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Evidence for the existence of a second finite-temperature transition in quantum chromodynamics
(QCD) is obtained through the study of centre vortex geometry and its evolution with temperature.
The dynamical anisotropic ensembles of the Fastsum Collaboration are utilised to conduct a com-
prehensive analysis at eight temperatures beyond the established chiral transition. Visualisations of
the centre vortex structure in temporal and spatial slices of the lattice reveal that vortex percolation
persists through the chiral transition and ceases at a temperature that is approximately twice the
chiral transition temperature Tc. This implies that confinement is retained through temperatures
up to T → 2Tc, pointing toward a second transition corresponding to deconfinement. The loss of
percolation is quantified by the vortex cluster extent, providing a clear signal for the deconfinement
transition. Additional vortex statistics, including temporal correlations, vortex and branching point
densities, the number of secondary clusters and vortex chain lengths between branching points, are
scrutinised as a function of temperature. All ten measures investigated herein show the character-
istics of two transitions in QCD, encompassing the chiral transition at Tc and the deconfinement
transition at T → 2Tc. Performing an inflection point analysis on the vortex and branching point
densities produces an estimate of Tc that agrees with the known Fastsum value. By the same
procedure, a precise estimate of the deconfinement point is extracted as Td = 321(6)MeV.

I. INTRODUCTION

QCD has a rich phase structure that has been the sub-
ject of many theoretical studies over the years. Along the
temperature (T ) axis, QCD is known to be confining at
low-to-moderate temperatures and is presumed to be de-
confining in the large T limit due to asymptotic freedom
arguments. The nature and position of the transition be-
tween these two limits has been studied extensively using
the lattice approach [1]. The earliest [2] of these simula-
tions used the quenched approximation, and results have
confirmed a first-order phase transition at a temperature
Tquenched → 290MeV [3] where the theory becomes de-
confined.

It had been assumed that this transition would persist
as the quenched approximation was removed, i.e. as dy-
namical quarks were “turned on”. This was understood
schematically via the “Columbia plot” [4] which shows
the nature of the transition in the ml-ms plane, where
ml represents the two light quark flavour masses and ms

the strange quark mass. On this plot, the quenched the-
ory is at the ml = ms = ↑ limit. Studies found that the
first-order transition does not extend very far into finite
values of ml,s, and at the physical point the transition
is a “pseudocritical” or crossover transition. The value
of this temperature has been accurately determined at
the physical quark masses as T phys

c → 158MeV [5–7]. It
is generally accepted that Tc corresponds to the restora-
tion of chiral symmetry.

The conventional assumption is that this crossover
transition at Tc is simply the continuation of the tran-
sition found earlier in the quenched theory. However,

this would imply that quark deconfinement occurs at Tc,
whereas there is some evidence that the string tension
remains nonzero [8, 9] and hadrons are still bound for
T ↭ Tc [10–12]. This calls into question what the decon-
finement temperature Td is for physical quark masses.

To answer this question, we study centre vortices in
QCD for a range of temperatures from 47 to 760MeV.
This is the first such study in full QCD at finite tempera-
ture. Centre vortices are obtained by a two-step process
that first fixes the gauge to maximal centre gauge. The
link degrees of freedom are then factorised into centre
elements, which give rise to the centre vortices, and a
remainder with perturbative properties. By analysing
the structure of these vortices using ten measurements of
seven di!erent properties, we uncover unambiguous evi-
dence of two transition temperatures. We confirm that
the first of these occurs at Tc, with the second transition
corresponding to deconfinement occurring at Td → 1.9Tc.

This work uses the 2+1 dynamical flavour anisotropic
ensembles from the Fastsum Collaboration which have
light quarks heavier than nature corresponding to mω =
239(1)MeV, and consequently Tc = 167(3)MeV [13].

This paper is structured as follows. We commence with
a brief review of other approaches in lattice QCD that al-
lude to a second transition in Sec. II. This is followed by
a summary of our simulation details in Sec. III and an
overview of centre vortices in Sec. IV. Section V covers
how to include the e!ects of anisotropy in the gauge-
fixing procedure. Thereafter, visualisations of centre vor-
tex structures are shown in Sec. VI. Our main analysis
is presented in Secs. VII and VIII. Temporal correlation
functions, vortex cluster extents, vortex densities and the
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FIG. 10. The normalised cluster extent for spatial slices de-
fined in Eq. (20). It attains a value of →1 for all T/Tc ↭ 2, in-
dicating the vortex structure remains percolating until twice
the chiral transition temperature. It thereafter rapidly de-
creases as percolation is lost.

from the visualisations that no discernible change to the
vortex sheet’s percolating nature occurs at Tc itself.

This is an extremely interesting finding. Given vor-
tex percolation implies a confining static quark potential,
Fig. 10 entails that the vortex-only fields retain confine-
ment through temperatures as high as T → 1.8Tc. Such
behaviour opens the possibility for a “transitional” pe-
riod between confinement and deconfinement, with two
transition temperatures. The established Tc describes
the pseudocritical chiral transition, and a second transi-
tion temperature Td would describe deconfinement.

As recounted in Sec. II, subtle hints for the existence
of three distinct phases in full QCD have been previously
noted [14–22, 25–33, 36]. These place the second transi-
tion temperature within the ballpark of Td/Tc → 2. How-
ever, its precise value is not well known, with proposals
ranging from Td → 200–500MeV.

The middle of this range is in agreement with the ge-
ometrical changes to the centre vortex sheet that tran-
spire at high temperatures. As the subtle preference for
the vortex sheet to align with the temporal dimension
emerges at roughly the same temperature percolation
ceases, this indicates both of these properties could be
used to characterise the second transition temperature.

Still, in the context of this work one must consider the
impact of a finite volume on the cluster extent. One could
imagine that for a su!ciently small physical volume, the
vortex sheet would artificially appear percolating with
the finite cluster size unable to be resolved. Hence, we
must account for the possibility that increasing the vol-
ume could shift the perceived loss of percolation to lower
temperatures. We investigate this by generating three
new ensembles with a spatial volume of 483 at the tem-

TABLE III. The normalised (dnorm) and physical (dcluster)
cluster extents compared between spatial volumes of 323 and
483, for each considered temperature. Of particular note is
T/Tc ↑ 2.28, at which percolation has definitively been lost.
Here, in moving to the larger volume, the normalised extent
decreases, yet its physical counterpart increases.

T/Tc
dnorm dcluster (fm)

323 483 323 483

1.52 1.0000(0) 1.0000(0) 2.564(0) 3.821(0)
1.82 0.9925(7) 0.9912(6) 2.536(2) 3.782(2)
2.28 0.5939(44) 0.4879(23) 1.513(11) 1.859(9)

peratures T/Tc ↑ 1.52, 1.82 and 2.28. These surround
the loss of percolation currently observed in Fig. 10.
Focusing initially on T/Tc ↑ 2.28 in Fig. 10, we find the

normalised cluster extent has been reduced by increasing
the volume. This is the expected behaviour if percolation
has been lost, for the finite cluster size occupies a smaller
fraction of the total volume. It follows that the ratio
in Eq. (20) decreases. Conversely, if the vortex sheet is
percolating the cluster size should grow to fill the larger
volume. This is our finding at T/Tc ↑ 1.52, with no
di”erence between the normalised cluster extents on the
two volumes.
It is curious that the value of the normalised cluster

extent at T/Tc ↑ 1.82, which is marginally less than
1, is also unchanged. Certainly, this point cannot be
clearly above the percolation transition for otherwise the
normalised cluster extent would decrease, as previously
justified. Furthermore, it cannot be significantly below
the transition, since then we imagine it would be exactly
1 in accordance with all lower temperatures, or at least
tend to 1 in the infinite volume limit. It seems probable
then that this temperature of T ↑ 304MeV lies in very
close vicinity to the transition point.
We also compare the physical (i.e. unnormalised) clus-

ter extent dcluster. These are provided in Table III,
along with the normalised extents for reference. We
find that although the normalised extent diminishes at
T/Tc ↑ 2.28, the physical extent grows. Increasing
the lattice dimensions provides an opportunity to reveal
larger clusters than contained within the smaller volume,
thus increasing the average. Crucially, the extent has not
simply scaled up with the volume.

