

Status report

2025/08/07 ZDC Internal WAI YUEN CHAN

We have 2 parts in the algorithm:

- 1. Regression
 - We train to model to learn the general showering pattern in ECAL
- 2. Generator
 - We generate fake samples with noise to push the model to learn more details about the pattern (GAN)

Recap: Testing results

New developments

- 1. Input parameters changed from Energy only to [Energy, Px, Py, Pz, theta, phi]
- 2. Instead of checking the testing results, we compare the MC and MASK distribution in the same energy range.
- 3. Based on the comparison, we plot the MSE (Mean-Square-Error) loss vs Energy.
- 4. Optimize the MSE loss

Development 1: Input distribution

We have check the input distribution to learn more about our input data.


```
ionCrossingAngle = -0.025 * radian
ZDC_r_pos = 35500
ZDC_x_pos = ZDC_r_pos * math.sin(-0.025)
ZDC_y_pos = 0
ZDC_z_pos = ZDC_r_pos * math.cos(-0.025)
shift = 0
```

```
SIM.gun.position = (ZDC_x_pos-shift, ZDC_y_pos-shift, ZDC_z_pos)
SIM.gun.thetaMin = ionCrossingAngle - 25* degree #Later try 0
SIM.gun.thetaMax = ionCrossingAngle + 25* degree
SIM.gun.phiMin = 0* degree
#SIM.gun.phiMax = 0* degree
SIM.gun.phiMax = 180* degree
```

Development 1: Input distribution (Train Sample)

Development 1: Input distribution (Train Sample)


```
ionCrossingAngle = -0.025 * radian
ZDC_r_pos = 35500
ZDC_x_pos = ZDC_r_pos * math.sin(-0.025)
ZDC_y_pos = 0
ZDC_z_pos = ZDC_r_pos * math.cos(-0.025)
shift = 0
```

```
SIM.gun.position = (ZDC_x_pos-shift, ZDC_y_pos-shift, ZDC_z_pos)
SIM.gun.thetaMin = ionCrossingAngle - 25* degree #Later try 0
SIM.gun.thetaMax = ionCrossingAngle + 25* degree
SIM.gun.phiMin = 0* degree
#SIM.gun.phiMax = 0* degree
SIM.gun.phiMax = 180* degree
```

Development 1: Normalisation

Input parameters changed from Energy only to [Energy, Px, Py, Pz, theta, phi].

Related normalization function has been added into the input and the encoder in the CNN.

In principle we normalize them into [0,1], which is much easier for the model to handle during the training.

```
# Separate energy (column 0) and the rest (columns 1-5)
energy = mcPar_np[:, 0].reshape(-1, 1) # [num_entries, 1]
others = mcPar_np[:, 1:] # [num_entries, 5]

# Normalize energy separately with min-max (to [0, 1])
energy_min = energy.min()
energy_max = energy.max() + 1e-8 # Avoid division by zero if max == min
normalized_energy = (energy - energy_min) / (energy_max - energy_min)

# Normalize the rest with z-score
others_mean = others.mean(axis=0)
others_std = others.std(axis=0) + 1e-8
normalized_others = (others - others_mean) / others_std
```

Mathematical Formula

For each energy value E_i in E:

$$E_{ ext{norm},i} = rac{E_i - E_{ ext{min}}}{E_{ ext{max}} - E_{ ext{min}}}$$

where:

- ullet $E_{\min}=\min(E)$: the minimum energy value across all events.
- $E_{
 m max}={
 m max}(E)+10^{-8}$: the maximum energy value, with a small constant (10^{-8}) added to avoid division by zero if $E_{
 m max}=E_{
 m min}$.
- $E_{\mathrm{norm},i}$: the normalized energy value, guaranteed to be in [0,1].

Mathematical Formula

For each parameter $O_{i,j}$ in O, where i is the event index and j is the parameter index (1 to 5):

$$O_{\mathrm{norm},i,j} = rac{O_{i,j} - \mu_j}{\sigma_i}$$

where:

- ullet $\mu_j = \operatorname{mean}(O[:,j])$: the mean of the j-th parameter across all events.
- $\sigma_j=\mathrm{std}(O[:,j])+10^{-8}$: the standard deviation of the j-th parameter, with a small constant (10^{-6}) added to avoid division by zero if $\sigma_j=0$.
- $O_{\mathrm{norm},i,j}$: the normalized value of the j-th parameter for the i-th event.

This results in each column of $O_{
m norm}$ having a mean of 0 and a standard deviation of approximately 1 (unless clipped by the small constant).

