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* Introduction

Can we study a microscopic mechanism of
hadron-quark crossover in cold atom physics?



Extremely dense matter

How does the hadronic phase change into quark matter at finite densities?

Dense QCD phase diagram Neutron star as a testing ground of dense matter
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g Critical ELECTRONS
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Nuclear Superfluid  meson supercurrent Baryon Chemical Potential us
Gluonic phase, Mixed phase
K. Fukushima, et al., Rep. Prog. Phys. 74, 014001 (2011). A. L. Watts, et al., RMP 88, 021001 (2016).

x Sign problem in lattice QCD X Limited information in the observation



Hadron-quark (HQ) crossover

G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Nuclear —> Interpolated EoS <— Quark models
: ( non-confining ) : (pQCD)

normal nuclear density
Ng = 0.16 fm_3



Hadron-quark (HQ) crossover

G. Baym, et al., Rep. Prog. Phys.‘81, 056902 (2018).
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Hadron-quark (HQ) crossover

G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Nuclear —-> Interpolated EoS <— Quark models f
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Microscopic mechanism of the HQ crossover has been elusive
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Analogy with BEC-BCS crossover?

Review: Y. Ohashi, HT, and P. van Wyk, Prog. Part. Nucl. Phys. 111, 103739 (2020).

In ultracold Fermi gases
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Many-body theory for the crossover

In the case of the BEC-BCS crossover, the mean-field (BCS-Eagles-
Leggett) theory 1s “qualitatively” valid at zero temperatures.

Mean field = Superfluid/superconducting order parameter A
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Y. Ohashi, HT, and P. van Wyk, Prog. Part. Nucl. Phys. 111, 103739 (2020).



Many-body theory for the crossover

In the absence of order parameters for crossover (e.g., hadron-quark crossover),
the mean-field theory IS INVALID even qualitatively
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Many-body theory for the crossover

In the absence of order parameters for crossover (e.g., hadron-quark crossover),

the mean-field theory IS INVALID even qualitatively
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Nozieres-Schmitt-Rink (NSR) approach to pairing fluctuations
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P. Noziéres, and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).
=> Theory for “tripling” fluctuations is needed



Two key points to understand the
hadron-quark crossover

Peaked speed of sound

Rapid increase of P(p)

Pressure (P)

= p? = % exhibits a peak

Sound velocity v

on density (p)

K. Masuda, T. Hatsuda, and T. Takatsuka, PTEP 2013, 073D01 (2013).



Two key points to understand the
hadron-quark crossover

Peaked speed of sound

Rapid increase of P(p)

Pressure (P)

= p? = % exhibits a peak

Sound velocity v
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In this talk...

* In analogy with the BEC-BCS crossover, we discuss the
microscopic mechanism of the hadron-quark crossover.

* We show that tripling fluctuations explain two key points:

1. baryon momentum shell structure, 2. peaked speed of sound
HT, K. lida, T. Kojo, and H. Liang, PRL 135, 042701 (2025).
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* Formulation
Tripling fluctuation theory



N-body clustering fluctuations

R. Dashen,_S.-K. Ma, and H._J. Bernstein, Phys. Rev. 187, 34!_3 (1969). _
Clustering fluctuations on thermodynamlc potential:

0N = TZ/ —ln 1—|—6_w/T)8w'90

N-body propagator and phase shift: g/go — |g/g0|€i%0

Exact constraint: ¢(K,w —» —) = ¢(K,w - ) =0



N-body clustering fluctuations

R. Dashen,_S.-K. Ma, and H._J. Bernstein, Phys. Rev. 187, 34!_3 (1969). _
Clustering fluctuations on thermodynamlc potential:

0N = TZ/ —ln 1—|-6_w/T)aw'90

N-body propagator and phase shift: g/go — |g/g0|67290
Exact constraint: ¢(K,w —» —) = ¢(K,w - ) =0

Tripling fluctuations: N=3 (N =2 reproduces NSR theory)

gO g 0 gO

5Q, = +

Yo Go

V. short-range interaction responsible for N-body cluster formation



Bound state v.s. Scattering state

Tripling fluctuation contribution to the particle number density
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Zyp- Hartree-Fock shift



Bound state v.s. Scattering state

Tripling fluctuation contribution to the particle number density
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Baryon momentum dlstrlbutlon
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* Results
Demonstration in a toy model



How to demonstrate the crossover physics?
-1D nonrelativistic three-color fermions-

 Hamiltonian density: f = H, + 1/,

One-body kinetic term
m: mass

. + 02 u: chemical potential
HO — z l/)a _ —H lpa a = r, g, b: pseudo-color (hyperfine states)

2m
a=r,gb 1/)2[, Y, fermionic field operator

Three-body interaction (involving quantum anomaly with asymptotic freedom)
J. Drut, et al., PRL 120, 243002 (2018).

