

December 20, 2025

Magnetic field effects on neutrino emission in dense quark matter

Ritesh Ghosh

IOP, Academia Sinica

Workshop on recent developments
from QCD to nuclear matter

Neutron Stars and Cooling

-Extremely dense remnants of massive stars after supernova explosions.

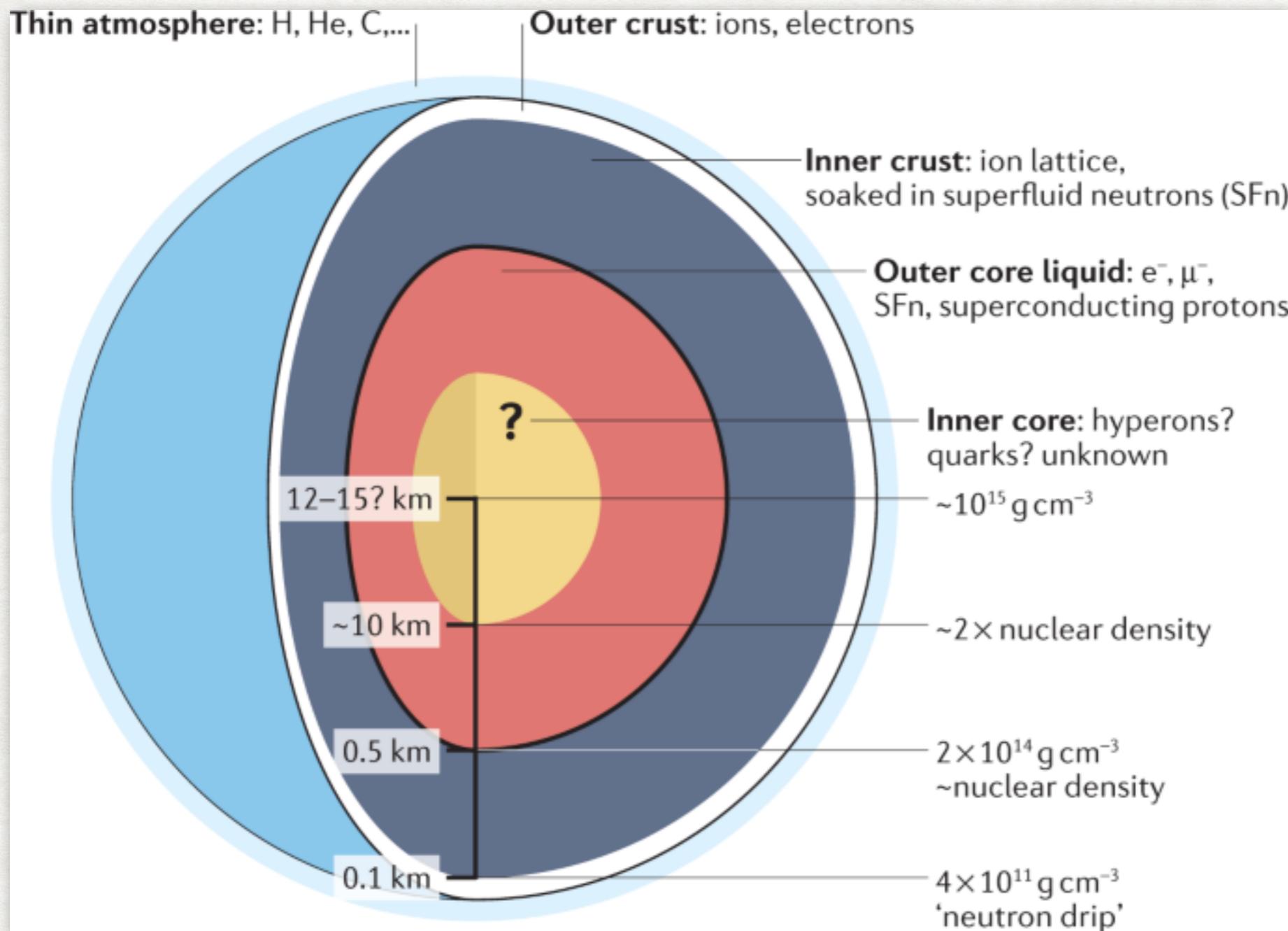
- **Key Properties:**
 - Radius: ~ 10 km
 - Mass: 1.4–2.2 solar masses
 - Density $\sim 10^{17}$ kg/m³
 - **Strong magnetic fields in core**
($\sim 10^{14}$ G – 10^{17} G)
- **Significance:**

Laboratories for testing physics under extreme conditions (e.g., strong gravity, high densities).

[G. Baym, et. al, 1707.04966 [astro-ph.HE]]

[N. Iwamoto, PRL. 44, 1637 (1980)]

[M. Alford et. al, 2409.09423 [nucl-th]]



QUARKS (?)

E. Annala et al,
 Nature Commun. 14
 (2023) 8451

[Nature Reviews Physics volume 4, 237–246 \(2022\)](#)

COOLING OF COMPACT STARS

- **Energy Loss Mechanisms in quark matter:**

- **Neutrino Emission:**

$$\text{direct URCA processes} \propto R^3 T^6$$

$$\text{Modified URCA processes} \propto R^3 T^8$$

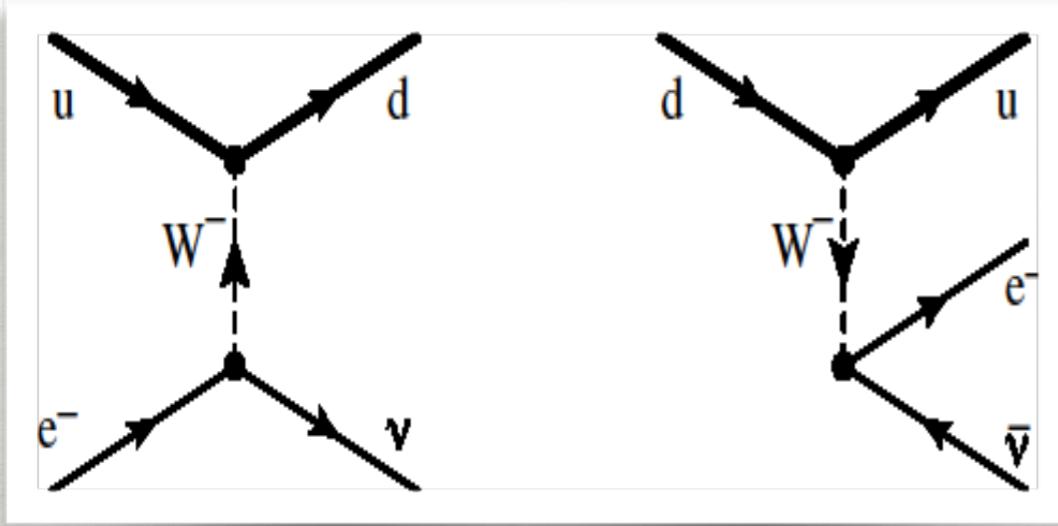
- **Photon Emission:** Come only from the star's surface. $\propto R^2 T^4$

How do magnetic fields influence cooling?

