizaki ('19)

The magnetic flux smoothly disappears
from the CFL phase to the hadronic phase.

Hayashi ('23)

Is there a possibility that something
happens on vortices?

Thought experiment : rotating neutron stars

Vortices as phase probes

Quantum vortex

Vortices in CFL phase has nontrivial magnetic flux
Is it topological phase ? Cherman, Sen, Yaffe ('19)

That is not topological phase. Hirono, Tanizaki ('19)

The magnetic flux smoothly disappears
from the CFL phase to the hadronic phase.

Hayashi ('23)

Is there a possibility that something
happens on vortices?

Our answer is YES! (at least in QCD like theory)
Phase transition on the vortex

$U(1)_{\text{gauge}} \times U(1)_{\text{global}}$ lattice model

cf. Motrunich, Senthil ('05)

$$S = -\beta_g \sum_{x, \mu < \nu} \cos(F_{\mu\nu}(x)) - \beta_H \sum_{x, \mu} \sum_{a=1,2} \cos(\Delta_\mu \varphi_a(x) + A_\mu(x))$$

Field strength **Scalar field (phase dof)** **Gauge field**
 $\Delta_\mu \varphi_a(x) = \varphi_a(x + \hat{\mu}) - \varphi_a(x)$

Symmetry

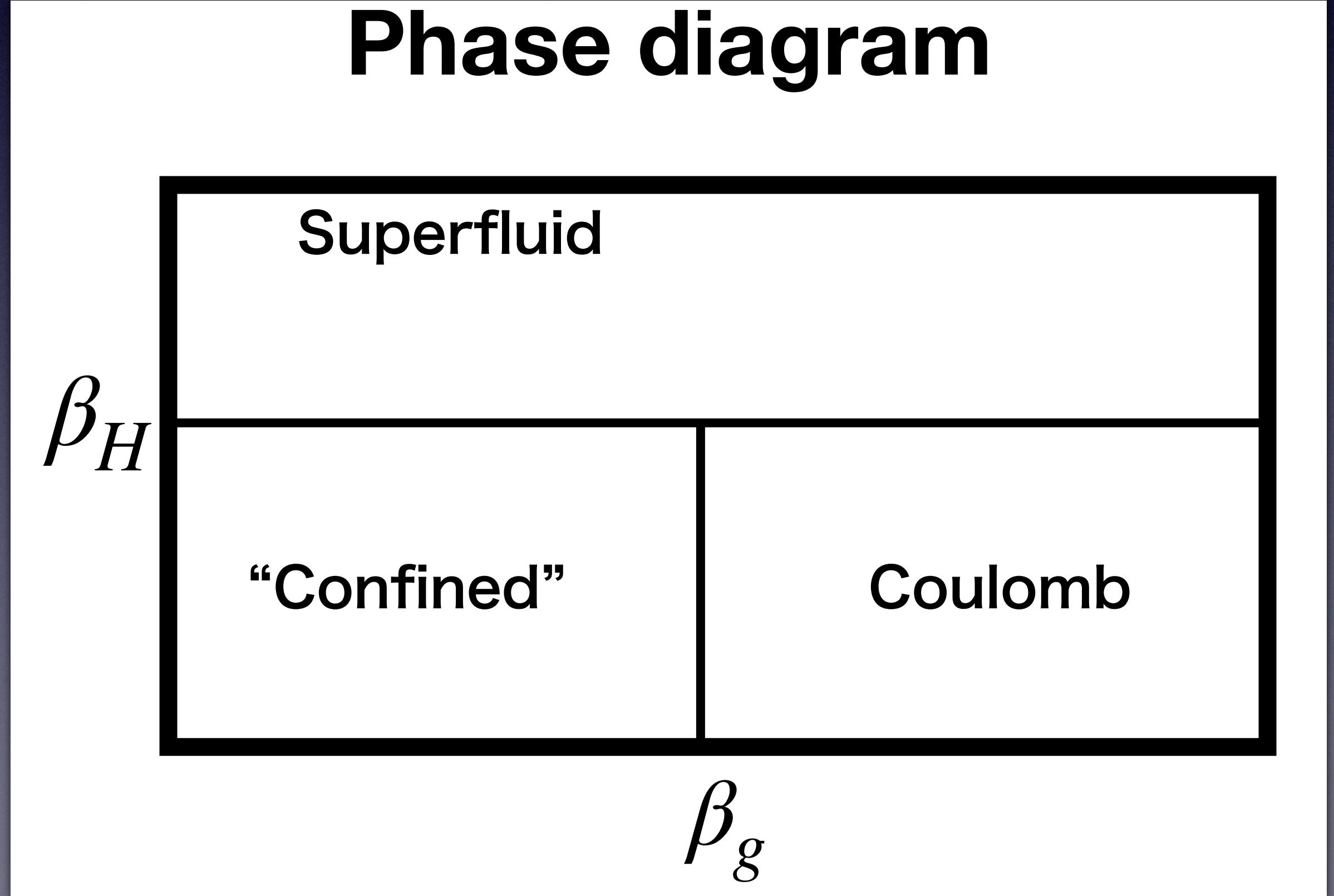
$$U(1)_{\text{gauge}} : \begin{aligned} \varphi_1 &\rightarrow \varphi_1 - \lambda \\ \varphi_2 &\rightarrow \varphi_2 - \lambda \end{aligned}$$

