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The “Naive” Drell-Yan process

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*
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Viewed from the dimuon rest-frame
(back-to-back muon pair)



Transverse polarization in the “Naive” Drell-Yan

VoLUME 25, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AucusTt 1970

(3) The virtual photon will be predominantly

transversely polarized|if it is formed by annihi-

lation of Epin-% parton-antiparton pairs. This
means a distribution in the di-muon rest system
varying|as (1 +cos?§) rather than sin®0|as found
in Sakurai’s'® vector-dominance model, where 6
is the angle of the muon with respect to the time-
like photon momentum. The model used in Fig.




Drell-Yan angular distribution
Lepton Angular Distribution of ““naive” Drell-Yan:

do
—=0,(1+Acos’0); A=1
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Why 1s the lepton angular distribution
1+ cos?0?

Helicity conservation and parity conservation
/ K RL - RL
B do ~ (1+cosb)’
q — i 6 — q
RL - LR
f Dilepton do ~ (1-cos8)’
rest frame

ut LR — LR
do ~ (1+cos )’

Adding all four helicity configurations:
LR - RL

do ~1+cos* 6

do ~ (1-cos @)’



Drell-Yan lepton angular distributions for p+ > 0

© and ® are the decay polar
e - hy and azimuthal angles of the ur
K in the dilepton rest-frame

e Collins-Soper frame

A general expression for Drell-Yan decay angular distributions:

( : j(daj :{i}{l+lcosz 0 + 15in 26 cos ¢ + - sin’ 900324
o )\ dQ 4r 2

Lam-Tung relation: 1-A4 =2v

— Reflect the spin-1/2 nature of quarks
(analog of the Callan-Gross relation 1n DIS)

— Insensitive to QCD - corrections



Decay angular distributions in pion-induced Drell-Yan
(lj(j—g) = {%_ {1 +Acos” @+ psin 26 (:osgzﬁﬁtgsin2 6 cos 24
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Decay angular distributions in pion-induced Drell-Yan
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Is the Lam-Tung relation (7-A-2v=0) violated?
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Violation of the Lam-Tung relation in NA10 and E615 suggests interesting

new origins (Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Miiller,

Eskolar, Hoyer,Vantinnen, Vogt, etc.)
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QCD vacuum effects
Brandenburg, Nachtmann & Mirkes, Z. Phy. C60,697(1993)

Nontrivial QCD vacuum may lead to correlation between the
transverse spins of the quark (in nucleon) and the antiquark (in

0

1.5
k7| in GeV

qgq spin density matrix contains terms:
Hy.(&-éi)(&-éj) and
~ 2(Hy,—-H,))

1+ H,,

| 4

PT

4 4

VxR 2k = 2K
pT‘I_mT

A1, u~0

k,=0.17, m:=1.5

The helicity flip in the instanton-induced contribution may lead to

nontrivial vacuum and violation of the Lam-Tung relation.
Boer,Brandenburg,Nachtmann&Utermann, EPC40,55(2005).

e I his vacuum effect should be flavor blind.



Boer-Mulders functionh.” @ - &

e Boer pointed out that the cos2¢ dependence can be caused by

the presence of the Boer-Mulders function.

1 7. L
e /i~ can lead to an azimuthal dependence with v oc (}} j(}} j
‘ ‘ ‘ ‘ 1 1

0.4

v 0.35F /

0.3r- J

* The violation of the Lam-
| | Tung relation is due to the

Vo
presence of the Boer-
Mulders TMD function
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Boer, PRD 60 (1999) 014012

The puzzle 1s resolved. It also leads to the first
extraction of the Boer-Mulders function 0




Azimuthal cos2® Distribution in p+d Drell-Yan

Lingyan Zhu, JCP et al., PRL 99 (2007)
082301; PRL 102 (2009) 182001
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With Boer-Mulders function h;
V(W= X)~ [valence h; ()] * [valence h; (p)]
V(pd=> r+1-X)~ [valence h;*(p)] * [sea hy " (p)]

Sea-quark BM function is much smaller than valence BM function |,




Angular distribution data from CDF Z-production
p+p—oe +e +X at v/s =1.96 TeV
arXiv:1103.5699 (PRL 106 (2011) 241801)
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» Strong pr (qr) dependence of A and v

e Lam-Tung relation (1-A = 2v) is satisfied within
experimental uncertainties (Boer-Mulders function
1s not expected to be important at large p) 12