[Ghosh, Shovkovy, *JHEP* 04 (2025) 110]

$\nu(\bar{\nu})$ emission

direct Urca processes



Fermi theory of weak interactions

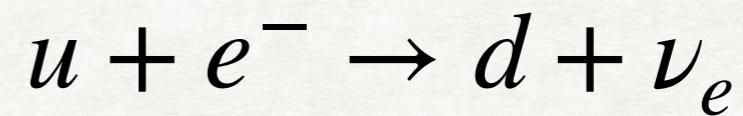
β -equilibrium

$$\mu_d = \mu_u + \mu_e$$

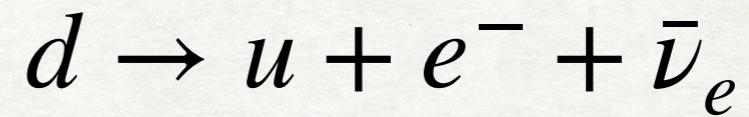
- Assumption: quark matter temperature is below the threshold for neutrino trapping

$$\mu_\nu = 0$$

- electron capture by an up quark, producing down quark and an electron neutrino



- decay of a down quark



* Neutrino emission From Star

Use Kadanoff-Baym transport equation for neutrinos

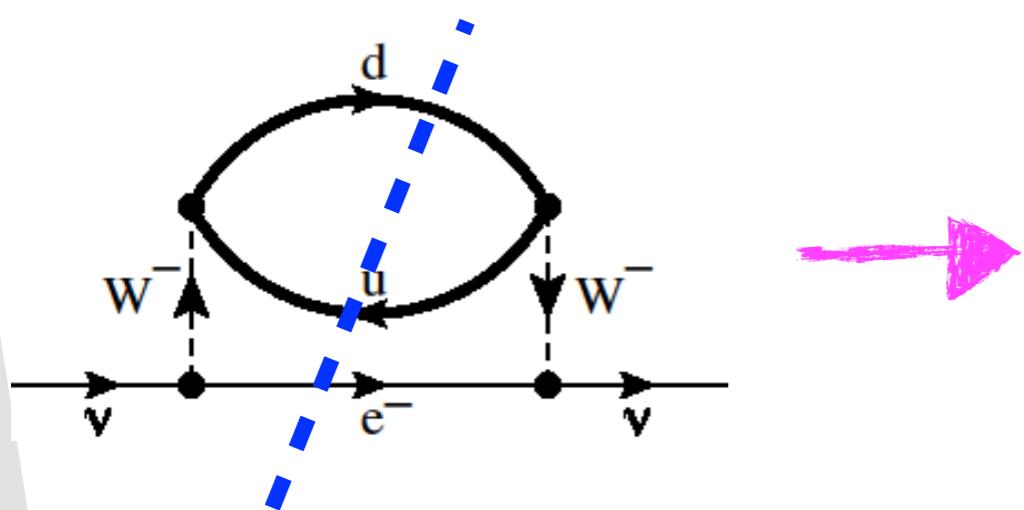
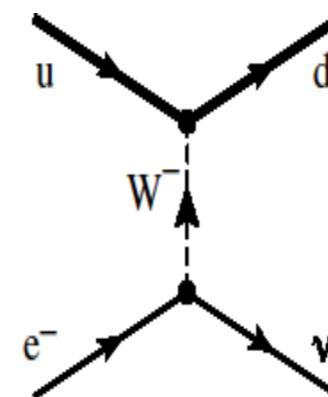
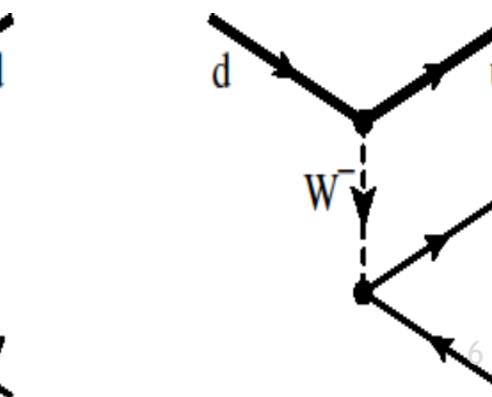
$$i\partial_t \text{Tr}[\gamma^0 G_\nu^<(t, P_\nu)] = -\text{Tr}[G_\nu^>(t, P_\nu) \Sigma_\nu^<(t, P_\nu) - \Sigma_\nu^>(t, P_\nu) G_\nu^<(t, P_\nu)].$$

Neutrino-number production rate:

$$\frac{\partial f_\nu(t, p_\nu)}{\partial t} = \frac{G_F^2 \cos^2 \theta_C}{2} \sum_{\lambda=\pm} \sum_{n=0}^{\infty} (-1)^n \int \frac{d^3 p_e e^{-p_{e,\perp}^2 \ell^2}}{(2\pi)^3 p_\nu E_{e,n}} n_F(E_{e,n} - \mu_e) n_B(p_\nu + \mu_e - E_{e,n}) L_{n,\lambda}^{\delta\sigma}(p_e, p_\nu) \Im [\Pi_{\delta\sigma}^R(Q)]$$

Fermi coupling

imaginary (absorptive) part of W^- self-energy



Assumptions:

- **Chemical potentials:**

μ_f (where $f = u, d$) ~ 300 MeV, $\mu_e \sim 50$ MeV

- **Landau quantization of electron state**

- **Temperature:** $T \lesssim 5$ MeV

- **Magnetic field :** $|eB| < 10^{17}$ G ($\sqrt{|eB|} < 25$ MeV)

Energy emission rate: $\dot{\mathcal{E}}_\nu = 2 \int \frac{d^3 \mathbf{p}_\nu}{(2\pi)^3} p_{\nu,0} \frac{\partial f_\nu(t, \mathbf{p}_\nu)}{\partial t},$

Momentum emission rate: $\dot{\mathcal{P}}_{\nu,z} = 2 \int \frac{d^3 \mathbf{p}_\nu}{(2\pi)^3} p_{\nu,z} \frac{\partial f_\nu(t, \mathbf{p}_\nu)}{\partial t}.$

 indicates that neutrinos are emitted asymmetrically relative to the magnetic field

$$B = 0$$

$$\dot{\mathcal{E}}_\nu^{(\text{Iwamoto})} \simeq \frac{457}{630} \alpha_s G_F^2 \cos^2 \theta_C \mu_u \mu_d \mu_e T^6 + O\left(\alpha_s^2, \frac{\mu_e}{\mu_u}\right)$$