$$A_\mu \rightarrow A_\mu + \Delta_\mu \lambda$$

$$U(1)_{\text{global}} : \begin{aligned} \varphi_1 &\rightarrow \varphi_1 + \theta \\ \varphi_2 &\rightarrow \varphi_2 - \theta \end{aligned}$$

$$\mathbb{Z}_{2F} : \begin{aligned} \varphi_1 &\rightarrow \varphi_2 \\ \varphi_2 &\rightarrow \varphi_1 \end{aligned}$$

Phase diagram



$U(1)_{\text{gauge}} \times U(1)_{\text{global}}$ lattice model

cf. Motrunich, Senthil ('05)

$$S = -\beta_g \sum_{x, \mu < \nu} \cos(F_{\mu\nu}(x)) - \beta_H \sum_{x, \mu} \sum_{a=1,2} \cos(\Delta_\mu \varphi_a(x) + A_\mu(x))$$

Field strength **Scalar field (phase dof)** **Gauge field**
 $\Delta_\mu \varphi_a(x) = \varphi_a(x + \hat{\mu}) - \varphi_a(x)$

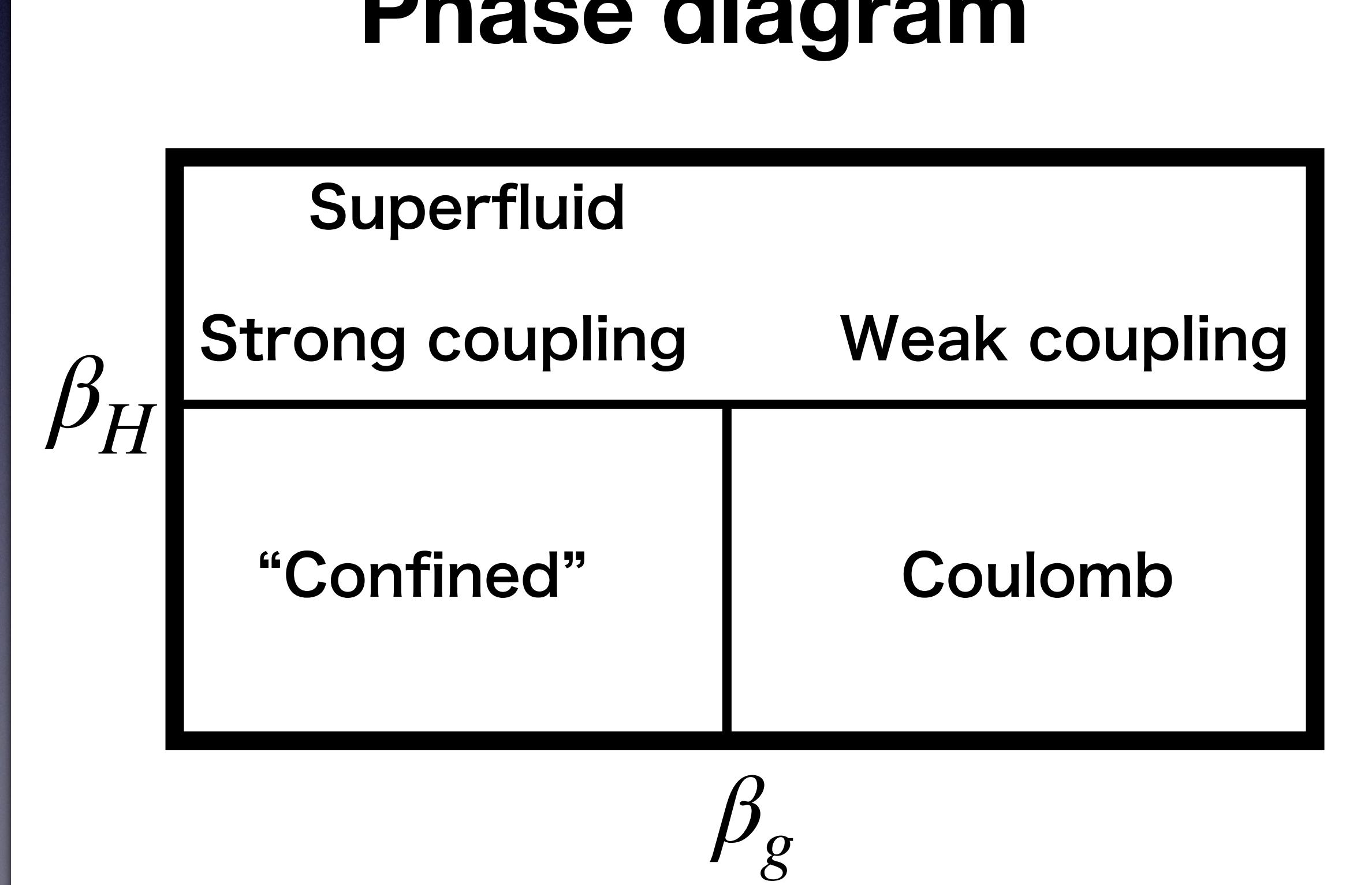
Symmetry

$$U(1)_{\text{gauge}} : \begin{aligned} \varphi_1 &\rightarrow \varphi_1 - \lambda \\ \varphi_2 &\rightarrow \varphi_2 - \lambda \\ A_\mu &\rightarrow A_\mu + \Delta_\mu \lambda \end{aligned}$$

$$U(1)_{\text{global}} : \begin{aligned} \varphi_1 &\rightarrow \varphi_1 + \theta \\ \varphi_2 &\rightarrow \varphi_2 - \theta \end{aligned}$$

$$\mathbb{Z}_{2F} : \begin{aligned} \varphi_1 &\rightarrow \varphi_2 \\ \varphi_2 &\rightarrow \varphi_1 \end{aligned}$$

Phase diagram



$U(1)_{\text{gauge}} \times U(1)_{\text{global}}$ lattice model

cf. Motrunich, Senthil ('05)

$$S = -\beta_g \sum_{x, \mu < \nu} \cos(F_{\mu\nu}(x)) - \beta_H \sum_{x, \mu} \sum_{a=1,2} \cos(\Delta_\mu \varphi_a(x) + A_\mu(x))$$

Field strength **Scalar field (phase dof)** **Gauge field**
 $\Delta_\mu \varphi_a(x) = \varphi_a(x + \hat{\mu}) - \varphi_a(x)$

