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Introduction

0% pentaquark (uudds) Mg+ ~ 1530 MeV?, Tg+ ~ 15 MeV?

* Predicted from Collective Coordinate Quantization
(CCQ) in the Skyrme+WZW model

(Diakonov, Petrov, and Polyakov, 1997)

 Not found in experiments & Lattice

In a presence of topological terms,

CCQ needs modification (Adkins and Nappi, 1983),
(Cherman et al, 2005)

Modifying CCQ
— New constraints to the multiplets
— 07 in fact do not exist >



Review : Collective coordinate quantization

Usor: Soliton solution, u :== U — Uy : fluctuation

S[U1 = STUsol + [ dt (% (4 Mt — T K) + AT )

Zero modes {&,} € kerK
)

Collective coordinate Uy (X)), &, = 0,Ugq

Naive CCQ : U(t) = U(X%(t)) © u = X*(t)&,

1. .
S el X4 (D] = j dt (EMabXaXb +dczaxa)

particle with metric My, = §LMé&,, vector potential A, = AT¢,
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Review : Skyrme-WZW model

SU(3) Skyrme+WZW model

£2 1 iN,
STUl = LZ L L ¢ MNPQR
L] L ( 16 b t 3552 L A 240712_[ ¢ tr(LulnLpLoLe)
L, =0,UU"

Ny = 1 solution

Uso1(X) = exp(2if (r)n't;)
Zero modes : ug.g = i[Tgeg Usol], (& 0;Usop)

)

SU(3)/U(1) Collective coordinate
Uso1(3) » VU (DVT, V= Vexp(—if8tyg)
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Review : Skyrme-WZW model

CCQ:
Ulx) =V()U;qGOVT(t), V() € SUB) VvV =i0sr,

I, .2 I N
. — _ l _ a2 __ ¢ 8
Snalve[V] fdt (2 (-Q'R) T 2 (-QR) 2\/§ 'Q'R)

i=1,23 a = 4,5,6,7 from the WZW term

Symmetries
SU2)p € SUR)r: 8V = —iVt;, SUR)y : 8V = it V

p() = ) DED L R (V)

SU(3) Wigner D-matrix
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Review : Skyrme-WZW model

1st class constraint © gauge d.o.f V = Vexp(—i68tg)
VR o 2 OLnaive _ N _ 1
V3 008 3
Representation (p,q) must include Y = 1 state
() = (1,1),(3,0),(03),(2,2), ,
N A nop A A0 At At

0
+
- o Y =1
(0,3) has Y = +2, I = 0 state

= 0% pentaquark : (uudds)

(Diakonov, Petrov, and Polyakov, 1997)

However, 8% is not found in experiment & Lattice
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Classification of zero modes

S[U] = S[Ugo1] +j ( (W'Mu —uTKu) + A)Tu + - )

From WZW term
EOM : 6S[U] =~ Mii — Bit+ Ku = 0
B : “magnetic field” from A(u)

u(t) = uy(t) + z ae”temty  + c.c.

m
(—wiM + iw,,B+ K)u,, =0
For zero modes, three types of solutions
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Classification of zero modes

(O Dynamical zero modes
up = (X5 + V§t)&; + Vi
 Kn; = B§; to cancel Bu term (Adkins and Nappi, 1983),

e« B 1 kerK © é'B&. = 0,V&, € kerK is necessar
Si $i Béa $a (Cher}r/nan et al, 2005)

@ Cyclotron zero modes
ug = (Z§ + Witerat)g,
BSy = —ibaMS, (b, # 0)

(3 Constraint zero modes
Ug = Yy'é,

Only time-independent solutions
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Classification of zero modes

Expansion of the action
S[U] — SZ(I‘O + Smassive

1 .. .
S, ero[X9] = j de | GapX X" +oana)

M;; + ] Kn);
Gab — MAB i Mab
0

@ n; contributes to the metric

(2 No kinetic terms for constraint zero modes
=Produce constraints
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Generalized CCQ