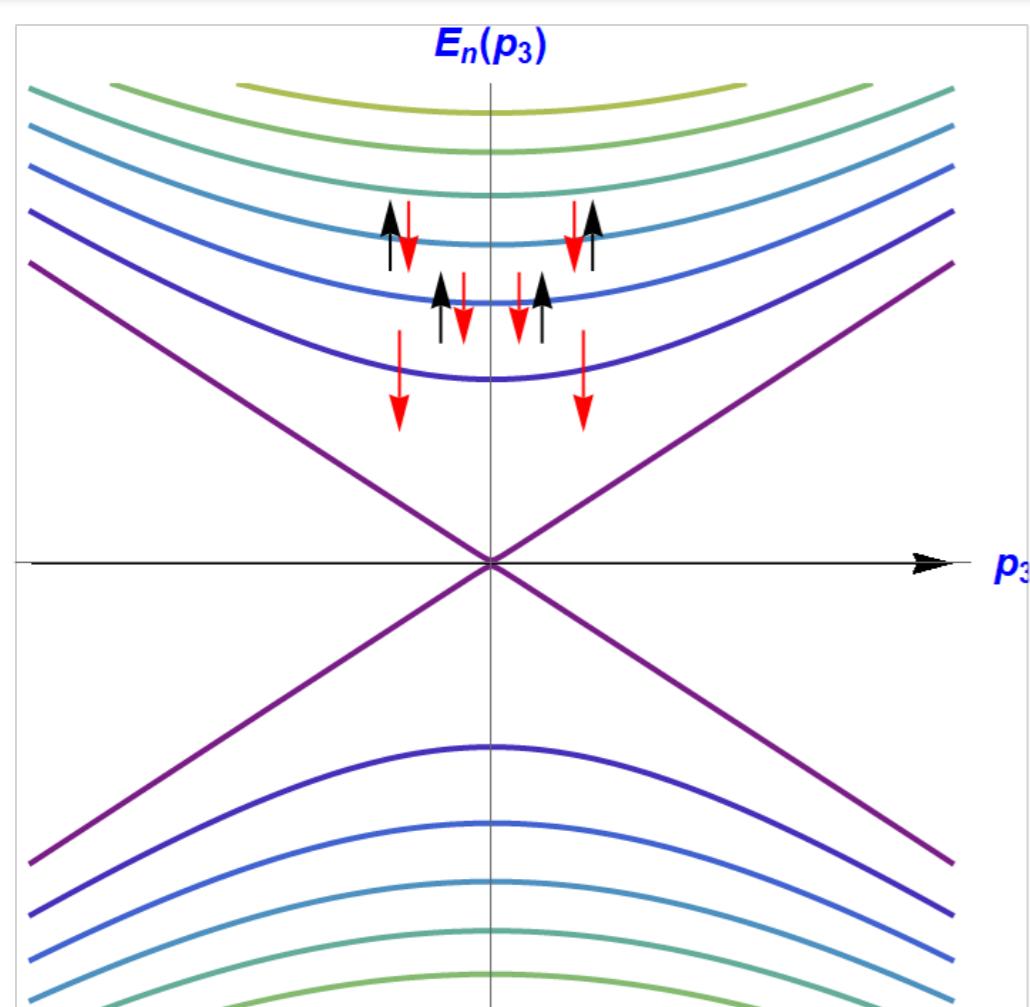
[Iwamoto, Phys. Rev. Lett. 44 (1980) 1637], [Iwamoto, Annals Phys. 141 (1982) 1]

Landau Levels

Relativistic:

$$E_{kin} \geq E_{rest}$$

$$v \sim c$$



Dirac Equation

$$\left\{ i\gamma^0\partial_0 - i\vec{\gamma} \cdot (\nabla - iq\vec{A}) \right\} \Psi = 0$$

Energy spectrum:

$$E_n(p_3) = \pm \sqrt{p_3^2 + 2n|eB| + m^2}$$

$$n = s + k + \frac{1}{2}$$

Spin quantum number: $s = \pm 1/2$

Orbital: $k = 0, 1, 2, \dots$

[Miranski & Shovkovy,
Phys. Rept. 576 (2015) 1-209]

EXPRESSION FOR ENERGY EMISSION @ $B \neq 0$

$$\dot{\mathcal{E}}_\nu = \frac{12N_c G_F^2 \cos^2 \theta_C T^5}{\pi^5} v_F \mu_u \mu_d \sum_{n=0}^{\infty} \frac{(-1)^n}{\ell^2} \int_0^\infty \int_0^\infty \frac{\Theta(u, v) du dv}{\sqrt{u} \sqrt{u+v}} \frac{e^{-v}}{e^{\epsilon_n^u} + 1} \left(\text{Li}_5 \left(e^{\epsilon_n^u} \right) - \frac{\epsilon_n^u}{4} \text{Li}_4 \left(e^{\epsilon_n^u} \right) \right) \\ \times [L_n(2v) - L_{n-1}(2v)] \left[1 + \frac{\sqrt{2n+u}}{2\ell\mu_u} \left(1 - \frac{v_F^2 \mu_e (\mu_d + \mu_u) \ell^2}{u+v} \right) \right]$$

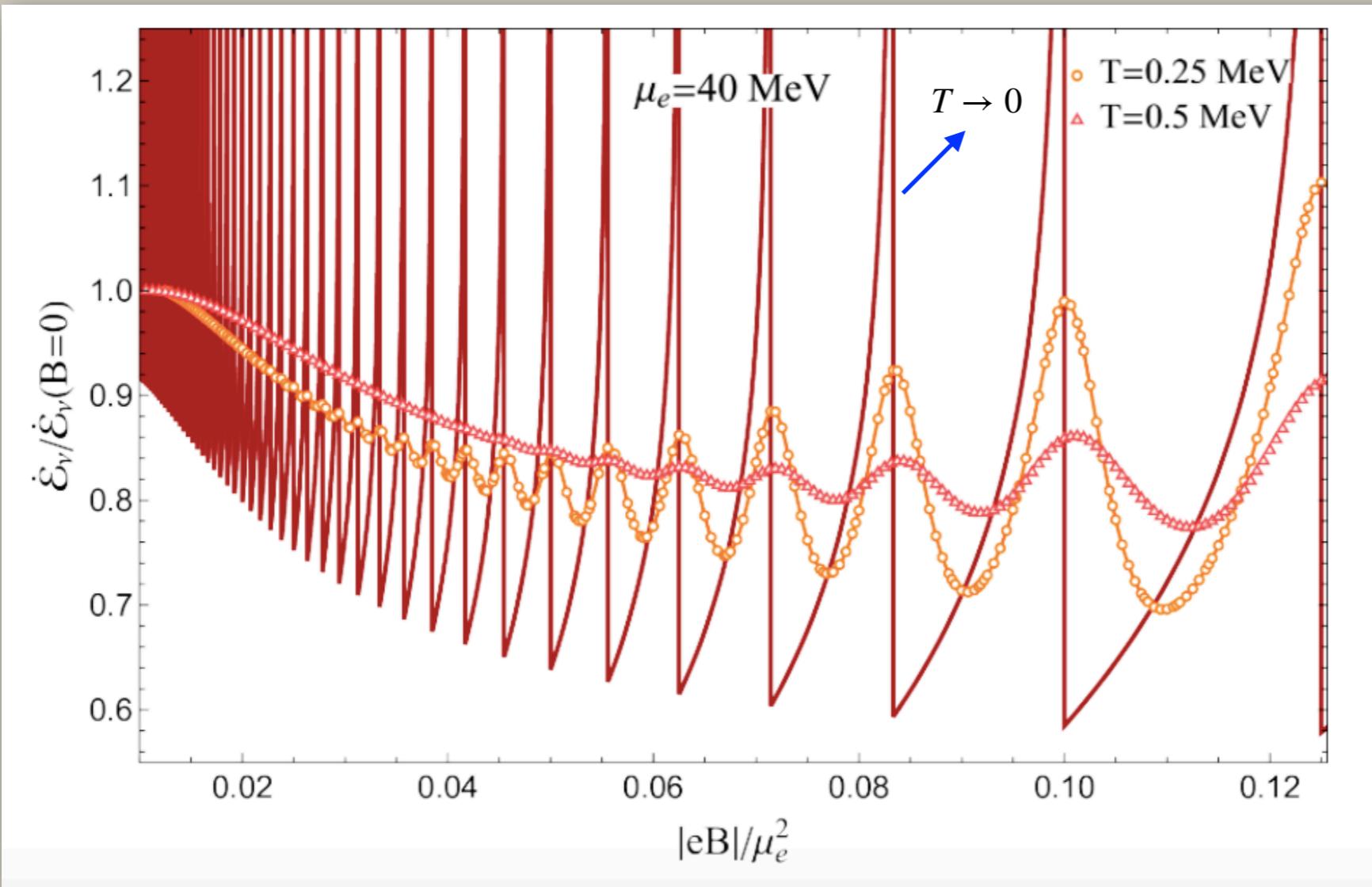
$$T \ll |eB|/\mu_e \quad (\text{Low temperature approximation}) \quad u_n \equiv \mu_e^2 \ell^2 - 2n \quad \ell = 1/\sqrt{|eB|}$$

$$\dot{\mathcal{E}}_\nu^{(0)} = \frac{457\pi N_c G_F^2 \cos^2 \theta_C}{5040} v_F \mu_u \mu_d \mu_e T^6 \left(1 + \frac{\mu_e}{2\mu_u} \right) \\ \times \sum_{n=0}^{n_{\max}} \frac{(-1)^n}{\sqrt{u_n}} \int \frac{\Theta(u_n, v) e^{-v} dv}{\sqrt{u_n + v}} \left(1 - \frac{v_F^2 \mu_e^2 \ell^2}{u_n + v} \right) [L_n(2v) - L_{n-1}(2v)]$$