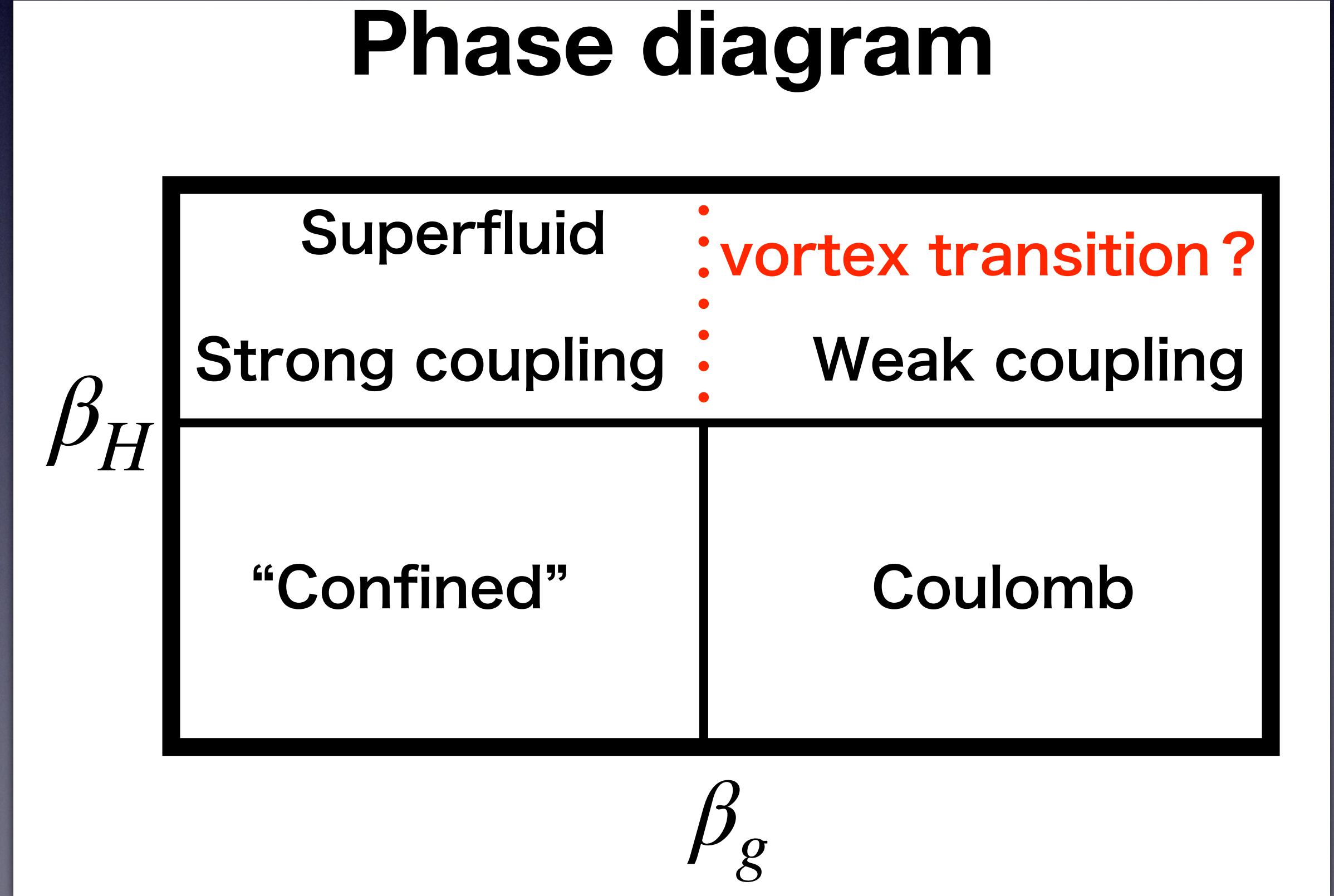
Symmetry

$$U(1)_{\text{gauge}} : \begin{aligned} \varphi_1 &\rightarrow \varphi_1 - \lambda \\ \varphi_2 &\rightarrow \varphi_2 - \lambda \\ A_\mu &\rightarrow A_\mu + \Delta_\mu \lambda \end{aligned}$$