CMS (ATLAS) data for Z-boson

production 1 p+p co. 1151011 at 8 TeV
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0.8 r ® ] 0.8:— o CMS,y=1.0
0.6 * )\ e CMS,y=1.0 0-6? \4 ' %
0.4 f a o CMS,y=21.0 * 04 . * +
02 . | 30'2} !Q
0Ff 0 [
I u ] I
02| ’ ] —0.2:—
I é ] —0.4 |
-0.4 | P N R H S SN B
] 0 50 100 150 200 250 300
0 50 100 . (f;e\/) 200 250 300 g, (GeV)

(arXiv:1504.03512, PL B 750 (2015) 154)

Striking q, (pr) dependencies for A and v were observed at
two rapidity regions (with very weak dependence on the
rapidity). Both A and v data can be described by pQCD

Is Lam-Tung relation violated?




Recent data from CMS for Z-boson production
in p+p collision at 8 TeV
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* Yes, the Lam-Tung relation 1s violated (1-A > 2v)!

e Can one understand the origin of the violation of
the Lam-Tung relation (It cannot be due to the
Boer-Mulders function)? 14



Interpretation of the CMS Z-production results

Z—g oc (14 cos” 6?)+%(1—3cos2 0) + A sin26cos ¢

+ %sin2 Ocos2¢+ A, sinfcosd+ A, cosd

+ A sin” Osin2¢ + A, sin20sin ¢ + A, sin Osin ¢
Questions:
e How 1s the above expression derived?
e Can one express 4, — A, in terms of some quantities?
e Can one understand the g, dependence of 4, 4,, 4,,etc?
e Can one understand the origin of the violation of Lam-Tung relation?
_2-34, 24,

2+4, 2+ 4,

A

; L-Trelation, 1-A4 =2v, becomes 4, = 4,

15



How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame
1) Hadron Plane

e Contains the beam P, and target P. momenta
e Angle f satisfies the relation tan f=¢q,/Q

S 1s independent of the production mechanism

e () 1s the mass of the dilepton (Z)

e wheng, >0, 8 —>0;

when g, = o, f — 90

Gottfried-Jackson frame: Z is along the P, direction

U-channel frame: Z is along the - P, direction

(Making unequal angles of 0 and 2/3) 16



How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame

1) Hadron Plane

e Contains the beam P, and target P, momenta
e Angle /3 satisfies the relation tan S =¢q, /O

2) Quark Plane

e ¢ and ¢ have head-on collision along the z’ axis

7z
Quark £ /ans

e Z' and Z axes form the quark plane

e Z' axis has angles 6, and ¢, in the C-S frame

e Z' direction depends on the production mechanism and cannot be measured

e In the Leading-order (naive) Drell-Yan Z' direction is along z (6 =0)

17



How is the angular distribution expression derived?

Define three planes in the Collins-Soper frame
1) Hadron Plane

e Contains the beam P, and target P, momenta
e Angle [ satisfies the relation tan B =¢q, / Q

2) Quark Plane
¢ ¢ and g have head-on collision along the Z’ axis

e Z' axis has angles 6, and ¢, in the C-S frame

3) Lepton Plane
e /" and I" are emitted back-to-back with equal |P |

e /" and z form the lepton plane

e /" 1s emitted at angle @ and ¢ in the C-S frame
18



How is the angular distribution expression derived?

What is the lepton anqular distribution
with respect to the 2’ (natural) axis?

do
——oc 1+ acos @, +cos’ 6,

d ()
| Azimuthally symmetric ! |

How to express the angular
distribution in terms of 6 and ¢?

Use the following relation
(addition theorem):

cos @, =cosdcosf +sinfsin G, cos(¢—¢,)

19




How is the angular distribution expression derived?

do
——oc 1+ acos b, +cos” 6,

dQ)
cos g, =cos@cosO +sindsin b cos(¢—¢,)

do 5 sin’
— X (1 +cos”0) +

1 —3cos0
e ( Ccos“0)

1
+ (5 sin 261 oS ¢1) Sin 26 cos ¢

1
+(3 sin’ 01 cos 2¢1) sin® 6 cos 2¢
+ (asinfq cos¢1) sind cos ¢ + (acosdq)coso

1
+ (5 sin’ 01 sin2¢1) sin® O sin 2¢

1
+ (5 sin 2601 sin¢1) sin 260 sin ¢

+ (asinfq sin¢q) sind sing.