LLL approximation

$$\dot{\mathcal{E}}_\nu^{(\text{LLL})} \simeq \frac{457\pi^{3/2} N_c G_F^2 \cos^2 \theta_C}{5040 \ell} v_F \mu_u \mu_d T^6 \left(1 + \frac{\mu_e}{2\mu_u} \right) \left(\left(1 + 2v_F^2 \mu_e^2 \ell^2 \right) e^{\mu_e^2 \ell^2} \text{erfc}(\mu_e \ell) - \frac{2v_F^2 \mu_e \ell}{\sqrt{\pi}} \right)$$

Energy emission $T \ll |eB|/\mu_e$



$$B = 1.69 \times 10^{14} \frac{|eB|}{\text{MeV}^2} \text{ G.}$$

■ Divergences as $T \rightarrow 0$

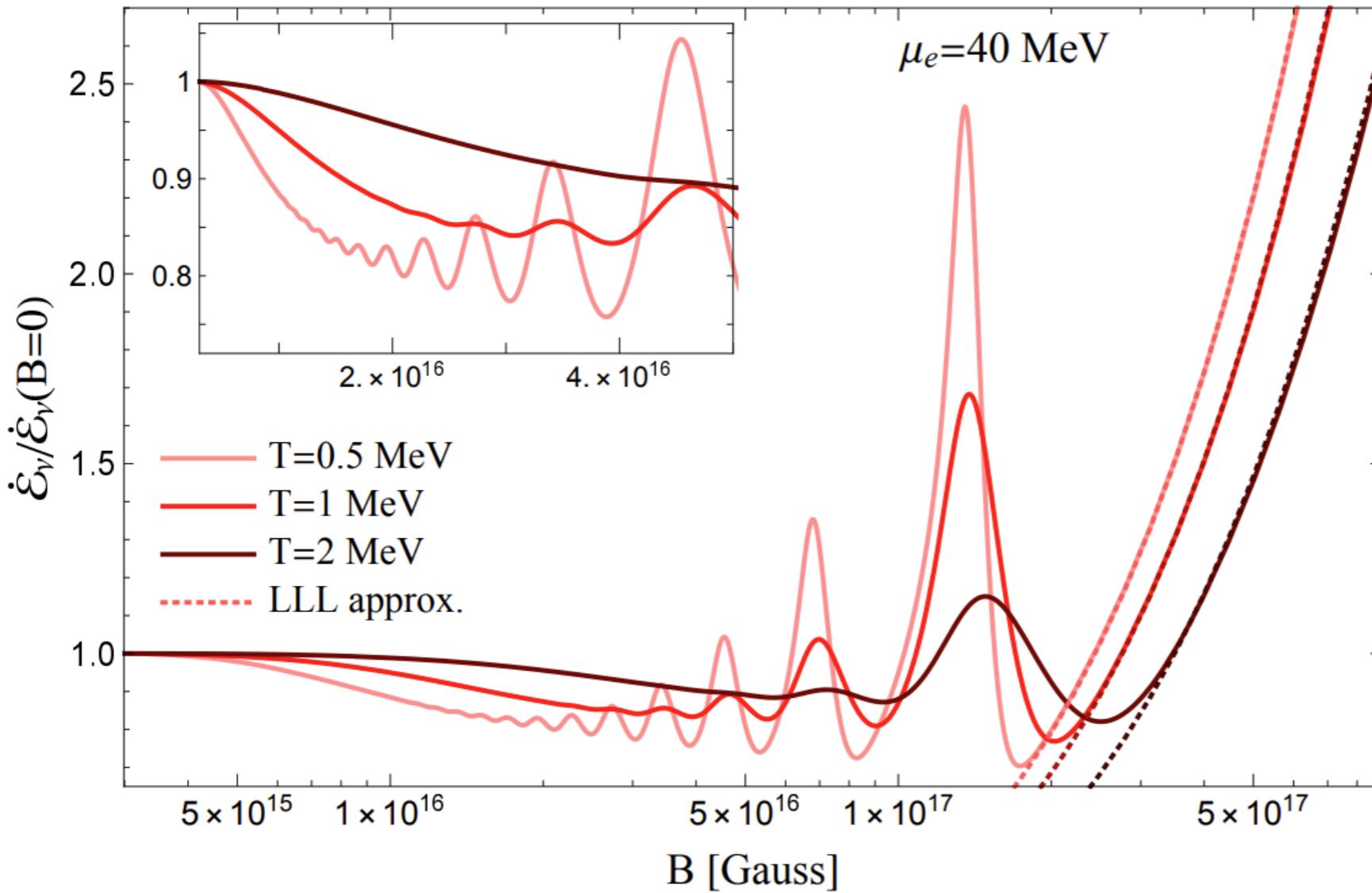
$$|eB|/\mu_e^2 = \frac{1}{2n}$$

- As $T \rightarrow 0$, the energy emission rate exhibits a characteristic sawtooth behavior as a function of $|eB|/\mu_e^2$, with sharp features appearing at Landau-level thresholds.
- Thermal effects wash out the oscillations, leading to a smoother dependence on the magnetic field

Energy emission

[Ghosh, Shovkovy, J. High Energy Phys. 04 (2025) 110]

$$\dot{\mathcal{E}}_\nu = 2 \int \frac{d^3 p_\nu}{(2\pi)^3} p_{\nu,0} \frac{\partial f_\nu(t, p_\nu)}{\partial t}$$