$$U(1)_{\text{global}} : \begin{aligned} \varphi_1 &\rightarrow \varphi_1 + \theta \\ \varphi_2 &\rightarrow \varphi_2 - \theta \end{aligned}$$

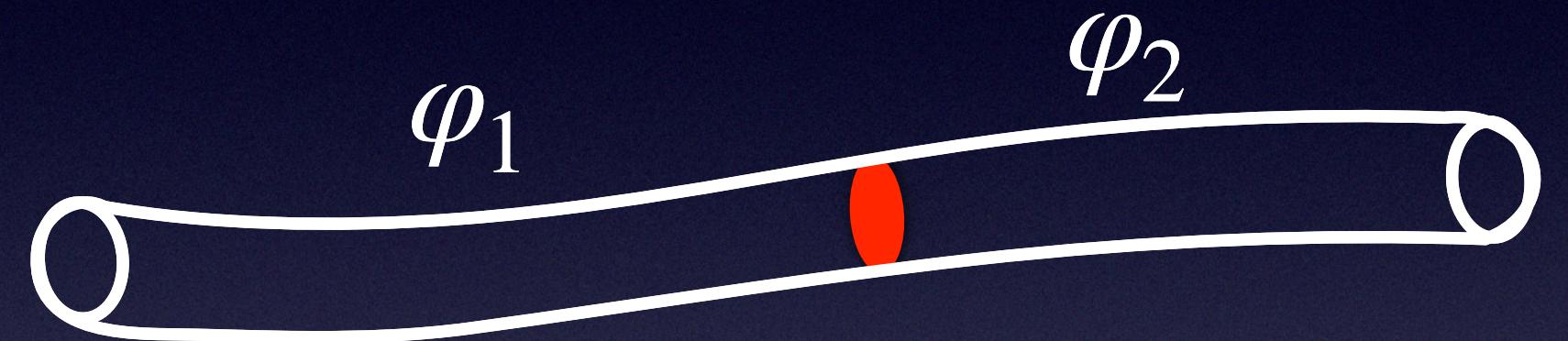
$$\mathbb{Z}_{2F} : \begin{aligned} \varphi_1 &\rightarrow \varphi_2 \\ \varphi_2 &\rightarrow \varphi_1 \end{aligned}$$