C. Vortex density

We now move to investigate a more intrinsic aspect of
centre vortices, the vortex density. This is defined sim-
ply as the number of plaquette piercings per unit area.
In this section, we consider decomposing the vortex den-
sity in two ways. First, to connect to the visualisations
we calculate a density in temporal and spatial slices of
the lattice. Denoting by Nslice the number of sites in a
given three-dimensional slice, the areas spanned by the
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FIG. 4. Schematic figure of the saturation curve of nuclear
matter with a minimum at ρ0 = 0.17 fm−3 and the binding
energy given by the volume term aV in the Bethe-Weizsäcker
mass formula. An intermediate density ρ < ρ0 can be realized
as a spatial average over bubbles with the core with ρ ∼ ρ0
in the empty vacuum. Though the surface energy effect is
not considered in the above schematic figure where a simple
nucleon-gas picture is depicted, the actual bubble shapes in a
nuclear liquid depend on the surface term aS , etc.

imum as schematically shown in the upper panel of Fig. 4
it would be energetically preferable to form bubbles with
the core with ρ ∼ ρ0 rather than a homogeneous dis-
tribution of dilute ρ. If we consider the surface energy,
the density gradient (Weizsäcker) term, and the charge
neutrality, bubbles should take optimal shapes such as
the nuclear pasta (spaghetti, lasagna, etc) [26]. Such a
state of matter is nothing but a mixed phase associated
with the first-order phase transition, and importantly,
this argument already implies the existence of an inho-
mogeneous ground state near the liquid-gas transition.
In other words, if a mixed phase is characterized by a
typical wave number q, how can we strictly distinguish
such a phase from an inhomogeneous ground state? One
may think that in the case of quark matter the inhomo-
geneity is turned on not in the density only but in the
mass M unlike nuclear matter. We would stress, how-
ever, that M also controls the density and the physics is
just the same if seen in terms of the saturation curve as
in Fig. 3.

It is obvious from Fig. 3 that the vector interaction
as in Eq. (3) disfavors the first-order phase transition.
The minimum in ε/ρB is pushed up by the quadratic
term ∝ ρ2B and eventually the first-order phase transition
disappears when the minimum is lost, as demonstrated
by three solid curves in Fig. 3. In the chiral limit b =
0 the branch of M = 0 is separate, so that the first-
order phase transition survives regardless of the vector
interaction, which may change with different parameters
as we already pointed out. With finite b, however, two
branches with small and large M are smoothly connected
and the minimum diminishes for large b and gv in accord
to Fig. 2.

III. CHIRAL SPIRALS

One may find the usefulness of the saturation curve
for analyses with a wider range of model space. From
now on we shall consider the possibility to form inhomo-
geneous chiral condensates. We here utilize the simplest
Ansatz to introduce it, namely, the one-dimensional chi-
ral spiral; ⟨ψ̄ψ⟩ = χ cos(2qz) and ⟨ψ̄γ5τ3ψ⟩ = χ sin(2qz)
(see Ref. [27] for reviews). This ground state of the chi-
ral spiral can be equivalently described by a chiral ro-
tation ψ = eiγ5τ3qzψ′ with a homogeneous condensate
χ = ⟨ψ̄′ψ′⟩ in the chiral limit. Then, the quasi-particle
dispersion relation in the ψ′-basis is expressed as [27, 28]

ω̃p =
√

p2⊥ + (
√

p2z +M2 ± q)2 , (4)

where ± in front of q corresponds to the flavor and the
chirality that also depends on the sign of pz.

This type of inhomogeneity pattern has been consid-
ered repeatedly in various contexts such as the pion con-
densation in nuclear matter [28], large-Nc QCD [29], the
Overhauser instability [30], the quarkyonic spiral with
confining force [31], and so on. The dispersion rela-
tion (4) should be plugged into Ωmatter/V in Eq. (1).
Unlike the normal dispersion relation, we see that a large
part of the mass effect can be absorbed by q ∼ M , with
which ρ is no longer suppressed even at large M . This is
the reason why a first-order phase transition can occur
from the homogeneous hadronic phase to the chiral spiral
where M is substantially large. Also, we should point out
that the Ginzburg-Landau analysis in Ref. [32] to con-
clude that the chiral spiral is less favored might be inad-
equate; the largest energy gain in Ωmatter/V comes from
the region with large M where the Ginzburg-Landau ex-
pansion should not work.

The physical mechanism to lower the total energy is
the Overhauser effect as argued in Ref. [30]. In the ordi-
nary Overhauser instability the momenta of the spin-up
component are shifted up by pF and those of the spin-
down component are shifted down by pF, so that a gap
opens where two energy dispersion relations cross. In
(1+1)-dimensional NJL model the situation is completely
analogous [27]; a choice of q = 2µq eliminates the µq de-
pendence and the energy gain originates from the fact
that ρ is completely insensitive to M and thus ρ is never
suppressed by M in contrast to the homogeneous solu-
tion. In (3+1)-dimensional case, on the other hand, not
only pz but also p⊥ share the Fermi momentum, and so
the optimal q is not 2µq but rather q ∼ M which will be
confirmed by numerical calculations later.

Thus, Ωmatter always tends to favor the chiral spiral
with q ∼ M , while it is Ω0 that would hinder the growth
of q. In the leading order the vacuum part has an expan-
sion in terms of q as

Ω0[M, q]/V = Ω0[M, q = 0]/V + (αM2 + βb)q2 , (5)

where the first term with α > 0 is a “kinetic” term
against spatial modulation. This term should be van-

Self-bound fermionic systems 
     have a preferred density. 
Diluteness is realized as a 
     “mixed phase” of nuclei.

This is how this world 
is like what we know.
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FIG. 2. The location of the potential minima at the first-
order transition point when gv = 0 (solid curve) and gv =
0.12/M2

0 ≃ 10−6MeV−2 (dashed curve) are chosen, respec-
tively, with a = 0.05 and M0 = 340 MeV.

formalism based on the quasi-particle approximation is
more appropriate for the investigations of cold and dense
quark matter.
Furthermore, we must add a term ∝ ρ2 in Ωmatter,

which stems from the vector-channel interaction (ψ̄γµψ)2

that is chiral symmetric [22], i.e.