Vs = V(?,b;.L Yr) (l/)ér Ys) (wg Yp) V< 0:three-body attraction

Three-body binding energy
B =— exp 0

m mVl

A: UV cutoff scale



Phase shift of three-body propagator
Three-body propagator
G(K, @) = Go(K, w) Go(K. ) m_. (—&') — 6+ A2/m)

K9 == - .
1-VGy(K, w) 2\/31 —@ — i6
*Mott effect (medium suppression of bound state at small K) is neglected

Derivative of the phase shift
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Momentum distributions

Model: 1D non-relativistic three-color fermions with color-singlet three-body interaction

Tripling fluctuation theory (present work)
(a) Fermion (quark)

T/B=0.2

45 75

kik, ¢ 10

(b) cluster (baryon)

J(K)
1 ~

k; = 2mT: Thermal momentum scale



Momentum distributions

Model: 1D non-relativistic three-color fermions with color-singlet three-body interaction

Tripling fluctuation theory (present work)
(a) Fermion (quark)

T/B=0.2

k; = 2mT: Thermal momentum scale

Explicit Duality model
PRL 132, 112701 (2024).

Fermion (quark)

T 1.0
- 0.8

£ 0.6 fo(q)
F 0.4

- 0.2

cluster (baryon)

r 1.0
r 0.8
06 fy(k)
r 0.4

r0.2




Quarkyonic momentum shell

Momentum distribution of baryonic fluctuations

Strong cancellation ___— No cancellation

small K _ .
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Quarkyonic momentum shell

Momentum distribution of baryonic fluctuations

Strong cancellation ___— No cancellation

small K

QY § BB— Eg™
: large K

K/

Momentum-shell width: A(K,) = \/th + 2MpB — Ky

Analytical expression: fL=°(K) = 0(Ky, + A — K)O(K — Ky,)

(T - 0) K2 K2
1 1 -1 In ZIMBB —B . ;
+®(Kth —K) E—;tan T K Kt;1+/_\.




Peaked speed of sound

Squared speed of sound:

5 n fon\ "
c:i=—|—
> m\du

Density susceptibility:

on _ aTlQ anB

_|_

csz/ sz

Peaked speed of sound is induced by suppressed

baryon distributions at low momenta




Three-body force in ultracold atoms?

HT, E. Nakano, and K. lida, arXiv:2505.19117
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Fujita-Miyazawa three-body force
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Three-body force in ultracold atoms?

HT, E. Nakano, and K. lida, arXiv:2505.19117

Nucleon & polaron (particle immersed in BEC)

Pion < superfluid phonon
A resonance < Feshbach molecule (closed-channel)

Fujita-Miyazawa three-body force  Tunable counterpart in ultracold atoms

N N N . ¢ .

Polaron



Three-body force in ultracold atoms?

HT, E. Nakano, and K. lida, arXiv:2505.19117

Nucleon & polaron (particle immersed in BEC)

Pion < superfluid phonon
A resonance < Feshbach molecule (closed-channel)

Fujita-Miyazawa three-body force  Tunable counterpart in ultracold atoms
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Chiral EFT interactions can be rrill
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Summary

HT, K. lida, T. Kojo, and H. Liang, PRL 135, 042701 (2025).

* In analogy with the BEC-BCS crossover in two-component
Fermi gases, we have discussed the three-body counterpart in
three-color fermions, where bound trimer gasés change into
degenerate Fermi state with tripling fluctuations.

« It Is found that tripling fluctuations can induce a peaked speed
of sound as well as quarkyonic-like momentum distributions.

Future perspectives: Application to more realistic systems relevant to neutron-star matter
and heavy ion collision, and quantitative comparison with Monte Carlo simulation
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Difference btw pairing and tripling fluctuations

P. Nozieres and S. Schmitt-Rink, JLTP 59, 195 (1985).

1 +00
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—Q0
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— 00
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Slg,w)d
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Fig. 7. The phase shift 6(g, w) in the dilute strong coupling limit.
71, corresponds to the bound state, —2u to the continuum threshold.

The dashed curve is the Bose factor g(w).
qZ

Even for pairing fluctuations, the cancellation can
r]q =%_ 5b(qaa’):ﬂ'9(w_1?q)

occur but masked by enhanced Bose distribution.