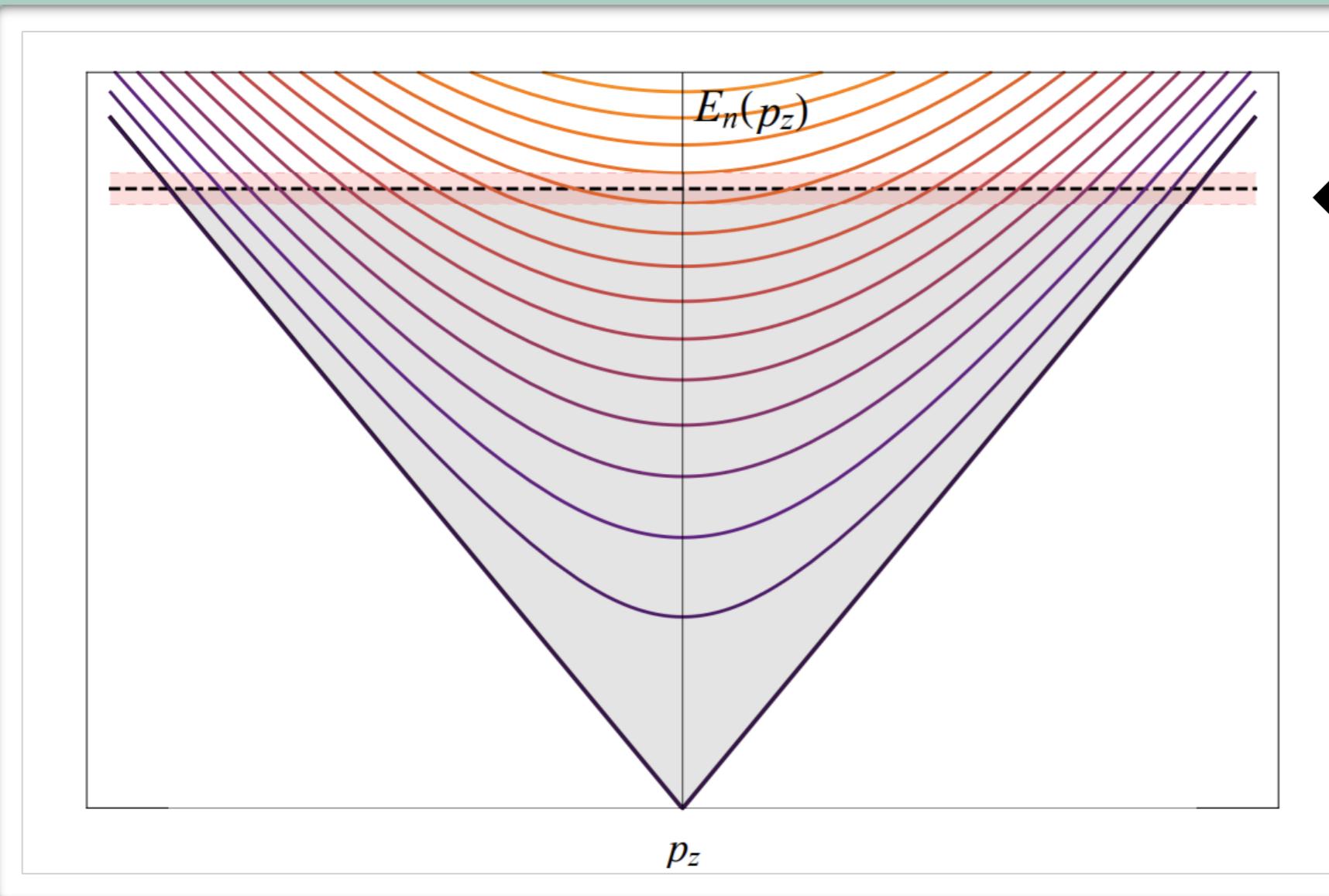


local peaks
occur around
the threshold
values:

$$|eB| = \mu_e^2 / (2n)$$

ELECTRON'S LANDAU-LEVEL SPECTRUM:

- Fermi surface states associated with the LLL ($n = 0$) \rightarrow electron longitudinal momenta are largest in magnitude $|p_{e,z}| \simeq \mu_e$
- LL index increases \rightarrow Fermi surface states move towards $p_{e,z} \simeq 0$