Phase diagram

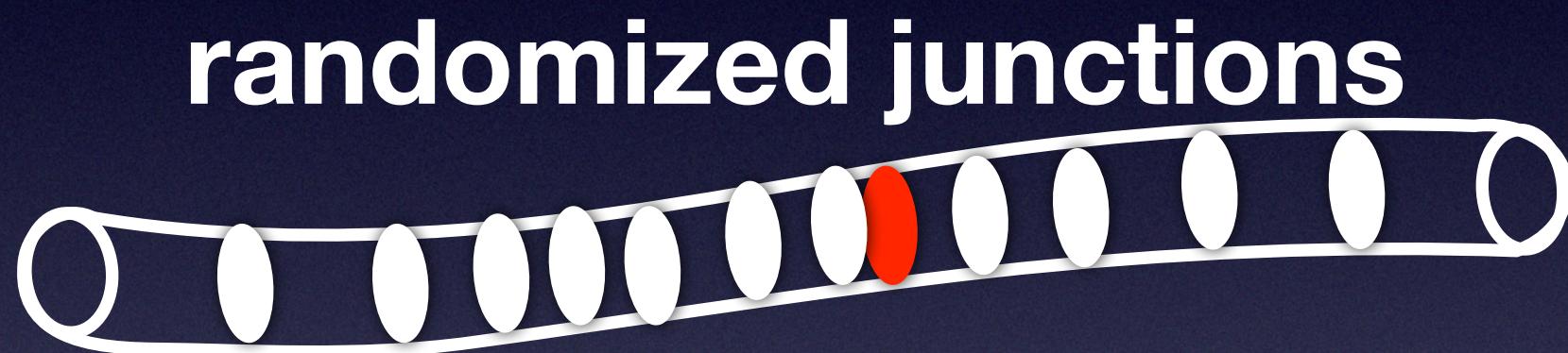


There are two ‘phases’ on a vortex

\mathbb{Z}_{2F} broken phase
Weak coupling