Development 1 : Pre-encoding

We also added the Feature-wise Linear Modulation (FiLM) layer in order to shift the input features without changing the dim, and added a ReLU function to transform the encoder input (As the encoder didn't perform well while handling 6 inputs...)

```
class FiLM(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.scale = nn.Linear(dim, dim) # Scale from encoded params, dim=hidden_dim
        self.shift = nn.Linear(dim, dim) # Shift from encoded params

def forward(self, x, cond):
    # cond should be [batch_size, hidden_dim] from param_encoder
        scale = self.scale(cond).unsqueeze(-1).unsqueeze(-1) # [batch, dim, 1, 1]
        shift = self.shift(cond).unsqueeze(-1).unsqueeze(-1)
        return x * (1 + scale) + shift
```

```
self.param_encoder = nn.Sequential(
   nn.Linear(6, hidden dim*2), # Direct to hidden dim
   nn.ReLU(),
   nn.Linear(hidden dim*2, hidden dim*4) # Ensure output is hidden dim
self.encoder = nn.Sequential(
       #nn.Linear(6, hidden dim*4),
       LinearBlock(hidden_dim*4, hidden_dim*4, 4),
       LinearBlock(hidden_dim*4, hidden_dim*9, 4),
       nn.Unflatten(1, (hidden_dim, 3, 3)), # (3, 3)
       nn.ConvTranspose2d(hidden_dim, hidden_dim, kernel_size = (3, 3))
       stride = (1, 1), padding = (0, 0)), # (5, 5)
       Conv2dBlockH3W3(hidden_dim, hidden_dim*2),
       Conv2dBlockH3W3(hidden_dim*2, hidden_dim*4),
       PixelShuffle2D(2, 2), # (10, 10)
       Conv2dBlockH5W5(hidden_dim, hidden_dim*2),
       Conv2dBlockH5W5(hidden dim*2, hidden dim*4),
       PixelShuffle2D(2, 2), # (20, 20)
       Conv2dBlockH5W5(hidden_dim, hidden_dim),
       Conv2dBlockH5W5(hidden_dim, hidden_dim)
self.film_cond_linear = nn.Linear(hidden_dim*4, hidden_dim)
self.film = FiLM(hidden_dim)
```

Development 2: Hit distribution per energy range

We compare the test results in this histogram instead.

MASK: Average Mask probability per cell, using the test sample with the trained model.

MC: Average hit probability per cell, from G4 sim directly.

Here we group events per 100 MeV.

Based on the histogram we have across 0 to 20000 MeV, we can calculate the MSE loss between MC and MASK.

Development 3: MSE loss without normalisation

Now we can compare the MSE loss between different model.

- Here Test 24 use 6 inputs but no normalization and smoothing (development 1)
- Cleanly the model didn't perform well as the energy increasing.

Development 3: MSE loss with Normalisation

Applying the normalization etc, we can see the improvement (Check the scale at Y-axis)

 However, with more iteration the MSE loss become worse, especially at high energy range.

Development 4: MSE loss with variable hyperparameters

- We try to add a hyperparameter to variable the noisy level of the Generated samples along the epochs during the training, multiplying the noise strength by 0.7 to 1.0.
- Using OneCycleLR to change the LR along the iteration (See next page)

Sample Name	Hyperparameters
Test 25	Iterating DIS: GEN = 1:5
Test 26 LR4	Iterating DIS: GEN = 1:1 Max GEN LR = 9e-4 Max DIS LR = 1e-3 Pct_strat = 0.35
Test 26 LR4 NS1	Same as LR4 but noise strength always = 1.0
Test 26 LR6	Max GEN LR = 1e-3 Pct_strat = 0.8
Test 26 LR8	Max GEN LR = 7e-4

Development 4: Learning Rate cycle

- We have 50 epochs (244 steps for 1 epoch).
- Pct_start change the timing to reach the Max LR.

Sample Name	Hyperparameters
Test 26 LR4	Iterating DIS: GEN = 1:1 Max GEN LR = 9e-4 Max DIS LR = 1e-3 Pct_strat = 0.35
Test 26 LR6	Max GEN LR = 1e-3 Pct_strat = 0.8

Development 4: Learning Rate vs loss GEN/DIS (LR4 v LR6)

- We can see a little bit improvement by changing the LR cycle (diverges delay ~ 2 epochs)
- But the MSE loss become worse overall.

Development 4: Learning Rate vs loss GEN/DIS (LR4 v LR6)

- We can see that the loss GEN/DIS was trying to converge but eventually failed then diverge.
- The MSE loss got worse at the low and high energy range.

Outlook

- We can now use the MSE loss to check the energy dependence in the model.
- We try to optimize the MSE loss, as the MSE loss become worse at high energy range always.
- In fact the MSE loss alright low enough (< 0.002 in general), and we can't easily improve the MSE loss at the high energy range.
- On-going task:
 - Try to reverse the Max LR for GEN and DIS (LR9)
 - Generating a much larger samples (250M)
 - Remove the GAN part and see the training result with regression part only.
- If LR9 didn't work then we are gonna use LR4 setting and see can we improve the MSE loss at high energy range with training with 250M samples.

Development 1 (Test Sample)

Development 1 (Test Sample)


```
ionCrossingAngle = -0.025 * radian
ZDC_r_pos = 35500
ZDC_x_pos = ZDC_r_pos * math.sin(-0.025)
ZDC_y_pos = 0
ZDC_z_pos = ZDC_r_pos * math.cos(-0.025)
shift = 0
```

```
SIM.gun.position = (ZDC_x_pos-shift, ZDC_y_pos-shift, ZDC_z_pos)
SIM.gun.thetaMin = ionCrossingAngle - 25* degree #Later try 0
SIM.gun.thetaMax = ionCrossingAngle + 25* degree
SIM.gun.phiMin = 0* degree
#SIM.gun.phiMax = 0* degree
SIM.gun.phiMax = 180* degree
```


Development 3