Fermi level

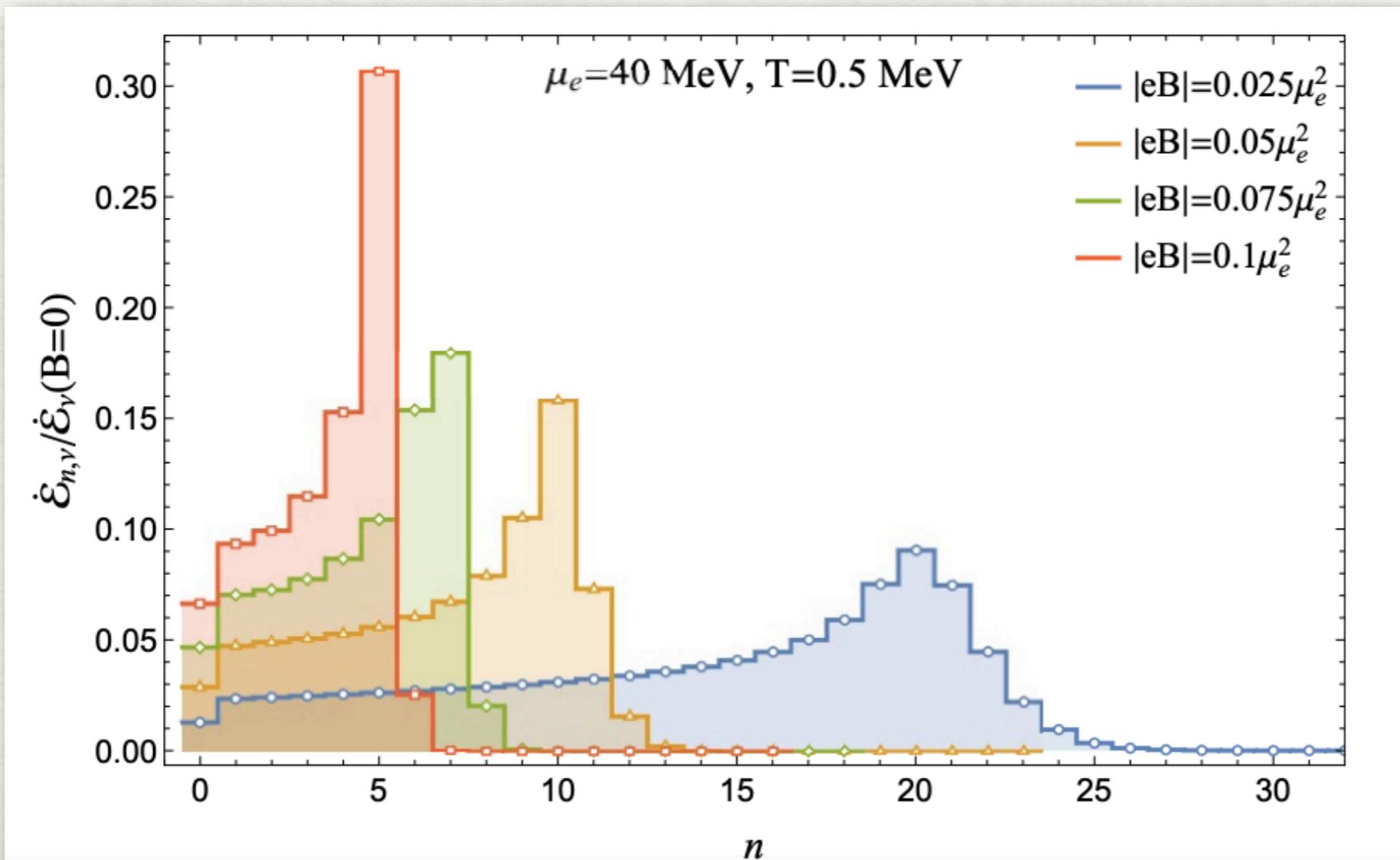
$$|eB| = \mu_e^2 / (2n)$$

12

$$E_{e,n} = \sqrt{2n|eB| + p_{e,z}^2 + m_e^2}$$

LANDAU LEVEL CONTRIBUTIONS TO $\dot{\mathcal{E}}_\nu$

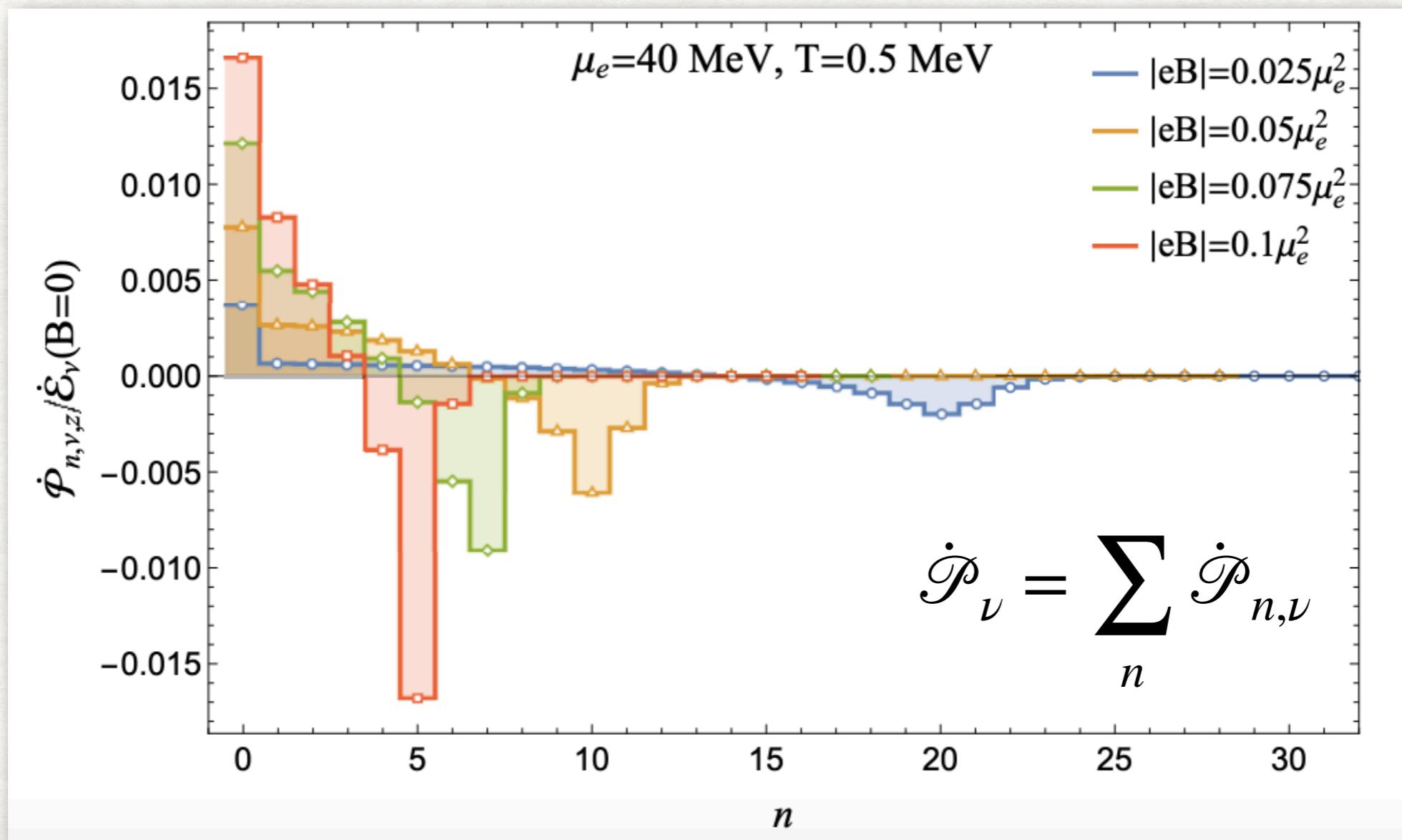
- largest partial contributions originate from electron states at the Fermi surface with the smallest values of $|p_F|$.
 → states are associated with the Landau level whose energy minimum lies closest to the chemical potential.



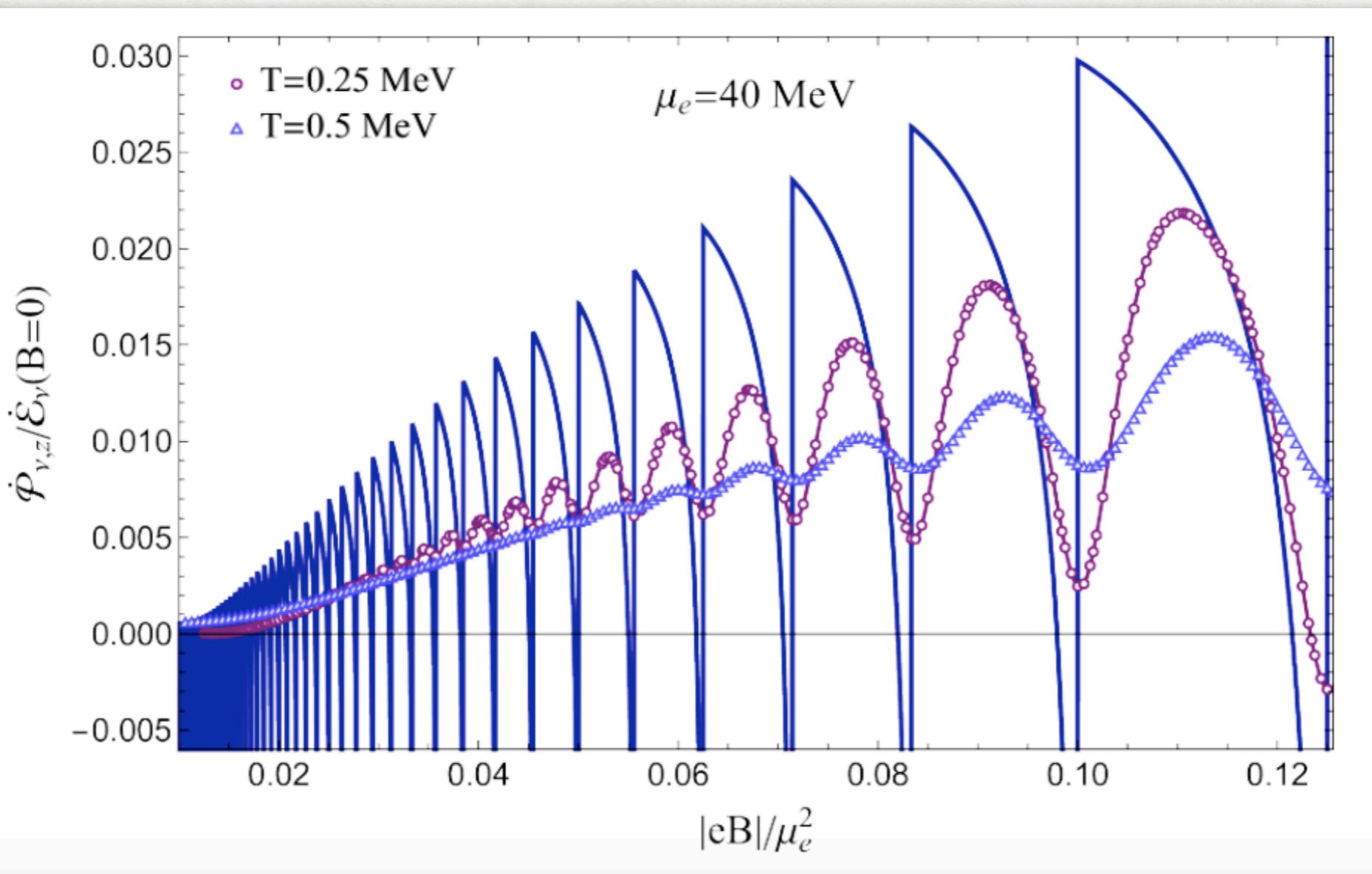
$$\dot{\mathcal{E}}_\nu = \sum_n \dot{\mathcal{E}}_{n,\nu}$$

LANDAU LEVEL CONTRIBUTIONS TO $\dot{\mathcal{P}}_\nu$

- Spin-down polarization of $n=0$ states \rightarrow correlates with the emission of nonzero net momentum in B-direction
- higher Landau levels, states with opposite spins drive neutrino emissions with opposing net momenta