Ωvec[M ]/V = gvρ
2 , (3)

which can be evaluated with ρ numerically which is ob-

tained as ρ = NcNf
3π2

(
µ2 −M2

)3/2
θ(µ−M) at T = 0. We

should note that in the mean-field NJL model with the
vector interaction, usually, the vector interaction would
shift the chemical potential, which pushes the energy up
by ∼ 2gvρ2, and the condensation energy is negative,
−gvρ2, leading to ∼ 2gvρ2 − gvρ2 = gvρ2 in total. Here
we simply postulate this in a form of Eq. (3).
For a deeper insight, Fig. 2 is quite instructive. This

figure shows the location of two degenerate minima in
the potential (i.e. the dynamical mass) when µq takes a
value at the first-order phase transition. For example, in
the chiral limit, the dynamical quark mass jumps from
M ≃ M0 to M = 0. The jump is naturally reduced at
larger b (larger quark mass) and eventually only crossover
remains beyond the bend of the curves in Fig. 2. One can
notice that the curve substantially shrinks with positive
gv which disfavors the first-order phase transition.
It is interesting to see that the vector interaction has

only a minor impact for b = 0. This is because the min-
imum at M = 0 is intact as long as chiral symmetry is
exact at b = 0 and ρ and thus the vector interaction is
still very small at M = M0. This observation is, however,
not completely free from the model choice. If the phase
transition is located at µq > M0 with some other choice
of parameters, the potential minimum around M = M0

is also influenced substantially by the density e”ect and
thus the first-order phase transition could be diminished
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FIG. 3. Energy per particle as a function of the density. The
solid curves represent the homogeneous results for (1) b =
gv = 0, (2) b = 0.08M3

0 and gv = 0, (3) b = 0.08M3
0 and gv =

0.12/M2
0 from the bottom to the top. The dashed curves with

the label “CS” represent the chiral-spiral results for respective
parameters. The horizontal axis is given in the unit of the
normal nuclear density ρ0 = 0.17 fm−3.

by the vector interaction. This part of uncertainty is not
relevant, for we are interested in the physical world with
finite quark mass after all.

Guided by Fig. 2 we shall specifically look at the fol-
lowing three cases: (1) b = gv = 0 (first-order), (2)
b = 0.08M3

0 and gv = 0 (weak first-order), and (3)
b = 0.08M3

0 and gv = 0.12/M2
0 (crossover).

For later convenience we shall plot the energy per parti-
cle ε/ρB at T = 0 in Fig. 3, where ε = Ω/V+µBρB−Ω0/V
is the internal energy density measured from the hadronic
vacuum with M ∼ M0 (before a finite density appears),
and ρB = ρ/Nc is the baryon number density. If the curve
has a minimum as a function of ρB, i.e. d(ε/ρB)/dρB =
µB/ρB − ε/ρ2B = 0, the pressure di”erence becomes zero,
which indicates a first-order phase transition of the gen-
eral liquid-gas type (see Ref. [23] for a review and also
Ref. [24] for experimental studies). Therefore, whenever
ε/ρB has a minimum as a function of ρB, the T = 0 sys-
tem must have a first-order phase transition in the same
way as the (symmetric) nuclear matter phase transition
at µB = MN − B with MN ≃ 939 MeV being the nu-
cleon mass and B ≃ 16 MeV the nuclear binding energy.
At the second-order transition, the energy curve should
be flat at the point of inflection. This kind of analysis
on quark matter is well known in the context of quark
droplets [25] but less applied in the phase diagram re-
search. What is necessary for the existence of the critical
point (first-order phase transition) is a convex structure
of the curve (saturation property), which is a general
statement that does not rely on any model nor Ansatz.

Because this point of the liquid-gas transition is so im-
portant, let us recall here how an intermediate density
between ρ = 0 and the saturation density ρ = ρ0 can be
realized in this case. If the energy per particle has a min-

Fukushima (2012)Large gv?

1D chiral spirals (CS) decrease 
the energy per particle, inducing 
another 1st-order PT.
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FIG. 2. The location of the potential minima at the first-
order transition point when gv = 0 (solid curve) and gv =
0.12/M2

0 ≃ 10−6MeV−2 (dashed curve) are chosen, respec-
tively, with a = 0.05 and M0 = 340 MeV.

formalism based on the quasi-particle approximation is
more appropriate for the investigations of cold and dense
quark matter.
Furthermore, we must add a term ∝ ρ2 in Ωmatter,

which stems from the vector-channel interaction (ψ̄γµψ)2

that is chiral symmetric [22], i.e.

Ωvec[M ]/V = gvρ
2 , (3)

which can be evaluated with ρ numerically which is ob-

tained as ρ = NcNf
3π2

(
µ2 −M2

)3/2
θ(µ−M) at T = 0. We

should note that in the mean-field NJL model with the
vector interaction, usually, the vector interaction would
shift the chemical potential, which pushes the energy up
by ∼ 2gvρ2, and the condensation energy is negative,
−gvρ2, leading to ∼ 2gvρ2 − gvρ2 = gvρ2 in total. Here
we simply postulate this in a form of Eq. (3).
For a deeper insight, Fig. 2 is quite instructive. This

figure shows the location of two degenerate minima in
the potential (i.e. the dynamical mass) when µq takes a
value at the first-order phase transition. For example, in
the chiral limit, the dynamical quark mass jumps from
M ≃ M0 to M = 0. The jump is naturally reduced at
larger b (larger quark mass) and eventually only crossover
remains beyond the bend of the curves in Fig. 2. One can
notice that the curve substantially shrinks with positive
gv which disfavors the first-order phase transition.
It is interesting to see that the vector interaction has

only a minor impact for b = 0. This is because the min-
imum at M = 0 is intact as long as chiral symmetry is
exact at b = 0 and ρ and thus the vector interaction is
still very small at M = M0. This observation is, however,
not completely free from the model choice. If the phase
transition is located at µq > M0 with some other choice
of parameters, the potential minimum around M = M0

is also influenced substantially by the density e”ect and
thus the first-order phase transition could be diminished
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by the vector interaction. This part of uncertainty is not
relevant, for we are interested in the physical world with
finite quark mass after all.

Guided by Fig. 2 we shall specifically look at the fol-
lowing three cases: (1) b = gv = 0 (first-order), (2)
b = 0.08M3

0 and gv = 0 (weak first-order), and (3)
b = 0.08M3

0 and gv = 0.12/M2
0 (crossover).

For later convenience we shall plot the energy per parti-
cle ε/ρB at T = 0 in Fig. 3, where ε = Ω/V+µBρB−Ω0/V
is the internal energy density measured from the hadronic
vacuum with M ∼ M0 (before a finite density appears),
and ρB = ρ/Nc is the baryon number density. If the curve
has a minimum as a function of ρB, i.e. d(ε/ρB)/dρB =
µB/ρB − ε/ρ2B = 0, the pressure di”erence becomes zero,
which indicates a first-order phase transition of the gen-
eral liquid-gas type (see Ref. [23] for a review and also
Ref. [24] for experimental studies). Therefore, whenever
ε/ρB has a minimum as a function of ρB, the T = 0 sys-
tem must have a first-order phase transition in the same
way as the (symmetric) nuclear matter phase transition
at µB = MN − B with MN ≃ 939 MeV being the nu-
cleon mass and B ≃ 16 MeV the nuclear binding energy.
At the second-order transition, the energy curve should
be flat at the point of inflection. This kind of analysis
on quark matter is well known in the context of quark
droplets [25] but less applied in the phase diagram re-
search. What is necessary for the existence of the critical
point (first-order phase transition) is a convex structure
of the curve (saturation property), which is a general
statement that does not rely on any model nor Ansatz.