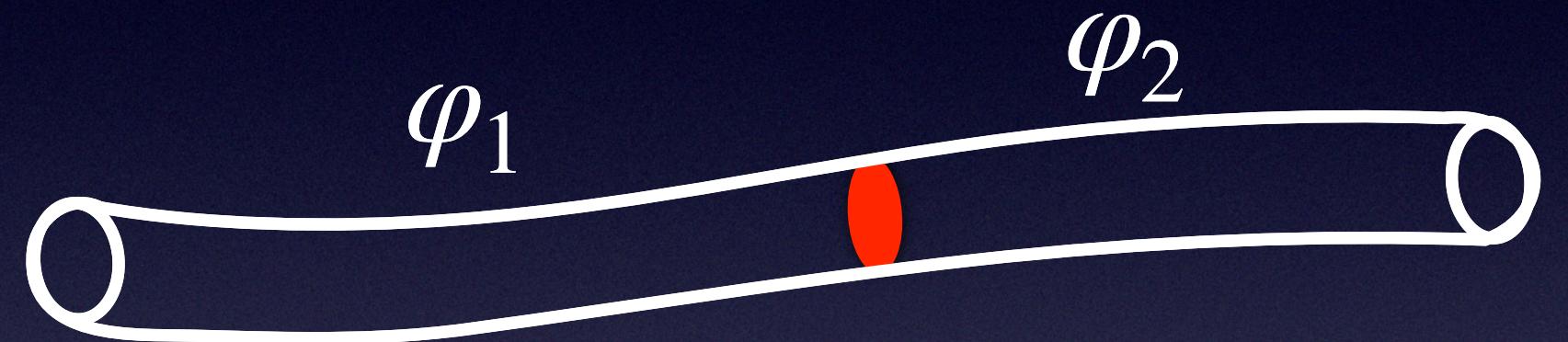


\mathbb{Z}_{2F} unbroken
Strong coupling

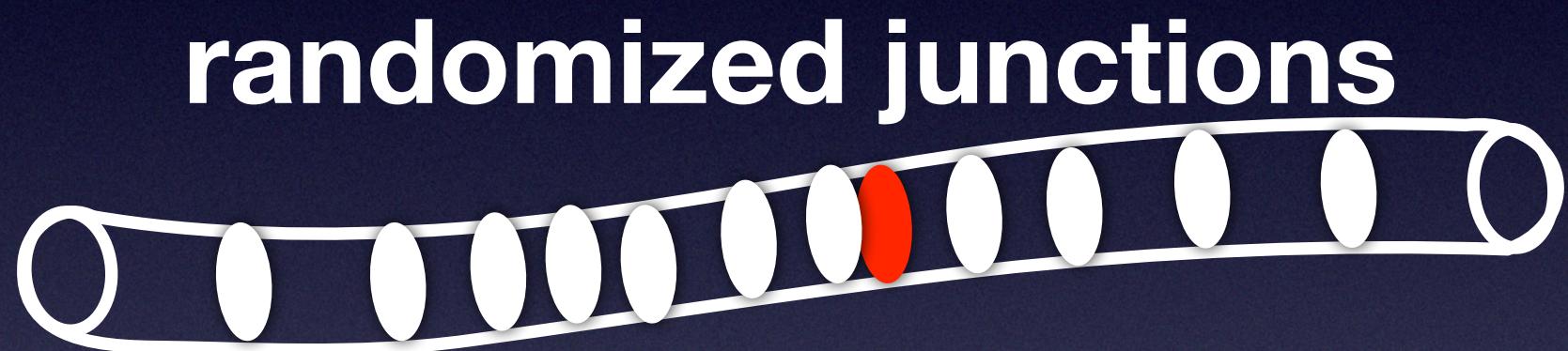


There are two ‘phases’ on a vortex