Momentum emission $T \ll |eB|/\mu_e$

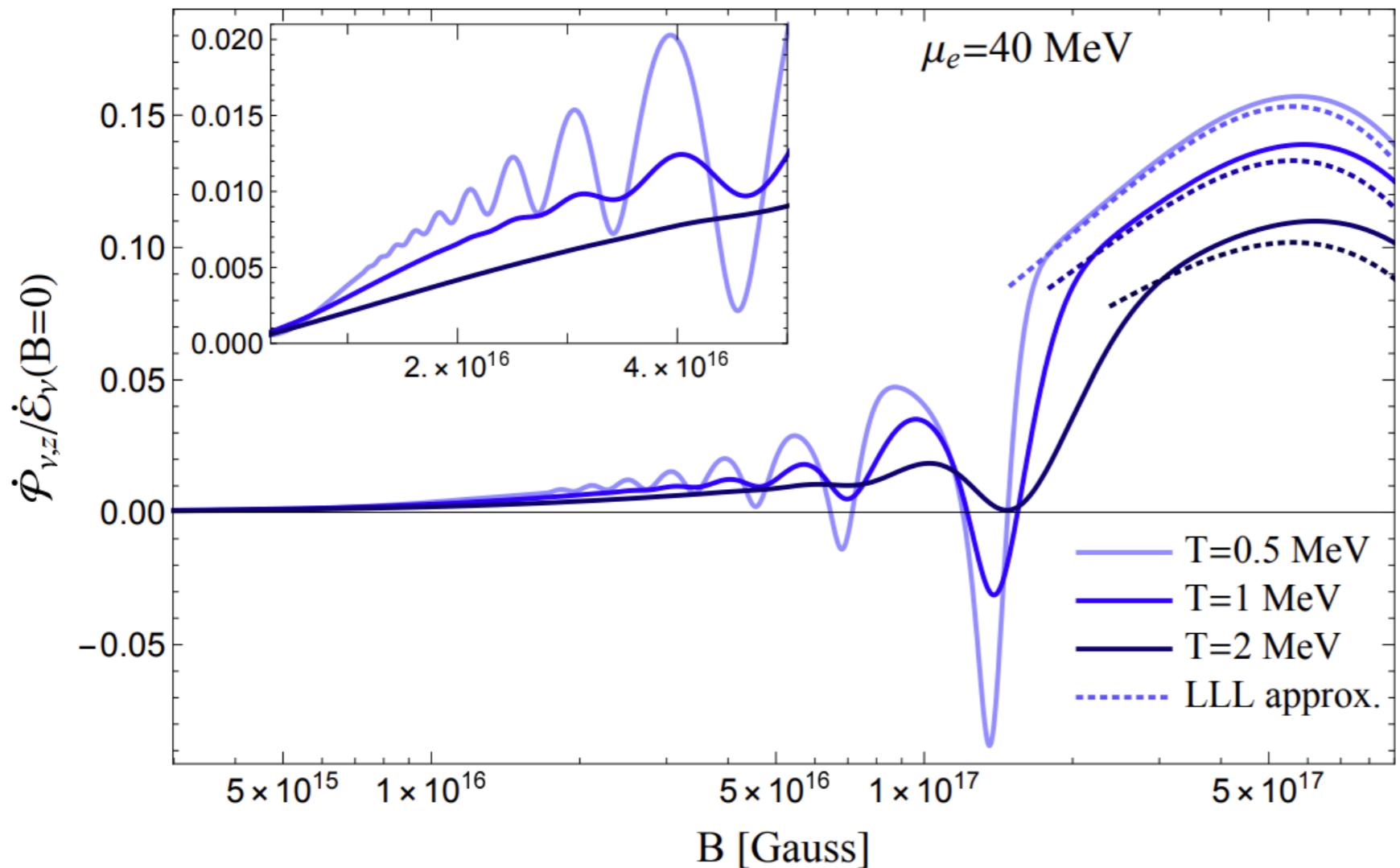


- Divergences as $T \rightarrow 0$
- $|eB|/\mu_e^2 = \frac{1}{2n}$
- momentum emission rate does not have a definite sign

$$\dot{\mathcal{P}}_{\nu,z} = 2 \int \frac{d^3 \mathbf{p}_\nu}{(2\pi)^3} p_{\nu,z} \frac{\partial f_\nu(t, \mathbf{p}_\nu)}{\partial t}$$

Momentum Rate

- * indicates that neutrinos are emitted asymmetrically relative to the magnetic field



Can be negative

- the thermal effects tend to completely wash away oscillations

FERMI-LIQUID CORRECTION

Iwamoto (1980)

Energy-momentum conservation:

$$B = 0$$

$$\vec{k}_d = \vec{k}_u + \vec{k}_e + \vec{k}_{\bar{\nu}}$$

$$k_d \approx v_F \mu_d \quad k_u \approx v_F \mu_u \quad k_e \approx \mu_e \quad k_{\bar{\nu}} \approx T$$

$$T \ll \mu_e \quad \mu_e \ll \mu_u \lesssim \mu_d$$

- Three momenta \vec{k}_u , \vec{k}_d , \vec{k}_e will be collinear without Fermi-liquid correction