20



All eight angular distribution terms are obtained!

do o (14 cos?6) +
d2

. 9
sin“ 6o
L (1 = 3cos?6)

1
+ (5 sin 261 cos ¢1) Sin 26 cos ¢

1

+ (5 sin’ 61 cos 2¢1 ) sin® 6 cos 2¢

+ (asin®q cos ¢1) sinf cos ¢ + (acosbq) cosd
1

+ (5 sin’ 01 sin 2¢1) sin® 6 sin 2¢
1

+ (5 sin 261 sin¢1) sin 26 sin ¢

+ (asinfq singq) sin@ sing.

do
dQ)

— oc (1+cos’ 6’)+%(1—3cos2 0)

+ A, sin26cos ¢

+ % sin® @ cos2¢

+ A,sinfcos¢ + A, cosl
+ A, sin” @sin 2¢

+ A, sin20sin ¢
+ A4, sin@sin ¢

A, — A, are entirely described by 6, ,¢, and a

21




Angular distribution coefficients Ay — A,
A, = <sin2 91>

A = %(sin2¢91 cos¢1>
A, :<sm o, cos2¢1>

A, = a<sm 0 cos ¢1>
A, = a<cos 6’1>

<sm2 o, sin 2¢1>
=

sin 26, sin ¢1>

A a<sm9 sin ¢1>

22



Some implications of the angular distribution

coefficients A, — A,

A4, = <si1r12 91>

A = %(sin 20 cos ¢, >

A, :<sm o cos2¢1>
A4, = az(smé’1 cos¢1>
A, = <cos<91>

A =

=a <s1n 0, sin ¢1>

o4, =2 A4, (or1-A-2v =0)

e Lam-Tung relation (4, = 4,)

1s satisfied when ¢, =

e Forward-backward asymmetry, a,

1s reduced by a factor of <cos 6’1> for 4,

e Some equality and inequality relations

among A, — A, can be obatined

23



Some implications of the angular distribution
coefficients A, — A,
A, :<sin2 91>
| Some bounds on the
A :5<sin 26,cos¢)  coefficients can be obtained

A, :<sin2 0, cos2¢1> 0<4,<1
A, =a(sin 6, cosg,) ~1/2 <4,<1/2
A4=a<cos<91> 1< 4 <1
A :l<sm26? sin2¢> o
o I 1 _CISA3 <a
A, :%(st@ sin g, ) —a<A4,<Za
:a<sm6? sm¢1>

24



What are the values of 8, and ¢, at order a?
) g7 = 7y (Z%g In ¥* rest frame (C-S)

(T)
g /
9 [
B\ ,
(T) g >
q 9 . Pg Pr !
60,=pF and ¢,=0;|A,=A,=sin’B
22734y _20°-qr 24, 24,

T 244, 20°+3¢2° 244, 20°+34



What are the values of 8, and ¢, at order a?
2) qg = 7" (Z%)q In y* rest frame (C-S)

0,>p and $,=0; 4,=4,~5¢; (0° +5q¢7)

2734 20° -5q; Lo 24 10g;
2+ A4, 20°+15¢;° 2+ 4, 20°+15q;

26



Compare with CMS data on A
(Z production in p+p collision at 8 TeV)

2 2 2
os [ RN A= Q2 qu for qqg —> Zg
T 207 +3q;
0.6 |- """. e CMS,y=1.0 2 g, 2
HRAR : A= 2Qz SQTz for qG — Zg
o4t N o CMS,yz1.0 - 20° +15¢;
~ ]
> For both processes
o1 A — 1 at qT= O (91=00)
0.2 |- A=-1/3 at Q= °° (91=900)
—0.4 -
s @o o | Data can be well described

with a mixture of 58.5% qG
The scaling variable is ¢,. /O |[and 41.5% qq processes

O 1s the mass of dilepton

27




Compare with CMS data on v
(Z production in p+p collision at 8 TeV)

1\\\\\\\\\\\\‘\
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Lo 24, s A, = <sin2 6, cos 2¢51>;A2
2+ 4,

when ¢ =0, then

<sin2 6’1>

for gg > Zg

IOqi
V= 2 2
20° +15¢;

for ¢G — Zg

Dashed curve corresponds to
a mixture of 58.5% ¢gG and 41.5%
qq processes (and ¢ =0)

Solid curve corresponds to

<sin2 6, cos2¢, >/<sin2 (91> =0.77 (¢ #0)