Role of the phase shift
0y=3 =T Z f_ ’ d%)ln@ +e7/T) 0, p(K, w) ) '”;eygggi‘f”

&
j dw 1 @)
w
2 o (0+ES ()~ Tp)/T 4 1

Changing
subtracted three-body energy: w — @ = w — E§™(K) + fig

variable

Baryon Kinetic energy: Baryon chemical potential:
EX*(K) = K?/2Mp i = 3ji = 3(p — Xuv)
Zyp- Hartree-Fock shift
Structure of the phase shift

p(@ > ®) =0

Bound state Scattering state
¢(®) = 1O(& + B)O(—d) + O(D) Pscatr. (©)

I8 :Cluster binding energy




Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS
= Effective theory of nucleons
(Nucleons + nuclear force)

H =H0 +VNN+VNNN+"'
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In the sense of BEC-BCS crossover...

Effective theory of dimers
=» never describe the crossover regime

Molecular BEC EOS N. Navon et al.,

N ha, Science 328, 729 (2010).
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128 3
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a4 dimer-dimer scattering length




Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS
= Effective theory of nucleons
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G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).



Theoretical approaches to nuclear equation of state (EOS)

Conventional nuclear EOS
= Effective theory of nucleons
(Nucleons + nuclear force)

H =H0 +VNN+VNNN+"'
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G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018).

Phenomenologically interpolating
BCS and BEC EOS
=> N0 microscopic foundation

/Molecular BEC I;OS )
N nhagy
E= 2 Ey +N 2m

128
X n 1+Wﬁ na;[d-‘l’...

<___Interpolate! >

(Fermi gas EOS at weal coupling )

3 10
E = SNEF<1 + 97](1:61 +018(2)(kpa)2 +
T

.

J

0.03(2)(kra)® + ) )




Three-body pole In relativistic system
HT, S. Tsutsui, T. M. Doi, and K. lida, Symmetry 15, 333 (2023).
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(b) Baryquark

>
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arXiv:2211.14674
Our scenario is close to quarkyonic
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Comparison with QMC

Quialitatively OK, but better approximation is needed for quantitative calculation

Speed of sound
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Finite-temperature phase diagram

Ugms .- baryonic momentum shell starts to appear
Upeak - SOund velocity is peaked
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Crossover equation of state and
baryonic distribution functions

Q= Qur + 005 Qyg: Hartree-Fock contribution
Tripling fluctuations: §Q), = — T Z In [1+ 6—(—B+Eki“—ﬁB)/T}

dw ln 1 _I_e (w+EB _PLB)/T]

+TZ/ n*(w/B) + w2

Baryonic distribution: f5(K) = f(—B + E5™ — fig) :Bound state
dé() oo kin
- aﬂg = BZfB(K) _ / dw f(w2—|— i fis) :Scattering state
0 W In ((.U/B) -+ 2

Baryon kinetic energy: Baryon chemical potential:
E¥MNEK) = K2/2Mp = K?2/(6m) jip = 3 = 3(p — Zur)



How to demonstrate the crossover physics?
-1D nonrelativistic three-color fermions-

Latter section: 1D nonrelativistic (LDNR) three-color Fermi gases with three-body attraction

Why?
- Sign problem free Quantum Monte Carlo
- Similarity with HQ crossover

- Possible realization in future atomic experiments

Peaked speed of sound

HQ matter 1DNR

Legred et al. (2021)
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QMC (T=04E,)

0.5 15
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n/ng

,u/1Eb
Y.-J. Huang, et al., Phys. Rev.
Lett. 129, 181101 (2022)

Both systems exhibit a characteristic
peaked behavior in the crossover regime

J. McKenny, et al., Phys.
Rev. A 102, 023313 (2020).
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Asymptotic freedom and trace anomaly
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J. Drut, et al., Phys. Rev. Lett. 120, 243002 (2018).
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J. McKenny, et al.,
Phys. Rev. A 102,
023313 (2020).