FERMI-LIQUID CORRECTION

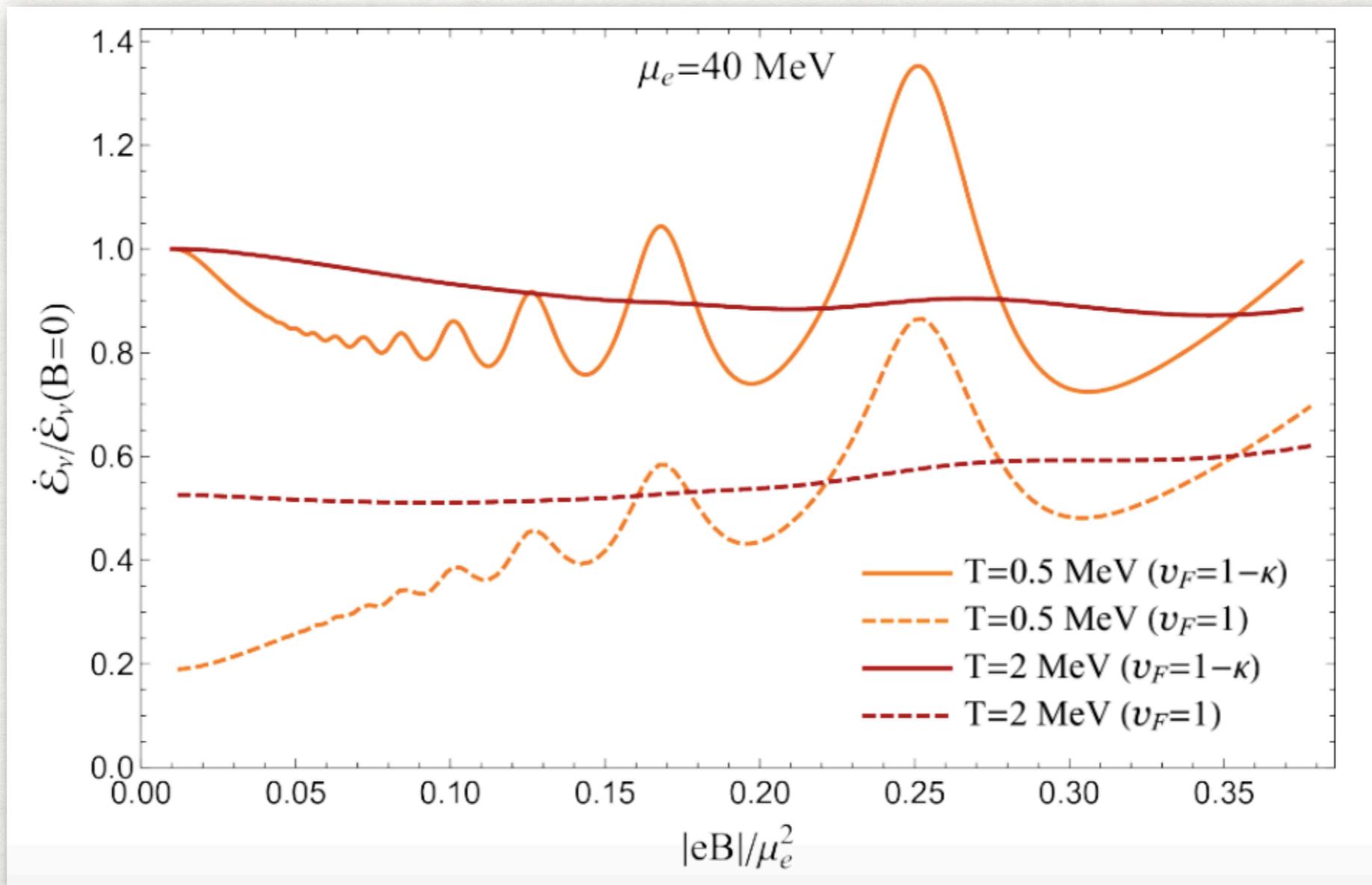
$$E_f = \mu_f + v_F(p - p_F)$$

With Fermi velocity $v_F = 1 - 2\alpha_s/(3\pi)$

[Iwamoto, Phys. Rev. Lett. 44 (1980) 1637], [Iwamoto, Annals Phys. 141 (1982) 1]

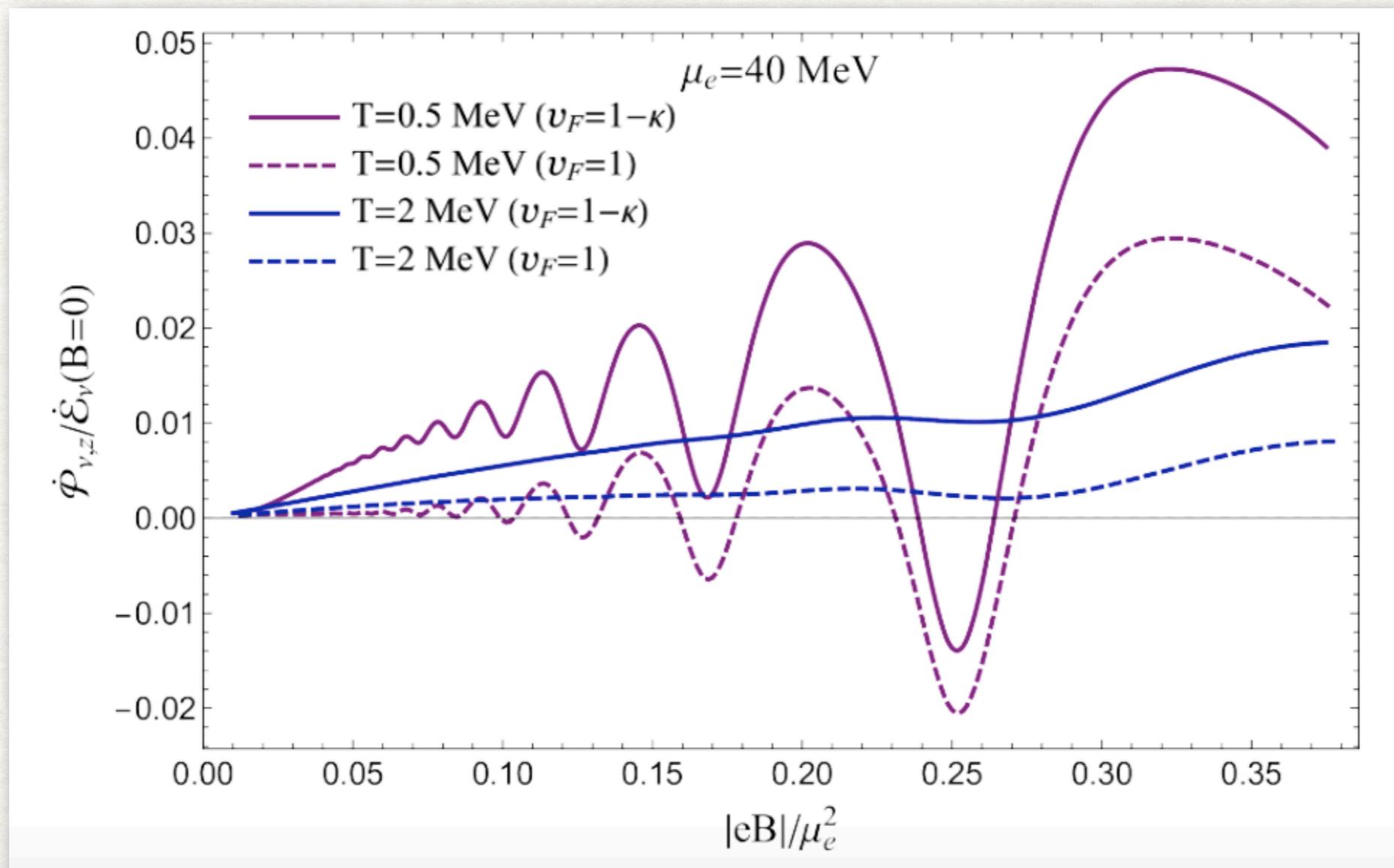
Interplay of B vs Fermi liquid corrections to $\dot{\mathcal{E}}_\nu$

- Weak field $\rightarrow \dot{\mathcal{E}}_\nu$, smaller when Fermi-liquid corrections are omitted
- magnetic field naturally resolves the phase space restriction even without the inclusion of the Fermi-liquid corrections.
the transverse components of the electron momentum are not conserved quantum numbers any longer



Interplay of B vs Fermi liquid corrections to $\dot{\mathcal{P}}_\nu$

- When the quark Fermi-liquid effects are excluded $\dot{\mathcal{P}}_\nu \rightarrow 0$



PULSAR KICK

- * Net non-zero longitudinal momentum emission leads to pulsar kick
- * Estimated pulsar kick velocity:

$$v_k = \frac{4\pi R_c^3}{3M} \int \dot{\mathcal{P}}_{\nu,z} dt = \frac{4\pi R_c^3}{3M} \int \eta \dot{\mathcal{E}}_{\nu} dt,$$

asymmetry in momentum emission

$$\eta \equiv \frac{\dot{\mathcal{P}}_{\nu,z}}{\dot{\mathcal{E}}_{\nu}} \sim 2 \times 10^{-3} \frac{|eB|}{\mu_e T}.$$

- * This results in

$$v_k \simeq 1.9 \text{ km/s} \left(\frac{B}{10^{16} \text{ G}} \right) \left(\frac{M_{\odot}}{M} \right) \left(\frac{R_c}{10 \text{ km}} \right)^3 \left(\frac{40 \text{ MeV}}{\mu_e} \right) \left(\frac{\mu_f}{300 \text{ MeV}} \right)^2 \left(\frac{\Delta T}{10 \text{ MeV}} \right)$$

SUMMARY AND OUTLOOK

- Neutrino emission from dense quark matter is calculated for a plasma in a strong magnetic field from first principles field theoretical method.
- The Landau-level discretization of electron states at the Fermi surface leads to an oscillatory dependence of the neutrino emission rate on the magnetic field strength.
- Pulsar kick velocity is estimated.
- Future direction:
 - color superconducting phases or other phase?
 - other processes?

THANK YOU