\mathbb{Z}_{2F} broken phase
Weak coupling



\mathbb{Z}_{2F} unbroken
Strong coupling

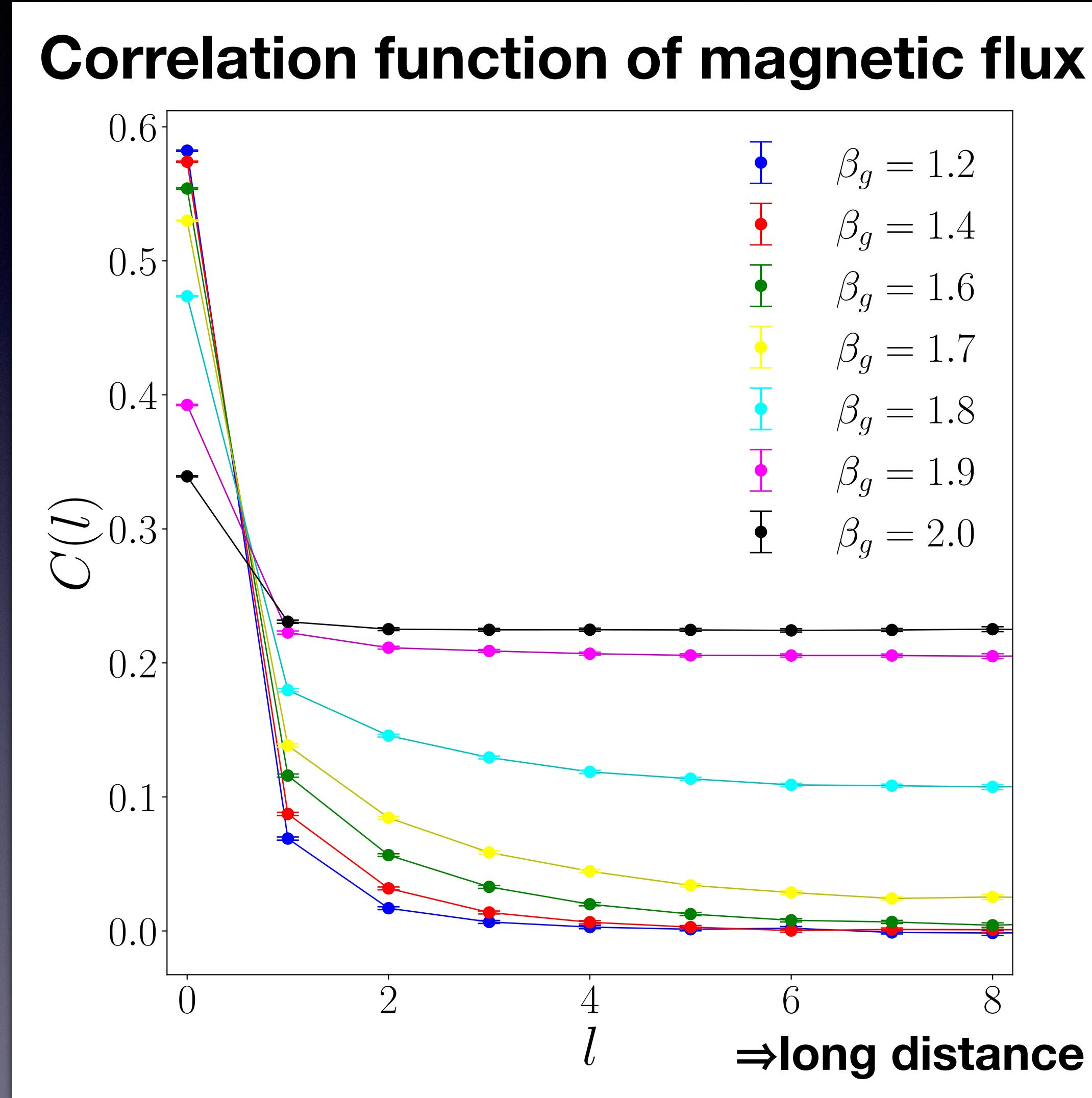
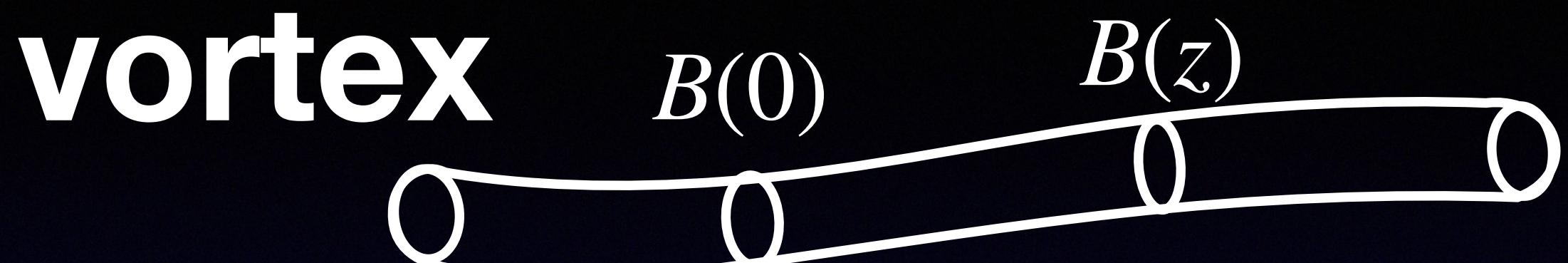