Because this point of the liquid-gas transition is so im-
portant, let us recall here how an intermediate density
between ρ = 0 and the saturation density ρ = ρ0 can be
realized in this case. If the energy per particle has a min-

Fukushima (2012)Large gv?

1D chiral spirals (CS) decrease 
the energy per particle, inducing 
another 1st-order PT.
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Figure 11: Comparison of the energy per baryon of 56Fe and nuclear matter with the en-
ergy per baryon of 2-flavor (u, d quarks) and 3-flavor (u, d, s quarks) strange quark matter.
Theoretically the energy per baryon of strange quark matter may be below 930 MeV, which
would render such matter more stable than nuclear matter.

gas for B1/4 < 164.4 MeV, and metastable relative to a gas of Λ particles for B1/4 < 195.2 MeV. These
numbers are upper limits. A finite strange-quark mass as well as a non-zero strong coupling constant
decrease the limits on B1/4 [70, 10]. The presence of ordinary nuclei in nature is not in contradiction to
the possible absolute stability of strange matter. The reason being that conversion of an atomic nucleus
of baryon number A into a lump of strange quark matter requires the simultaneous transformation of
roughly A up and down quarks into strange quarks. The probability for this to happen involves a weak
transition → G2A

F which makes nuclei with A >∼ 6 stable for more than 1060 years. The conversion of
very light nuclei into strange matter is determined by finite-size and shell effects which dominate over
the volume energy of strange matter at small A values. An example for the mass formula of strange
matter is [10, 44, 45]

E

A
#
(

829 MeV + 351 MeV A−2/3
)

B1/4
145 , (59)

in which case strange matter becomes absolutely stable for A > 6. If quark matter is in the CFL phase,
metastability or even absolute stability of strange quark matter may become more likely than hitherto
thought since the binding energy from pairing of the quarks should reduce the energy of the system by a
contribution proportional to ∆2 [43]. Figure 12 shows the energy per baryon for ordinary quark matter
and CFL quark matter. For high A values a bulk value is approached, but for low A the finite-size
contributions (surface tension and curvature) increase the energy per baryon significantly. The pairing
contribution is on the order of 100 MeV per baryon for ∆ ↔ 100 MeV for fixed values of the strange
quark mass and bag constant. Another crucial difference between non-CFL and CFL quark matter
is the equality of all quark Fermi momenta in CFL quark matter which leads to charge neutrality in
bulk without any need for electrons [31]. This has most important consequences for the charge-to-mass
ratios of strangelets. For non-CFL strangelets one has

Z ↔ 0.1
(

ms

150 MeV

)2

A for A % 103 , and Z ↔ 8
(

ms

150 MeV

)2

A1/3 for A & 103 , (60)

while, in contrast to this, CFL strangelets have a charge-to-mass ratio of [43]

Z ↔ 0.3
(

ms

150 MeV

)

A2/3 . (61)

19

Schematic illustration by Weber (2004)
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Neutron Stars Quark StarsHybrid Stars

Crust ~ 1km 
Atmosphere ~ ions + electrons

Thin crust 
No atmosphere

R ~ 10-12km / M ~ 1.4-2.1M⊙ R ~ < 12km / M ~ < 2M⊙

Softening in NS mergers Signature???



December 19, 2025 @ Academia Sinica, Taipei

Differences

11

Mass-Radius Relation of QS Andersen-Strickland (2002)

FIG. 2. Leading-order HDLpt result for the pressure of a
degenerate quark-gluon plasma as a function of chemical po-
tential µ. The NLO weak-coupling expansion result is shown
as a grey band. Band corresponds to variation of the renor-
malization scale µ ≤ Λ ≤ 4µ.

Note that the requirement that Λ <
→ 1.6µ may have

some physical basis since the scale of the coupling con-
stant should be related to the average momentum ex-
change of two quarks on the Fermi surface. At zero tem-
perature the largest momentum exchange possible is 2µ
and the smallest momentum exchange is of the order of
the superconducting gap ω. Therefore, the scale for the
coupling constant should be in the range ω <

→ Λ < 2µ so
that the choice of Λ → 1.6µ is not unreasonable.

V. MASS-RADIUS RELATIONSHIP

The mass-radius relationship for a non-rotating spher-
ically symmetric star is obtained by solving the Tolman-
Oppenheimer-Volkov (TOV) equations [24] for the mass
M and the pressure (P = −F) as a function of the radial
distance from the center:

dM

dr
= 4πr2Ẽ(r) (27)

dP

dr
= −

G

r2c2

[

Ẽ(r) + P̃(r)
] [

M(r) + 4πr3P̃(r)
]

×

[

1−
2GM(r)

c2r

]−1

, (28)

where G is Newton’s constant, c is the speed of light,
Ẽ = E/c2, and P̃ = P/c2.
In this work we will ignore the presence of the nuclear

phase of matter which is expected to undergo a first-order
phase transition to the quark-matter phase. A more de-
tailed study would include the effects of the nuclear phase

on the mass-radius relationship; however, our goal here
is only to show that both standard perturbation theory
and HDLpt have large theoretical uncertainties related to
the renormalization scale dependence. The most plausi-
ble scenario is that there will not be “naked” quark stars,
but instead there will be neutron stars with a very com-
pact quark-matter core and a thick outer layer of normal
nuclear matter.

FIG. 3. Mass-radius relation for a quark star with
Λ/µ = 1.6 and Λ/µ = 1. The weak-coupling results for the
same choice of renormalization scales are shown as dashed
lines. M! = 1.989 × 1030 kg is the mass of our sun.

In Fig. 3, we show the mass-radius relationship ob-
tained by solving the TOV equations numerically for
Λ/µ = 1.6 and Λ/µ = 1. For comparison, we also
show the QCD weak-coupling expansion results for the
same choice of renormalization scale as dashed lines. As
can be seen from this figure there is a large variation
in the mass-radius relationship as the renormalization
scale is varied over even this rather limited range of
µ ≤ Λ ≤ 1.6µ. Using this range, we find that using
the HDLpt equation of state (26) that Rmax → 3.4− 10.9
km and Mmax → 0.6 − 2.12M". With this same range
we find that using the perturbative equation of state (1)
that Rmax → 2.4− 5.6 km and Mmax → 0.42− 0.95M".

VI. DISCUSSION

In this paper, we have calculated the free energy of cold
dense quark matter to leading order in HDL perturbation
theory (HDLpt). The predictions of HDLpt depend on
a renormalization scale Λ that arises both from running
of the coupling constant and from the renormalization of
the additional ultraviolet divergences that are introduced
by the HDLpt reorganization of perturbation theory. It is

5

Resummed PT in QCD

This is a bit misleading 
since the EoS is very 
sensitive for such too 
small scales .Λ

Quark stars may not be 
light nor small…
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limits on mass and radius of 3XMM J185246.6+003317 (de
Lima et al. 2024). We also display three examples of mass–
radius relation of QSs taken from Bombaci et al. (2021),
Traversi et al. (2022), and Ferrer et al. (2015): these can satisfy
all the constraints, including those for large masses. The
possibility of reaching large masses (and radii) with QSs has
been suggested over many years (Alford et al. 2007; Kurkela
et al. 2010), but the upper mass limit has to be defined by future
and more conclusive observations.