(D Classify zero modes
« Dynamical zero modes : §IB¢&; = 0
« Cyclotron zero modes : B¢, = —ibyM&,
« Constraint zero modes : otherwise

@ Replace the kinetic term from the naive CCQ
- Dynamical : M;; - G;; = M;; + 1! Kn;
e Cyclotron : unchanged
« Constraint : remove the kinetic term
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Skyrme-WZW model revisited

In Skyrme-WZW model, §IBé, = —% fabs

i = 1,2,3 are dynamical zero modes

Pi\T)T; N
(o - e
T App(r)Ty,’ ° \— 3 Prp (") fapeTp @ = 4567
a = 4,5,6,7 are constraint zero modes  ~ p; & py

i .2 I N
* S V=fdt—Q‘ + - (F)% — CQ8>
ZeI‘O[ ] (2( R) %KIQ) 2\/§ R
Constraints

6LZ€I‘O

=0
0%

YR =1,0F =
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Skyrme-WZW model revisited

YR = 1, Qg — aLzero -0

a a
R R \%
[Qa:Qﬁ] ~ _l7faﬁ8
QR = 0are 2nd class

How to treat 2nd class constraints?
Let eff = QF FiQE, ef = Q& FiQX
= [ef,ef] =~ [ef,e;] = 0
Assume physical states
efPp=e;p=00refyp=e;h =0
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Skyrme-WZW model revisited

Physical states

efp=efp=00refp=esp=0 | X A
€2 €1

R T — +
[Y ’el] _ iel e e

+ +

Y%, e5] = te;

(ef,ef) raise (lower) YR = YR =Y, .., or Y

nYR=1= Ymax

Only representation with Y., = 1 is allowed
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Skyrme-WZW model revisited

(1,1) and (3,0) are Y. = 1
(0,3) is Y, = 2 = Do not appear as physical state
~ 0% do not exist!!

8 and 10 are the only allowed multiplets .



Conclusion

 There are 3 types of zero modes
 One of them produces constraints
« 07 is prohibited from the constraints

Future works

« Application to other models
« The origin of constraints
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Backup : Non-zero modes

Non-zero modes :
u() = ) ayeionts,

(—w2M + iw,, B + K)E, =0
Features :
« &¢ #+ & N —K interaction# N — K interaction
o &, X kerK

General solution

u(t)
= (XE + V{it)& + YEE, + (24 + Wile—tbat)é,

+ Z ane temtE +c.c.
m
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Backup : Mode expansion

Expand the action in Hamiltonian formalism
Slu, 7] = jdt(nTu — H(u,m))

1
Hurn) = > (r—ATM(r - A) +u"Kuw)
u(t) = X' + Vi + Y*()E, + ZA()E, + Z A () &m + c.C.

7(t) = VE(OME; + WADME, + Z —iw,, a, ME,, + c.c.+A)
S[u, ] = S,p0 + Z S[a™]

Sla™] « fdt (=Im(a) ) — wparh )
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Backup : Mode expansion

Expand the action in Hamiltonian formalism

SZGI‘O
[ i 7 j 1 ivj
=J dt (gUV +cAl)X —EgUVV
: 1 :
+ f dt | (M gW4 + AL ZB —EMABWAWB) + j dtA, Y

Integrating out Vi, W4,

1 ... 1 g . .
Spero = J de (5 9y X' X + 5 MapWAWP + AR+ AV + AAZA)
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Backup : Other approach

Other possibility :
6t = N — K bound or resonance state?

Analysis of oscillating modes
= already done in bound state approach

Neither bound states nor resonance are found
Callan, Hornbostel, and Klebanov (1988), Itzhaki et al (2004)
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Backup : meson mass

Including meson mass term
Lmass ¢ Tr(Re(MU)), M = diag(m2, m2, m%)
@O SU(3) coordinates
« Mass term= potential term of V(¢t)
& interaction with massive modes
e Structure of the kinetic term unchanged
The constraints are remained valid

@ SU(2) coordinates
S # 0 baryons © massive bound states
Discussed in Bound state approach
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