¢, # 0 implies that the g - g axis 1s not on the hadron plane

What can cause ¢, #0? 28




Origins of the non-coplanarity

1) Processes at order ¢ or higher

2) Intrinsic k from interacting partons

(Boer-Mulders functions in the beam and target hadrons)

29



Compare with CMS data on Lam-Tung relation

1
® CMS, ByBQ
0 CMS, ByBO1

Solid curves correspond to
a mixture of 58.5% ¢G and
1T o | |41.5% gg processes, and

<sin2 0, cos 2¢1> / <sin2 6’1> =0.77

Violation of Lam-Tung relation
Is well described with a finite
non-coplanarity angle

1-A-2v
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1-A-2v

Compare with CDF data
(Z production in p + p collision at 1.96 TeV)

b\ o coF @ Solid curves correspond to
W a mixture of 27.5% gG and
72.5% qq processes, and

<sin2 0, cos 2, >/<sin2 91> =0.85
(¢ #0)

Violation of Lam-Tung
relation is not ruled out
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How do the angular coefficients A, — A, depend on

A4, = <si1r12 91>
A = %(sin 20, cos ¢1>

A, = <sin2 0, cos 2¢1>

the rapidity?

e 4, and 4, depend on sin’@,, which is
independent of the sign of sindg,.

e A, A, and A, are linear functions of
sin@, (or cosd,) and can depend on the
sign of sin@, (or cosd,), which depends on rapidity
(for details, see Phys. Rev. D 96 (2017) 054020)

A4, = a(sin 6, cos ¢1>
A, =a <cos ¢91>

<sm2 @ sin 2¢1>
=

sin 26, sin ¢1>

Q [\)|._ [\.)|»—d

<s1n 0 sin ¢, >

IIII|IIII|I
'__[u
S L Iyi=1.0
“'5__ O , 1.0<]yk2
o__ ___________________
_::::I::::I:: -+
()] 7]
™ r | — T
0.5 - —
0/ _____________________
I BT BT
_IIII|IIII|IIII|I
0.3 (c) .
0.2 ——
o + J] E

A4, and 4, depend on

sin’,, which is independent
of the sign of sing,, and

hence independent of the

rapidity, in agreement
with the data

32



Compare CMS data on A, A; and A, with calculations
b g0 V56,0 }

[ CMS,1.0<yj<2.1

T O+ g T 0 +5¢;

b 5 R
e A, =r {f O —+(1- 1) 4 }
5 O” +4q; JO* +5¢;

—t—
—_-—
——

—
—
o

2 Phys. Rev. D 99 (2019) 014032
- { ]

sttt it |Thedataon 4,4, 4,

,  |have strong rapidly

dependence, as expected
33




PHYSICAL REVIEW LETTERS 129, 091801 (2022)

First Measurement of the Z — u*u~ Angular Coefficients in the
Forward Region of pp Collisions at /s =13 TeV

R. Aaij ef al.”
(LHCb Collaboration)

® (Received 7 March 2022; accepted 13 July 2022; published 24 August 2022)

The first study of the angular distribution of u* = pairs produced in the forward rapidity region via the
Drell-Yan reaction pp = y*/Z+ X — "¢~ + X is presented, using data collected with the LHCb
detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.1 fb™'. The
coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon
transverse momentum and rapidity. The results are compared to various theoretical predictions of the
Z-boson production mechanism and can also be used to probe transverse-momentum-dependent parton
distributions within the proton.

DOI: 10.1103/PhysRevLett.129.091801
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e LHCb, y=2.0
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No visible dependence on the rapidity or beam energy
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Other implications of the “geometric model”

* Extend this study to semi-inclusive DIS at high p;
(involving two hadrons and two leptons)

— Relevant for EIC measurements

* Rotational invariance, equality, and inequality
relations formed by various angular distribution
coefficients

— See preprint arXiv: 1808.04398  (Phys Let: 8789 (2019) 352)

* Comparison with pQCD calculations

— See preprint arXiv: 1811.03256 (PRD 99 (2019) 014032)
— Lambertson and Vogelsang, PRD 93 (2016) 114013
37



Geometric interpretations on the rotational
invariance of some quantities

On the Rotational Invariance and Non-Invariance of Lepton Angular Distributions
in Drell-Yan and Quarkonium Production

Jen-Chieh Peng®, Daniél Boer?, Wen-Chen Chang®, Randall Evan McClellan®®, Oleg Teryaev®

(Phys Lett B789 (2019) 352)

Quantities invariant under rotations along the y-axis (Faccioli et al.)