We have shown that QSs can explain the existence of
compact stars having very small or very large masses. On the
other hand, it is unlikely that all compact stars are QSs: it is
well known that magnetar oscillations pose challenges to QSs
(Watts & Reddy 2007). Also, the analysis of the energy
released by the SN1987a indicates a binding energy perfectly
compatible with that of a NS (Pagliaroli et al. 2009). Instead, in
order to satisfy the limit on the mass of HESS J1731-347, we
have explicitly used the significantly larger value of the binding
energy of a QS. In the last decade we have developed a scheme,
named the two-families scenario, in which NSs and QSs
coexist (Berezhiani et al. 2003; Drago et al. 2014a) and we
have discussed in several papers the pathways leading to the
formation of a QS (Wiktorowicz et al. 2017; De Pietri et al.
2019; Di Clemente et al. 2023). The large range of masses of
QSs does not therefore rule out the possible existence of NSs.

3.2. Thermal Evolution

An important feature of the central object inside HESS
J1731-347 is that it cools down very slowly, with a surface
temperature ~ -

+T 153 eVs 2
4 and an age in the range (2–6) kyr

(Potekhin et al. 2020). Moreover, Doroshenko et al. (2016)
estimate that this object has an age of ∼4 kyr, based on
modeling of the companion star. This suggests a thermal
evolution similar to that of a standard NS. On the other hand,
we are claiming that the object is a QS and, before the
discovery of color superconductivity of quark matter, it was
believed that the temperature of QSs would drop much more
rapidly than that of NSs. Actually, the formation of gaps
suppresses the rapid cooling mechanisms in quark matter,
which is similar to what happens in hadronic matter. Therefore,
the cooling curves of QSs and of slowly cooling NSs can be
almost indistinguishable (Schaab et al. 1997; Weber 2005). In
Di Clemente et al. (2023) we have suggested that SAX
J1808.4-3658 is also a QS, since it has been indicated that its
mass could be smaller than 1 Me (Di Salvo et al. 2019). On the

other hand, the thermal emission of that object indicates that
some form of enhanced cooling takes place in the star (Heinke
et al. 2009). There are possible explanations of the very
different behavior of these two objects. First, a carbon heat
blanket can be present in the case of HESS J1731-347, making
the surface hotter (Klochkov et al. 2015). Also, it has been
shown that a transition between slow and rapid cooling for stars
containing quark matter can take place at a critical temperature
(related to the formation of specific phases in quark matter) and
the transition can be extremely rapid (Sedrakian 2013). It is
therefore possible that the slow-cooling object in HESS J1731-
347 is slightly younger than the rapid-cooling SAX J1808.4-
3658. Finally, SAX J1808.4-3658 is accreting mass and it
produces powerful outbursts (while the object at the center of
HESS J1731-347 is completely quiet), during which it displays
a highly variable luminosity, which could be explained if the
temperature during the outbursts increases enough to again
exceed the critical temperature (Sedrakian 2016).

4. Astrophysical Path

We need to identify a possible astrophysical path leading to
the production of such a subsolar-mass object. In Suwa et al.
(2018) evolved stars in the mass range (8–10) Me, having a
carbon–oxygen core, have been suggested as possible progeni-
tors of low-mass NSs. We will follow that same idea and we
will clarify the conditions under which a QS is produced
instead of a NS.
In previous articles we have proposed a few astrophysical

processes leading to the formation of a QS (Drago &
Pagliara 2016). The general idea is that strange quark matter
(if not already present) can form if a large density of strange
hadrons is present in the object (Berezhiani et al. 2003;
Bombaci et al. 2004, 2016). QSs can form, for instance,
through mass accretion onto NSs, since the central density
increases and hyperons can be produced (Wiktorowicz et al.
2017), in the merger of two compact stars (Drago et al. 2016;
De Pietri et al. 2019), due to both the increase of density and of
temperature, and in core-collapse SNe if large enough densities
and temperatures are reached (Drago & Pagliara 2016). In all

Table 1
Minimum Allowed Mass (in Units of Me) for NSs and for QSs in Three

Models

Mb Mg
NS Mg A,

QS Mg B,
QS Mg C,

QS

1.28 1.17 0.99 1.00 0.95–1.05
1.32 1.20 1.01 1.03 0.98–1.08

Note. A refers to the equation of state (EOS) in Bombaci et al. (2021; solid red
line in the figure). B refers to an EOS derived in Ferrer et al. (2015; solid blue
line). C refers to the most probable EOS having a constant speed of sound and
is obtained from the Bayesian analysis in Traversi et al. (2022), which does not
include the most recent data on massive stars (solid black line). In the latter
case a range of values is indicated, since the BE is not fixed by the Bayesian
analysis. The chosen values correspond to an energy per baryon of strange
quark matter at zero pressure of (E/A)p=0 = (765–850) MeV, in agreement
with the discussion in Weber (2005). Figure 1. Mass–radius relation of QSs from Bombaci et al. (2021; solid red),

Ferrer et al. (2015; solid blue), and Traversi et al. (2022; solid black) with
observational constraints at 68% of confidence level (dotted) and at 90%
(dashed). Blue: analysis of PSR J0740+6620 from NICER and XMM-Newton
data from Miller et al. (2021). Magenta: analysis of 4U 1702-429 from Nättilä
et al. (2017). Red: analysis of PSR J0030+0451 from Riley et al. (2019).
Green: latest analysis of HESS J1731-347 from Doroshenko et al. (2022).
Orange error bars: analysis of 3XMM J185246.6+003317 from de Lima
et al. (2024).

2

The Astrophysical Journal, 967:159 (5pp), 2024 June 1 Di Clemente, Drago, & PagliaraClemente-Drago-Pagliara (2024)

Constraints 
from NICER

HESS J1731-347 (2022)

Strange Dwarfs?
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FIG. 5: Mass-radius relations of QSs based on vMIT bag model with varying parameters !!" and " within the stability window. All the
results are obtained under the conditions !0 = 257.3 MeV fm−3 and ## = 0.3 fm2. The orange shaded area is the constraint from HESS
J1731-347 [15, 58] with 68% credible level, while the constraints from 4U 1702-429 [14] and PSR J0437-4751 [59] are also shown for
comparison. Observational limits imposed from PSR J0740+6620 on maximum mass and radius [11, 12] are also indicated. The simultaneous
measurement of the mass and radius for PSR J0030+0451 by NICER with 68% and 95% confidence intervals are also shown [60]. The mass
constraint from GW190814 [13] is depicted by the pink horizontal bar.

additional models. The maximum mass of QSs increases
with " and is larger than 2.4 $" , which indicates that we
can employ the vMIT bag model with density-dependent bag
pressure to describe extremely massive QSs by varying !!"

and ". Moreover, we demonstrate that the mass-radius rela-
tion predicted by the vMIT bag model with density-dependent
bag pressure intersects with the observation-constrained mass
region of GW190814, which indicates that the secondary com-
ponent of GW190814 is probably to be a QS.

The main properties of QSs corresponding to the Fig. 5
are summarized in Tab. I. One can observe that the maximum
mass of QSs increases with increasing " and decreasing !!".
This can be explained from the Fig. 1, !(%$) descends more
steeply with larger " and smaller !!". The EOS becomes
more stiffer with faster declined !(%$). The maximum value
of QSs ($max ≈ 2.90 $") is achieved under the conditions
## = 0.3 fm2, !!" = 10 MeV fm−3 and " = 0.60. Based
on the vMIT bag model with density-dependent bag pressure,

this configuration supports a QS with a mass heavier than ap-
proximately 2.40 $" . Furthermore, the results also indicate
that the central baryon density of the maximum mass of QSs
decreases with the increment of the star mass, which is con-
sistent with the conclusion from Ref. [20]. A smaller !0 leads
to a lower surface density and a higher central baryon density,
which explains why it supports a more massive QS as depicted
in Fig. 6. When !!" reaches its upper limit of 58 MeV fm−3,
the structural properties of QSs show only minor variations.