This is analogous to the Ising model

\mathbb{Z}_2 broken phase
↑↑↑↑↑↑↑|↓↓↓↓↓↓↓
domain wall

\mathbb{Z}_2 unbroken phase
random configuration
↑↓↑↑↓↑|↑↑↓↑↓↓↓↓

Numerical simulation

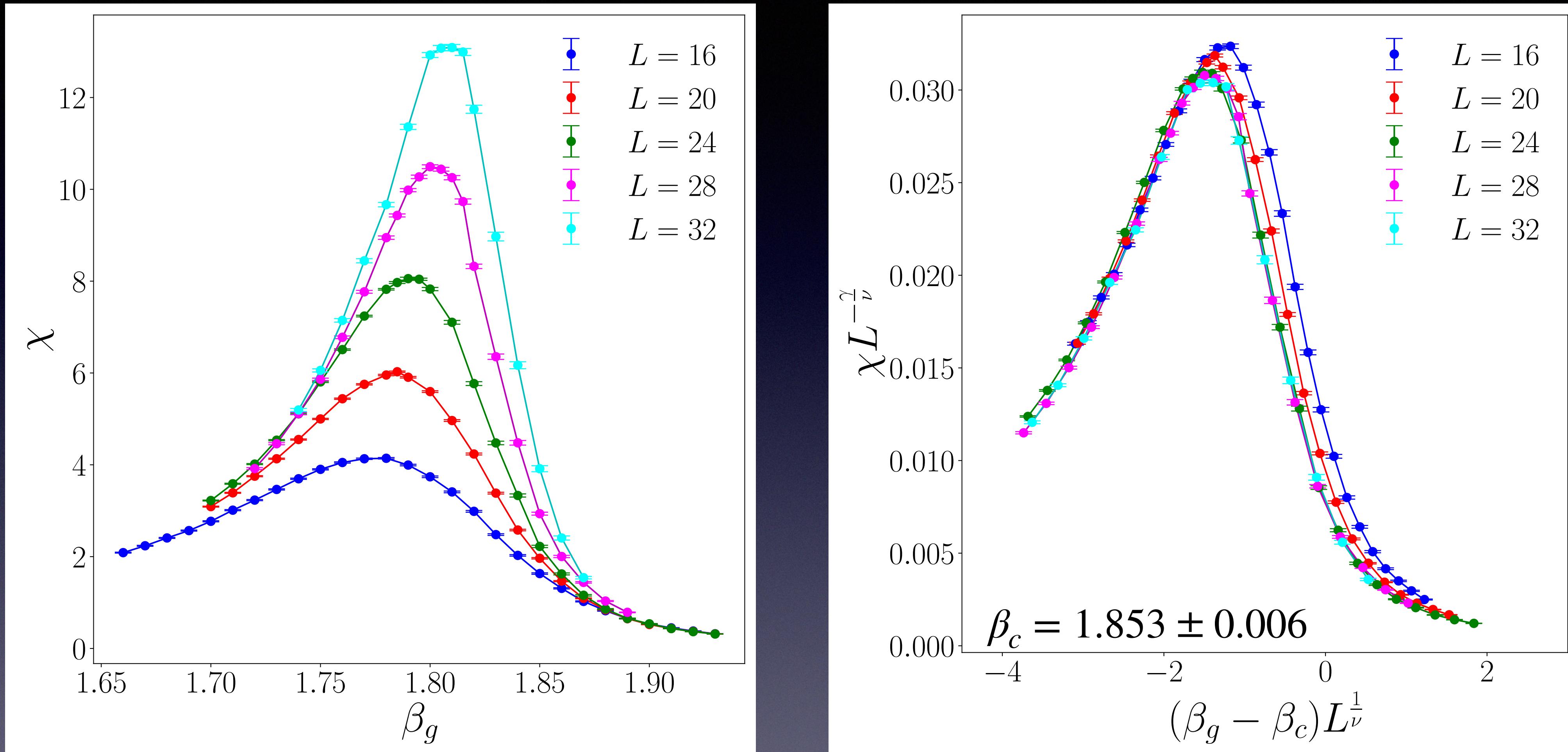


At weak coupling
long-range correlation

Spontaneous symmetry
breaking

Phase transition
on a vortex

Critical point



Ising universality class $\nu = 1, \gamma = 7/4$

predicted in Motrunich, Senthil ('05)

Implications from Vortex phase transition

Single vortex transition does not mean bulk phase transition

$$f_{\text{total}} = \frac{F_{\text{total}}}{V} \sim f_{\text{bulk}} + \frac{L}{V} f_{\text{vortex}}$$

No singular behavior at $V \rightarrow \infty$

Implications from Vortex phase transition

Single vortex transition does not mean bulk phase transition

$$f_{\text{total}} = \frac{F_{\text{total}}}{V} \sim f_{\text{bulk}} + \frac{L}{V} f_{\text{vortex}}$$

No singular behavior at $V \rightarrow \infty$

In the case of high rotation where

$$n_{\text{vortex}} = N_{\text{vortex}}/V_{\text{perp}} \neq 0$$

$$f_{\text{total}} = \frac{F_{\text{total}}}{V} \sim f_{\text{bulk}} + n_{\text{vortex}} f_{\text{vortex}}$$

can be singular
at the vortex phase transition point

Summary

Finite-temperature QCD:

We have proposed Quark Spaghetti with Glue Balls

Finite-density QCD:

We discussed crossover between Hadronic and quark matter

We examined QCD in (1+1)d using tensor network technique.

⇒ Hadronic to quark Luttinger liquid cross over

We found the phase transition on a vortex in $U(1) \times U(1)$ model

⇒ some phase transition might occur in highly rotating QCD matter

How about real QCD?