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Motivation

Positive Global Polarization

L. Adamczyk et al. (STAR), Nature 548, 62 (2017)
S. Acharya et al. (ALICE), Phys. Rev. C 101, 044611 (2020)
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Motivation

Longitudinal Local Polarization
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Longitudinal Local Polarization

Hydrodynamic with Thermal Vorticity & Shear effect
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Thermal vorticity and thermal shear effect can not describe this

experimental result with multiplicity and p, dependence
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Initial stages of heavy ion collisions
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Glasma QGP l. Hadron Gas t

Color Glass Condensate (CGC) :

gluons
.“ quarks

Increasing Energy

-> Longitudinal chromo-
electric and chromo-
magnetic fields between
the color source of two
colliding nuclei

Small-x gluon density
IS very high below the
saturation scale (Q,)

behaving as classical
color fields

Glasma non-equilibrium




Corona effect

The core region undergoes full thermalization, forming the
QGP, which then expands and hadronizes as the system cools
Glasma
core QGP Hadron gas
~| >
Hadronization
corona Hadron gas
>

The corona region has a lower density and

Had fon ization freeze-out earlier. It can hadronize directly
without passing through the QGP phase

Phys.Rev.Lett. 135 (2025) 13, 132301
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-> How the Glasma from corona can influence
TR s the initial local polarization of strange quarks




Polarization from QKT
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Assuming the perfect transition of the polarlzatlon
from quarks to hadrons, (s-equilibrium scenario)
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fy and fy; are color-singlet and color-octet quark
distributions

For weak coupling, f/(p, X) can be expressed
perturbatively in terms of the singlet distribution.
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Polarization from QKT
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Chromo-Lorentz force:
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LSP in Glasma

GBW dipole distribution:
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Phys. Rev. D 59, 014017 (1998),
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Phys. Rev. D 104, 014011 (2021)
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LSP in Glasma and QGP
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+Hydrodynamic contribution

(vorticity+shear)
F. Becattini et al., PRL. 127,272302 (2021)

Baochi Fu et al., Phys.Rev.Lett. 127 (2021)
14, 142301

In small system, N, > NQGP , SO wWe can expect the

Sinusoidal structure in azimuthal angle

Result
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Summary

* In small collision systems, initial non-equilibrium glasma
(corona) generates the observed longitudinal A polarization with

sin 2¢) pattern and an increasing tendency with p, which
iIndicate that the coherent gluons may play a significant role
for local polarization.

* To reproduce experimental data, it is essential to develop
sophisticated simulations of the core and corona from the
glasma to QGP.

*Currently, we are discussing about deriving initial conditions for hydrodynamics and evolve spin polarization from Glasma
to QGP and Hadron gas.

Y. Kanakubo, Y. Tachibana, and T. Hirano, Interplay between core and corona components in high-energy nuclear collisions,
Phys. Rev. C 105, 024905 (2022), arXiv:2108.07943 [nucl-th].
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Experiment

Positive A Global Polarization
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Longitudinal Polarization

s-quark equilibrium

( Collision H Glasma H QGP HHadron gasH Detector )
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Lambda hyperons keep the spin direction of the strange
quark from QGP because we assume the perfect
transition of the polarization from quarks to hadrons.




LSP with multiplicity and p; in p+ Pb collision

Hydrodynamic simulation (vorticity+shear)
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Color Glass Condensate (CGC)

Raju Venugopalan, Orsay Summer
School (2014)
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High energy
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29 gluon
colors

Low energy High energy
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Fit to all data

saturation
region

perturbative
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Bjorken x QCD

Color: gluons have color

Glass: gluons with small longitudinal

momentum fraction (x << 1) are created by
long-lived partons that are distributed randomly
on the transverse disk

Condensate: small-x gluon density is very high,
and saturated

Introduction
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