We explored the effects of varying !!" and !0 on the mass-
radius relations in Fig. 6. We observe that as !!" or !0

decreases, the maximum mass of QSs increases. This can be
easily understood from Eq. (7), where the EOS becomes stiffer
with a smaller !0 which contributes to the formation of more
massive QSs. In the case of " = 0.7, one can find that it
does not satisfy the constraint imposed by HESS J1731-347
but still within the constraints from 4U 1702-429 and PSR
J0437-4751 when !!" > 30 MeV fm−3. It is important to
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There is no stability bound for light NSs ?

Supernovae simulations favor NSs with .M ≳ M⊙

The supernova remnant of HESS may be an 
exceptionally light NS ?

Only from the M-R data, one can only claim 
possible consistency with the QS scenario…

Any more decisive observable (from GW signals)?
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TABLE I. Parameters for the candidate EoSs for QSs. The
Quark Matter part is given by the NJL model in Ref. [34]

with several coupling choices, g
(0)
V /G = 0.5, g

(1)
V /G = 0.8,

g
(2)
V /G = 1.0, H(0)

/G = 1.4, H(1)
/G = 1.5, H(2)

/G = 1.6,
where G represents the scalar-pseudoscalar coupling. Another
choice of the Quark Matter part is pQCD-based EoS with
X = 4 using the notation in Ref. [35]. For the case with large
ω1 → ↑, in practice, ω1 ↓ ω0 = 103 GeV/fm3 was chosen.

Quark Matter EoS ω0 (GeV/fm3) ω1 ↓ ω0 (GeV/fm3)

NJL (g(0)V , H
(0)) 0.23 1

NJL (g(0)V , H
(0)) 0.23 2

NJL (g(0)V , H
(0)) 0.23 3

NJL (g(0)V , H
(0)) 0.3052 1

NJL (g(0)V , H
(0)) 0.3052 2

NJL (g(0)V , H
(0)) 0.3052 3

NJL (g(1)V , H
(1)) 0.23 1

NJL (g(1)V , H
(1)) 0.23 2

NJL (g(1)V , H
(1)) 0.23 3

NJL (g(1)V , H
(1)) 0.3052 1

NJL (g(1)V , H
(1)) 0.3052 2

NJL (g(1)V , H
(1)) 0.3052 3

NJL (g(2)V , H
(2)) 0.23 1

NJL (g(2)V , H
(2)) 0.23 2

NJL (g(2)V , H
(2)) 0.23 3

NJL (g(2)V , H
(2)) 0.3052 1

NJL (g(2)V , H
(2)) 0.3052 2

NJL (g(2)V , H
(2)) 0.3052 3

pQCD 0.23 2
pQCD 0.23 3
pQCD 0.23 4
pQCD 0.23 5
pQCD 0.23 ↑
pQCD 0.3052 3
pQCD 0.3052 4
pQCD 0.3052 5
pQCD 0.3052 ↑

range. The fact that kel2 takes similar values for QSs and
NSs in the high-mass range has also been pointed out in
Ref. [27].

Distinguishability with the magnetic-type Love number:
To distinguish QSs from NSs in the high-mass range, we
calculate kmag

2 . Following previous studies [25, 39, 40],
we assume the fluid is in an irrotational state that al-
lows internal motions induced by the gravitomagnetic
interaction with the tidal field, while the tidal field is
still taken to vary slowly and the fluid remains in ap-
proximate hydrostatic equilibrium. Actually, even if we
perform the calculations under the constraint of strict
hydrostatic equilibrium following Ref. [23, 24], our con-
clusion that QSs and NSs are separated by kmag

2 hardly
changes. The results forM–kmag

2 under strict hydrostatic
equilibrium are discussed in the Appendix.

As shown in Fig. 4, the curves for QSs and NSs do
not intersect. Therefore, if the value of M -kmag

2 can be

FIG. 2. Mass M in M→ (vertical axis) versus radius R in
kilometers (horizontal axis) for NS and QSs. NS is plotted
with a solid line, and QSs with a dotted line. The gray region
indicates areas with su!cient observational data. The red and
purple error bars correspond to the standard deviations (1ε)
of R for QSs and NSs at M/M→ = 1.7. These are plotted on
representative points of the MIT bag model and the Crossover
to illustrate the typical EoS uncertainty.

FIG. 3. Mass, M , in M→ (vertical axis) versus electric-type
quadrupolar Love numbers, kel

2 , (horizontal axis) for NS and
QSs. NS is plotted with a solid line, and QSs with a dotted
line. The red and purple error bars correspond to the standard
deviations (1ε) of kel for QSs and NSs at M/M→ = 1.7. These
are plotted on representative points of the MIT bag model and
the Crossover to illustrate the typical EoS uncertainty.

determined, it is considered to be fundamentally possi-
ble to distinguish QSs from NSs. Even if kmag

2 are not
determine precisely, QSs can be distinguished from NSs,
because NSs have a smaller maximum (→kmag

2 = 0.0033)
than that of QSs (→kmag

2 = 0.0045) in high-mass range
(M ↭ 1.4M→). If the star which has a larger value than
0.0033 is observed, then that star will be QSs. A char-
acteristic feature is that the maximum value of kmag for
QSs is larger than that for NSs. Therefore, if an ob-
ject with a su!ciently large kmag is detected, it can be

No way to tell 
which belongs to 
which in the typical 
mass range ??

2

quadrupolar Love number, k
mag
2 , is a new distinguish-

ing indicator. We note that k
mag
2 carries information

independent of k
el
2 imprinting on the GW signals, and

in our convention, the definition of k
mag
2 follows from

Refs. [48, 49]. The magnetic-type Love number, kmag
2 ,

is estimated from the given EoS, and it characterizes
a response of a self-gravitating body to external mag-
netic tidal fields corresponding to parity-odd perturba-
tions [50].

We shall demonstrate that k
mag
2 is a promising indi-

cator for a wide variety of SQM EoSs. In the litera-
ture [47, 51, 52], some SQM EoSs were adopted from
phenomenological models for the QSs, and we extensively
generalize the analysis using 28 independent QS EoSs.
For comparison, we employ 26 di!erent NS EoSs. In this
way, we estimate the possible ranges of kel2 and k

mag
2 be-

longing to the QS and NS branches, respectively. Our
results show that, even when the QS and NS branches
stay close in the M -R plane or the M -kel2 plane, two
branches are well separated in the M -kmag

2 plane.

Construction of SQM EoSs: Our working hypothesis
is that QSs consist entirely of SQM [6–8, 10]. Since the
surface of QSs, defined by p = 0, is composed of SQM,
such EoSs have a nonzero surface energy density; ω0 →= 0.
The value of ω0 should be large enough to stabilize SQM
as the true ground state. We construct a broad range
of SQM EoS candidates in a way that satisfies physical
requirements. Specifically, we adopt the following pre-
scriptions to generate SQM EoS candidates:

• Asymptotic Boundary Condition (ω ↑ ω1):
For high enough energy densities above a thresh-
old, ω1, the pressure is assumed to be given by the
pQCD calculation, i.e., p = ppQCD(ω).