Trace anomaly would influence EOS

Y. Fujimoto, et al., Phys. Rev.
Lett. 129, 252702 (2022).




Realization of tunable three-body interaction
In cold atoms

A. Hammond, et al., Phys. Rev. Lett. 128, 083401 (2022)
Breezing mode frequency

EOS in Rabi-coupled 2-com. 1D BEC

Evg  hQ, ) Ao _
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305 1, Pl
Low-energy EFT
EMF n n2
N TE TRy TsT
: g |
with ¢, = g— - | .
1 4 6%/Q? 1.8 0 5 t(ms) 10 15 7
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32 3/Q2 5/9
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BT TR+ Q)R



Recent experiments of three-component
Fermi gases

[T '
B =690 G TE 4 =2.77(11)

G. L. Schumacher, et al., arXiv:2301.92237 e - "
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Three-body T-matrix for three-
body interaction

Three-body coupling constant gs can be represented by the three-body binding energy &g

T3(Pr 'Q'+) = [i

-1
- Eo(P;Q+)]

93
Zo- Three-body propagator in vacuum
1 m A + P?/6 —mQ
EO(P’Q+):zQ - —ep - T ln( p? 6/ Q +>
kq T g§+k—% g§+q gg_k_% 2+/3m /6 —mQ,
A: cutoff

Three-body binding energy

1 N? PAVEY s
— —5,(0,Q0=—g5)=0 » €g = —_€Xp

g3 m mgs



In-medium three-body T-matrix

HT, S. Tsutsui, T. M. Doi, and K. lida, Phys. Rev. Research 4, L012021 (2022).

g 3 “Tripling fluctuations”
1 —1
TYB(P,if,) = {_ _ E(P,iﬂn)}
g3

=. In-medium three-particle (three-hole) propagator
Q, = (2n + 1)xT: Fermion Matsubara frequency

In-medium three-body equation

1
— —E(P=0,0=-E3)=0
g3




(Q + 3u)/Ey

Three-body spectral function

HT, S. Tsutsui, T. M. Doi, and K. lida, Phys. Rev. Research 4, L012021 (2022).

In-medium three-body spectra In-medium three-body binding energy

Ag(P Q) — —IngMB (P, Q) Three-body problem
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The three-body pole survives even at high density
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Non-relativistic trace anomaly

Trace anomaly equation

L Comparison with QMC results

2
20 — Ty = —% WU W) W) 10 | | |

Tij: energy-momentum tensor 8
W. S. Dasa, et al., Mod. Phys. Lett. A 34, 1950291 (2019).
3 6
T
-~
Three-body contact ' 4

Statistical average: 2E — P = (5 ®  QMC (T'=04E,)

2
\[ ——  (G-matrix
8 3Ew /By | | |
C3 = 3—7T,0 F / s % 0.5 1 1.5 2
(1 n SEF) [ln (1 + SEF)] WE,

i Ap =+/2 Ey,: length scale associated eith E
E: energy density ~ P: pressure b = 27m/mkEy: leng .

QMC: J. McKenny, et al., PRA 102, 023313 (2020).



Nozieres-Schmitt-Rink-type approach
for the three-body crossover

In-medium three-body T-matrix
g3 GHYF :Hartree-Fock propagator

F3 =O—|— ‘|‘...

“Tripling fluctuations”

Self-energy for tripling fluctuations

- @

—> >—

Dyson equation

Gk(i&)g) — GEF (’!:wg) -+ G,I;IF(iwg)Zk(iwg)Gk(iwg)

HF /- HF / - 2 .
~ G (1wy) + [Gk (zwg)} Yk (twe)
Truncated at O(X) (NSR approximation)  PPNP 111, 103739 (2020).



Yukawa interaction in cold atoms

Two-polaron interaction in BEC is induced by exchange
of superfluid phonons (analogous to pion exchange)

“Bose” polaron
Impurity immersed in BEC

Nils B. Jorgensen, et al., PRL 117, 055302 (2016).

» Yukawa interactions

by Chat GPTEI&

a
Vap(r) = —7€_T/€

¢: BEC healing length

M. J. Mijslma, et al., PRA 61, 053601 (2000).



Analogy between polaron and nucleon

Inter-polaron force Nuclear force

| M\ Nucleon Nucleon
mpurity Impurlty
ono

@Fﬁf""

. by Chat GPT&{H
o a'
Vop(1r) = —76’_’"/5 Vop(r) = —7€_m”r

¢: BEC healing length mz1: inverse pion mass



Analogy between polaron and nucleon

Inter-polaron force Nuclear force

[

> /\\/\ - Nucleon Nucleon
mpurity Impurlty
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9
&

- & @ by Chat GPTE/{H
!/
a a
_ — _ —MyT
Vop(r) = ——e™ /% Vop(r) = ——e™Mn
r r
¢: BEC healing length mz1: inverse pion mass

::> Fujita-Miyazawa counterpart in three-polaron force?