1At }__l—l—)kg—ﬁ)tgsingﬂlsingqbl_l—l—)tu—w\ﬂy%
F = 3TN - 3 Ao EEESY
5 2\ + 3 7 A, —34, sin’ 6, sin’ ) _ A, —310)/12
2 — v 1+ A, sin” §, sin” ¢, 1+ A, 7
v O ewe] [ NG XNy
(3+A)? (B4 X2 (B4 A)?

y, =sin @ sin g, is the component of z"along the y-axis in

the dilepton rest frame; invariant under rotation along y-axis [*°




Comparison between pion and proton induced

Drell-Yan angular coefficients in pQCD
(Phys. Rev. D 99 (2019) 014032)

COMPASS m +W at 1% GeV SeaQQuest p+p at 120 GeV
T r r I r T 1 —TT I r r r T 1 h| r r r I IIIIIIII I T T T T 1 T T T T I T T T T 1 T T T T I T T T T
» =45 GaV —qq M . &{4.5 eV — qq
- 6] GeV gt » O=[55] GeV - g "
1 . ﬁﬂ eV o075 L | 0.8l ﬁ“‘-—-_....: » O=[6.7] GeV 075 1 0.8l ]
05 - =08 . 0.5 S 063 .
~ D.E [~ '-. - __'g'._; = _EE: ';'
[ & B | o = ]
0.25 0.4 0.25 0.4 -
o 3
0 0.2 - 0 0.2+ ‘_:-:-:,.r _
o b L Ll gl I D R I T e I Lo Al Loy
05, 0.5 1 0 0.5 1 % 0.5 1 05, 0.5 ] 0 05 p 0 o5 y
q,/Q a,/Q q/Q g,/Q q,/Q q,/Q

e The pion-induced Drell-Yan 1s dominated by the gg contribution,

while the proton-induced Drell-Yan 1s dominated by ¢G contribution.

e The dependence on the dilepton mass (Q) 1s very weak for A and v.
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Other implications

Extend this study to W-boson production at CDF

0.5¢

PHYSICAL REVIEW D 103, 034011 (2021)

Lepton angular distribution of W boson productions

12 3 1.4 . 1 . 5
Yang Lyu®, ™ Wen-Chen Chang®,” Randall Evan McClellan, ™ Jen-Chieh Peng, and Oleg Teryaev

W-boson production in p-pbar collision from CDF

0.4F

r —— CDF Fit 6L —— CDFFit
f Data L } Data
4
s |
of o
=20 T320 40 80 80 100

No corresponding data from LHC on W-boson
production in p-p collision ! 40




Other 1implications

» Extend this study to Z plus jets data at LHC

— The angular distribution coefficients are expected to be
different, in general, for Z plus single jet and Z plus
multi-jets events

— Lam-Tung relation 1s expected to be satisfied by Z plus
single-jet event, but badly violated by Z plus two or
more jets.

— The g dependence of A, would be difterent for Z plus a
single quark jet events and Z plus a single gluon jet
events (can lead to the validation of various algorithms
for quark/gluon jets separation)

— Would be great to have these data from LHC!
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Expected Z plus jets results
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Summary

e A "geometric model" i1s developed to understand many
features of the lepton angular distribution in Drell-Yan
and quarkonium productions in hadron collisions
e The lepton angular distribution coefficients 4, — 4, can
be described 1n terms of the polar and azimuthal angles
of the g — g axis (natural axis)
e Violation of the Lam-Tung relation 1s due to the acoplanarity
of the ¢ — g axis and the hadron plane. This can come from
order «? or higher processes or from intrinsic &,

e This approach can be extended to Drell-Yan and quarkonium

productions (J/¥, V', Y(15), Y(3S5), Y(35)) which could be probed
at LHC, sSPHENIX, and STAR
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Future prospects

e Can one extend this geometric approach to other processes
at LHC (W production, Higgs physics, New particle searches)?
e Can one extend this geometric approach to other processes
at EIC (Semi-inclusive DIS, Diffractive proesses, TMD physics)?

e How are the angular distributions for Z-production modified in
relativistic heavy 1on collisions? Can one measure them in A-A
collision at LHC?

e [t would be very interesting to check how the angular distribution for

Z-boson production depend on the associated number of quark/gluon
jets, using the abundant CMS/ATLAS data
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