• Polytropic Interpolation (ω0 ↓ ω ↓ ω1): Be-
tween ω0 at the stellar surface and the threshold
ω1, a single polytropic parametrization is assumed
as p = K

(
ω↔ ω0

)ω
.

There are four parameters, K, ε, ω0, and ω1, and they are
constrained by the smoothness condition and the causal-
ity condition. The meaning of these parameters is illus-
trated in Fig. 1.

The smoothness condition assumes neither first- nor
second-order phase transition at ω = ω1. This means
that neither p nor dp/dω has a discontinuity at ω = ω1.
That is,

K(ω↔ ω0)
ω
∣∣∣
ε=ε1

= ppQCD(ω)
∣∣∣
ε=ε1

, (1)

d

dω
K(ω↔ ω0)

ω
∣∣∣
ε=ε1

=
dppQCD(ω)

dω

∣∣∣
ε=ε1

. (2)

These conditions fix K and ε for given ω0 and ω1.
The causality condition reads that the speed of sound,

c
2
s = dp/dω, never exceeds the speed of light, i.e., unity

FIG. 1. Parametrization of the SQM EoS with ω0 and ω1.
The red curve represents the resulting SQM EoS for given ω0

and ω1. The slope is adjusted so that the polytropic EoS is
smoothly connected to the pQCD EoS at ω = ω1.

in the present units, for any energy density. Since p =
ppQCD(ω ↑ ω1) is consistent with causality, this condition
restricts a physical range of ω0 and ω1. For example, if the
window between ω0 and ω1 is too narrow, the causality
condition would be violated.
To generate concrete SQM EoSs based on the afore-

mentioned construction, we need to fix ω0 and ω1. The
allowed range of ω0 is determined as follows. According
to the MIT bag model, ω0 is related to the bag pres-
sure, B, as ω0 = 4B [53]. Then, B must have a lower
bound to prevent atomic nuclei from decaying into non-
strange QM. The minimum value of B is estimated
to be B = Bmin ↗ 57.5MeV/fm3 [2, 54], leading to
ω0 ↭ 4Bmin ↗ 230MeV/fm3. It is more di”cult to con-
strain the upper bound on ω0, but we do not need it in
the present context. If ω0 is excessively large, the gap
between QSs and NSs in the M -R plane would become
wider. Then, it would be easier to di!erentiate them even
without referring to the tidal properties. In addition to
ω0, we must set ω1 in such a way as not to violate the
causality condition. Because dp/dω = Kε(ω↔ ω0)ω→1, it
is clear that ε > 1 is a necessary condition; otherwise, cs
diverges at ω = ω0.

More specifically, for the QSs, three types of the
Nambu-Jona-Lasinio (NJL) models [58–61] are employed
to describe the quark matter part with the model pa-
rameters given in Ref. [55]. For each choice of the vector
interaction gV and the diquark interaction H, we change
ω0 and ω1 as listed in Table I. Also, a pQCD-based EoS
is employed with X = 4, where X is a parameter in
the running strong coupling in Ref. [56]. Furthermore,
for reference in later discussions, we adopt the MIT bag
model with B = 57.5MeV/fm3 for the QS EoS [2, 54].

The preparation of the NS EoSs is simple. We take
typical nuclear EoSs from the polytropic parametrization
listed in Ref. [62]. There are 34 EoSs in the original list-

ε(p = 0) > 0
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Kyutoku+

from energyeducation

Distortion in response to the 
gravitational force from the 
binary companion. 
Affects the GW waveforms.
Qij = − λℰij
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TABLE I. Parameters for the candidate EoSs for QSs. The
Quark Matter part is given by the NJL model in Ref. [34]

with several coupling choices, g
(0)
V /G = 0.5, g

(1)
V /G = 0.8,

g
(2)
V /G = 1.0, H(0)

/G = 1.4, H(1)
/G = 1.5, H(2)

/G = 1.6,
where G represents the scalar-pseudoscalar coupling. Another
choice of the Quark Matter part is pQCD-based EoS with
X = 4 using the notation in Ref. [35]. For the case with large
ω1 → ↑, in practice, ω1 ↓ ω0 = 103 GeV/fm3 was chosen.

Quark Matter EoS ω0 (GeV/fm3) ω1 ↓ ω0 (GeV/fm3)

NJL (g(0)V , H
(0)) 0.23 1

NJL (g(0)V , H
(0)) 0.23 2

NJL (g(0)V , H
(0)) 0.23 3

NJL (g(0)V , H
(0)) 0.3052 1

NJL (g(0)V , H
(0)) 0.3052 2

NJL (g(0)V , H
(0)) 0.3052 3

NJL (g(1)V , H
(1)) 0.23 1

NJL (g(1)V , H
(1)) 0.23 2

NJL (g(1)V , H
(1)) 0.23 3

NJL (g(1)V , H
(1)) 0.3052 1

NJL (g(1)V , H
(1)) 0.3052 2

NJL (g(1)V , H
(1)) 0.3052 3

NJL (g(2)V , H
(2)) 0.23 1

NJL (g(2)V , H
(2)) 0.23 2

NJL (g(2)V , H
(2)) 0.23 3

NJL (g(2)V , H
(2)) 0.3052 1

NJL (g(2)V , H
(2)) 0.3052 2

NJL (g(2)V , H
(2)) 0.3052 3

pQCD 0.23 2
pQCD 0.23 3
pQCD 0.23 4
pQCD 0.23 5
pQCD 0.23 ↑
pQCD 0.3052 3
pQCD 0.3052 4
pQCD 0.3052 5
pQCD 0.3052 ↑

range. The fact that kel2 takes similar values for QSs and
NSs in the high-mass range has also been pointed out in
Ref. [27].

Distinguishability with the magnetic-type Love number:
To distinguish QSs from NSs in the high-mass range, we
calculate kmag

2 . Following previous studies [25, 39, 40],
we assume the fluid is in an irrotational state that al-
lows internal motions induced by the gravitomagnetic
interaction with the tidal field, while the tidal field is
still taken to vary slowly and the fluid remains in ap-
proximate hydrostatic equilibrium. Actually, even if we
perform the calculations under the constraint of strict
hydrostatic equilibrium following Ref. [23, 24], our con-
clusion that QSs and NSs are separated by kmag

2 hardly
changes. The results forM–kmag

2 under strict hydrostatic
equilibrium are discussed in the Appendix.

As shown in Fig. 4, the curves for QSs and NSs do
not intersect. Therefore, if the value of M -kmag

2 can be

FIG. 2. Mass M in M→ (vertical axis) versus radius R in
kilometers (horizontal axis) for NS and QSs. NS is plotted
with a solid line, and QSs with a dotted line. The gray region
indicates areas with su!cient observational data. The red and
purple error bars correspond to the standard deviations (1ε)
of R for QSs and NSs at M/M→ = 1.7. These are plotted on
representative points of the MIT bag model and the Crossover
to illustrate the typical EoS uncertainty.