Fujita-Miyazawa-type three-body
force among polarons

HT, E. Nakano, and K. lida, arXiv:2505.19117
Nucleon

Pion
A resonance
N N N
boded
N A




Fujita-Miyazawa-type three-body
force among polarons

HT, E. Nakano, and K. lida, arXiv:2505.19117

Nucleon & polaron

Pion < superfluid phonon
A resonance & Feshbach molecule (closed-channel)

N N N . ¢ .

Polaron



Two-channel model of cold atoms
near the Feshbach resonance

Fal
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Two-channel model of cold atoms
near the Feshbach resonance
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Two-channel model of cold atoms
near the Feshbach resonance

Medium boson Impurity Closed-channel molecule
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Two-channel model of cold atoms
near the Feshbach resonance

Medium boson Impurity Closed-channel molecule
Qo ) o
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Two-channel model of cold atoms
near the Feshbach resonance

Medium boson Impurity Closed-channel molecule
Qo ) o

H = Z [{fk pbRbr + &k céLék} +) ¢paAbAp
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Polaron in Bose-Einstein condensate

b = Nooko + Tk(l — dk0).

ngy. BEC condensate density
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Polaron in Bose-Einstein condensate

b = Nooko + Tk(l — dk0).

ngy. BEC condensate density
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Polaron in Bose-Einstein condensate

b = Nooko + Tk(l — dk0).

ngy. BEC condensate density

'/’ ______ Feshbach coupling Y ! “Coherent atom-molecule mixing \
i
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Nucleon-like and A-like polarons as dlagonallzed elgenstates
H=Hy+Hr+H,+V

Bogoliubov Hamiltonian for pion-like boson excitation

. v A X
Ground state: [, — ka,NNka Ay = (G + 20mmo)i
k

: LA AT A Unpno A L
Excited state: Ha = » & aAj A, + =3 ; [wLwT_k +7r_mk]



Absorption and emission
of pion-like boson excitations

I-phonon
Ni A,

T
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Fujita-Miyazawa three-body force

~ 1
VFM — 6 E Ukzl,kz,ks (qla Q2)
k1,k2,k3,91,92
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X NklNk2ngNks—Q1Nk2+q1—QZNk1+Q2

A_ e i 2m-exchange-like form of coupling strength
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* At g K Upc/ng
1
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Polaron ¢: BEC healing length



How to measure?

Interaction energy in the impurity equation of state

5E3 X U(),o,o(O,O)n‘?V

ny- ground-state polaron density

K. Patel, et al., PRL
131, 083003 (2023)
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Hamiltonian effective field theory
based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function
7 — Ty [e_B(ﬁN+ﬁA+ﬁ7r+V):|



Hamiltonian effective field theory
based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function “Effective nucleon system”
Z — TI‘ [e_B(ﬁN+ﬁA+ﬁw+V)i| Z — TI.N |:€—B(HN+Veff)i|
“Trace out”

Vg effective interaction
Try[...]: partial trace of N state



Hamiltonian effective field theory
based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function “Effective nucleon system”
Z — TI‘ |:e_/8(ﬁN+ﬁA+ﬁ7r+V)i| Z — TI.N |:€—B(HN+Veff>i|
“Trace out”

Vg effective interaction
Try[...]: partial trace of N state

Equation for effective interaction S-matrix operator
_ AV _B(L T YA . s,
e PVert _ Tra- {8 B(HA+HW)S(,8)] S(B) =T exp [—/ dr V(1)
0

Interaction representation in the imaginary time formalism
V(r)= e (Hn+Ha+Hx)V/ o—7(Hn+Ha+Hr)




Hamiltonian effective field theory
based on the open-system description

We do not have to resort to path integral formalism

Grand-canonical partition function “Effective nucleon system”
Z — TI‘ |:e_/8(ﬁN+ﬁA+ﬁ7r+‘7)i| Z — TI.N |:€—B(HN+Veff>i|
“Trace out”

Vg effective interaction
Try[...]: partial trace of N state

Equation for effective interaction S-matrix operator
_ AV _B(L T YA . s,
e PVert _ Tra- {8 B(HA+HW)S(,B)] S(B) =T exp [—/ dr V(1)
0

Interaction representation in the imaginary time formalism
V(r)= e (Hn+Ha+Hx)V/ o—7(Hn+Ha+Hr)

[ Perturbative expression of the effective interaction Y
L > (—1)-1 P 8 . :
PV = dr - / Ao (T, [V (7) - V(m)])
| 6'/6 0 0 1
: ! :
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