FIG. 3. Mass, M , in M→ (vertical axis) versus electric-type
quadrupolar Love numbers, kel

2 , (horizontal axis) for NS and
QSs. NS is plotted with a solid line, and QSs with a dotted
line. The red and purple error bars correspond to the standard
deviations (1ε) of kel for QSs and NSs at M/M→ = 1.7. These
are plotted on representative points of the MIT bag model and
the Crossover to illustrate the typical EoS uncertainty.

determined, it is considered to be fundamentally possi-
ble to distinguish QSs from NSs. Even if kmag

2 are not
determine precisely, QSs can be distinguished from NSs,
because NSs have a smaller maximum (→kmag

2 = 0.0033)
than that of QSs (→kmag

2 = 0.0045) in high-mass range
(M ↭ 1.4M→). If the star which has a larger value than
0.0033 is observed, then that star will be QSs. A char-
acteristic feature is that the maximum value of kmag for
QSs is larger than that for NSs. Therefore, if an ob-
ject with a su!ciently large kmag is detected, it can be

Λ :=
2kel

2

3C5

C :=
M
R

Slightly better… 
but not much…
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Damour-Nagar (2009) / Binnington-Poisson (2009)

gμν = g(0)
μν + hμν

hμν = heven
μν + hodd

μν

Parity-even = Electric  
Parity-odd = Magnetic 

← ℰij
← ℬij

ℓ = 2 heven ∼ a1P(2)
2 (r/M − 1) + a2Q(2)

2 (r/M − 1)
kel

2 ∝ a2/a1

hodd involves complicated special functions…
But the strategy to read      is the same.kmag

2
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Fukushima-Minamiguchi-Uji
4

FIG. 4. Mass, M , in M→ (vertical axis) versus magnetic-type
quadrupolar Love numbers, k

mag
2 , (horizontal axis) for NSs

and QSs. NSs are plotted with solid lines, and QSs with dot-
ted lines. Note that the horizontal axis represents →k

mag
2 ,

not k
mag
2 . The gray region indicates areas with su!cient ob-

servational data. The red and purple error bars correspond
to the standard deviations (1ω) of kmag for QSs and NSs at
M/M→ = 1.7. These are plotted on representative points of
the MIT bag model and the Crossover to illustrate the typical
EoS uncertainty.

considered a QS.

Discussions We compared a wide range of EoS of
QSs, constructed based on their definition, with 35 NS
EoS. We found that the values of M–R and M -kel2 are
similar between QSs and NSs in the high-mass region
(M ↭ 1.4M→). This indicates that, even if the precision
of future observations improves significantly, it will still
be impossible to distinguish QSs from NSs based solely
on M–R or M -kel2 in this mass range. In contrast, when
focusing on M -kmag

2 , QSs and NSs exhibit separated val-
ues. Therefore, if kmag

2 can be determined with su!cient
observational precision, it would become possible to dis-
tinguish QSs from NSs.

From an observational perspective, methods to mea-
sure kmag

2 have not yet been established. Although
Ref. [41] implies that kmag

2 could be detectable with third-
generation gravitational-wave detectors [42, 43], the pro-
posed test relies on the approximate universal relation
between kmag

2 and kel2 [26, 44, 45]. This procedure ef-
fectively removes the explicit dependence on kmag

2 in the
waveform. Thus, we cannot conclude from Ref. [41] that
kmag
2 and kel2 can be determined as independent parame-

ters. Since M -kel2 do not separate QSs and NSs, kmag
2

mapped using the approximate universal relation also
cannot distinguish QSs from NSs within the error bars.

While methods to measure (M , kel2 , kmag
2 ) indepen-

dently have not yet been established, measuring (M ,
R, kel2 ) independently is far more di!cult. Some may
think that QSs and NSs can be distinguished by inde-
pendently measuring the combination of M , R, and kel2 ,

for which observational methods have already been estab-
lished. However, to obtain the information (M , R, kel2 )
independently, one should observe electromagnetic and
gravitational waves simultaneously from a single com-
pact star. Such a coincident observation has never been
achieved and will remain extremely rare even in the fu-
ture. As mentioned above, even when the approximate
universal relation (Love–C) is employed, the degrees of
freedom are merely reduced and QSs still cannot be dis-
tinguished from NSs. On the other hand, the information
of (M , kel2 , k

mag
2 ) is encoded in every gravitational-wave

observation, so simultaneous observation is not necessary.
From the results of this study, it was found that

kmag takes di”erent values for QSs and NSs. Therefore,
gravitational-wave signal encoding kmag provide a useful
indicator for the discovery of QSs, and potentially make
it possible to distinguish QSs from NSs. Although an in-
dependent method for measuring kmag has not yet been
established, we expect that evaluating its contribution
to gravitational-wave signal, or detecting a large value of
kmag, could lead to the discovery of QSs.
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Fukushima-Minamiguchi-Uji
Ψ( f ) = Ψ( f ) + Ψel

tidal( f ) + Ψmag
tidal( f )

5PN 6PN
GW Phase:

n-Post-Newtonian approx. = Expansion up to 𝒪((v/c)2n)
NS [Crossover EoS] vs. QS [MIT bag model] distinguishable?

⟨h1 |h2⟩ = 4Re∫
fmax

fmin

h1( f )h*2 ( f )
Sn( f )

df → F(h1, h2) = max
⟨h1 |h2⟩

⟨h1 |h1⟩⟨h2 |h2⟩

2ρ2[1 − F ] ≥ χ2
k (1 − p)

5

fixed to M1 = M2 = 1.4 M→, with which (!i, ”i) are
uniquely derived from the EoSs. We calculate the wave-
forms with TaylorF2 (3.5PN) plus multipolar tidal terms
with (!i, ”i); see Ref. [71] for details. We use the noise
PSD, Sn(f), from the ET-B design sensitivity curve [67].
We summarize the required SNR values below:

k ω (68%) ω (90%)
4 63.9 82.2
6 78.0 96.2

These required ω values indicate that, to distinguish the
binary QS merger from the binary NS merger using GW
signals, one needs either a lower detector noise Sn(f)
or closer/louder events. For scale reference, the com-
bined SNR of GW170817 was 32.4 (18.8, 26.4, and 2.0
in LIGO–Hanford, LIGO–Livingston, and Virgo, respec-
tively) [37], so our threshold ω → 63.9 is about twice as
large.

Summary: We found that k
mag
2 takes substantially

di#erent values for QSs and NSs even if their masses
and radii are almost degenerate. Our findings should
extend the frontier of the QS search toward higher mass
regions and thus enhance the opportunity to identify the
candidates in the near future. We pointed out that the
most notable advantage of considering k

mag
2 is that we

do not have to make an independent measurement, but
a single GW signal conveys all information. For a test
of measurability, we exploited GW signals encoding k

el
2

and k
mag
2 , and estimated the SNR necessary for distin-

guishing between two scenarios of the binary QS merger
and the binary NS merger. From our results, we can
conclude that the idea of di#erentiating QS candidates
among seemingly NS-like objects with k

mag
2 is promis-

ing. The potential of magnetic-type Love number would
deserve further investigations along the lines of more re-
alistic simulations in the future.
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(k el
2 , kmag

2 ) × 2

(M, k el
2 , kmag

2 ) × 2

(k : parameter num.) SNR  ~ 32.4 
for GW170817…

ρ

Not easy, but 
not impossible!
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Summary

Strange quark matter may be self-bound? 
□ QCD Critical Point and Quark Star both discuss the 

stability / meta-stability of quark matter. 
□ QCD Critical Point is a necessary condition for the 

existence of Quark Stars and vice versa. 

Quark Star Hunting 
□ Small-M and small-R objects are likely candidates but 

more candidates in wider regions overlapping NSs… 
□ Tidal responses: the magnetic Love number can resolve 

the degeneracy very clearly!

22


