

Machine learning with FAST

Evaluating the performance of a FAST only reconstruction

Fraser Bradfield
Osaka Metropolitan University, Graduate School of Science
2025/10/15

Contents

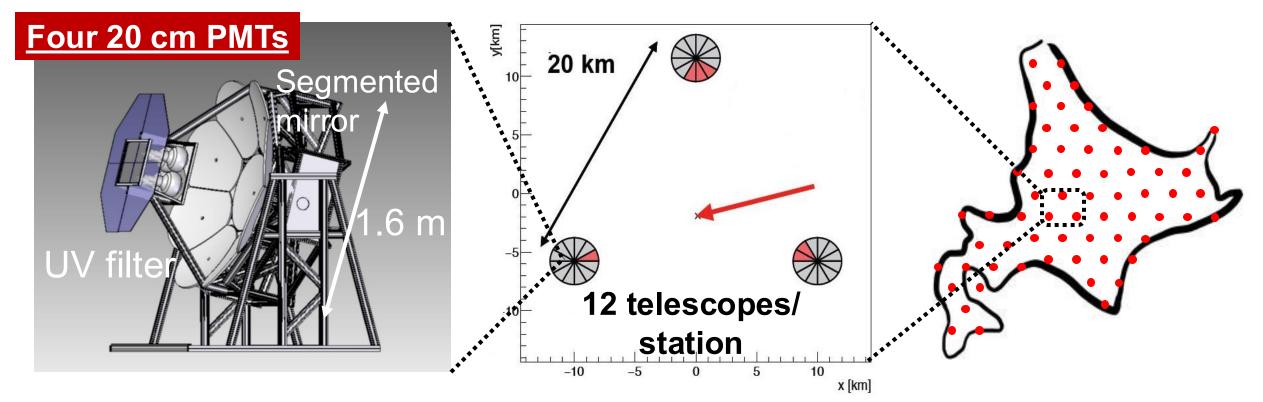
- 1 The Fluorescence detector Array of Single-pixel Telescopes (FAST)
- ② Training a ML model to predict shower parameters with FAST
 - Model training & performance in simulations
- 3 Applying the trained model to real events detected by FAST
 - Issues/challenges
 - Degeneracy in reconstructed solutions

Contents

- 1 The Fluorescence detector Array of Single-pixel Telescopes (FAST)
- 2 Training a ML model to predict shower parameters with FAST
 - Model training & performance in simulations
- 3 Applying the trained model to real events detected by FAST
 - Issues/challenges
 - Degeneracy in reconstructed solutions

The Fluorescence detector Array of Single-pixel Telescopes (FAST)

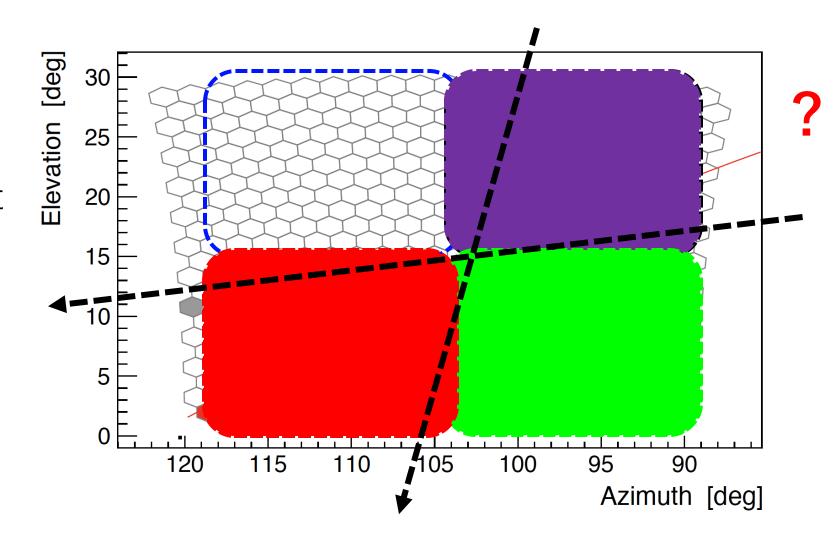
- Next generation cosmic ray experiment
- Sites in both hemispheres
- Array of fluorescence telescopes ~ 60,000 km²
- Just 4 pixels!
- Ideally want same resolutions as Auger/TA



FAST aims to measure an unprecedented number of UHECRs above 10²⁰ eV

FAST: Top-Down Reconstruction

With just 4 pixels – can't utilize same geometrical reconstruction procedures as Auger/TA!



FAST: Top-Down Reconstruction

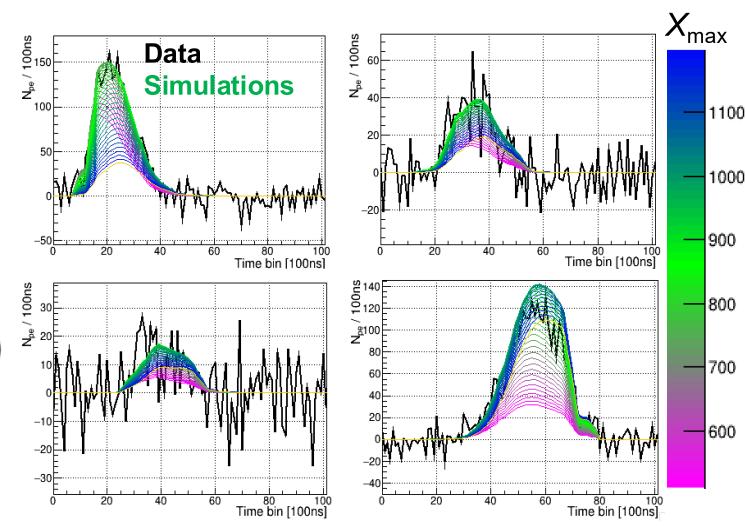
Waveform matching:

- Compare data directly to simulations
- Use minimizer to select the simulated parameters to test

Maximize log-likelihood:

$$\ln \mathcal{L}(ec{x} | ec{a}) = \sum_{k}^{N_{ ext{pix}}} \sum_{i}^{N_{ ext{bins}}} \ln ig(P_k(x_i | ec{a}) ig)$$

Probability of observing signal x_i in bin i of PMT k given shower parameters $\vec{a} = (E, X_{\text{max}}, \theta, \phi, x, y)$

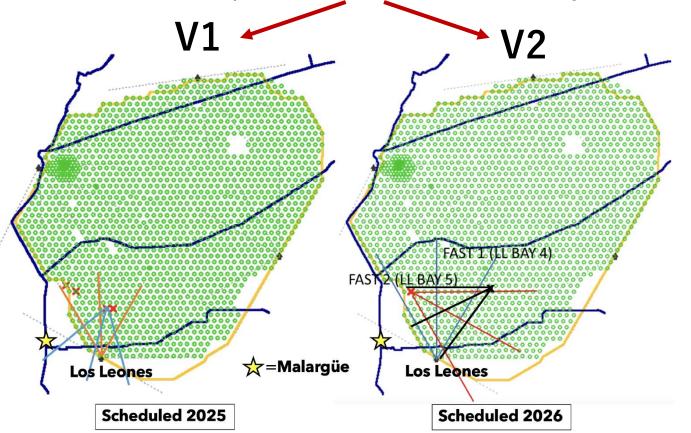


The result of the TDR depends heavily on the "first guess"

FAST: Current / future prototypes

Two sets of prototypes currently in operation

Next step – "FAST mini-array"!



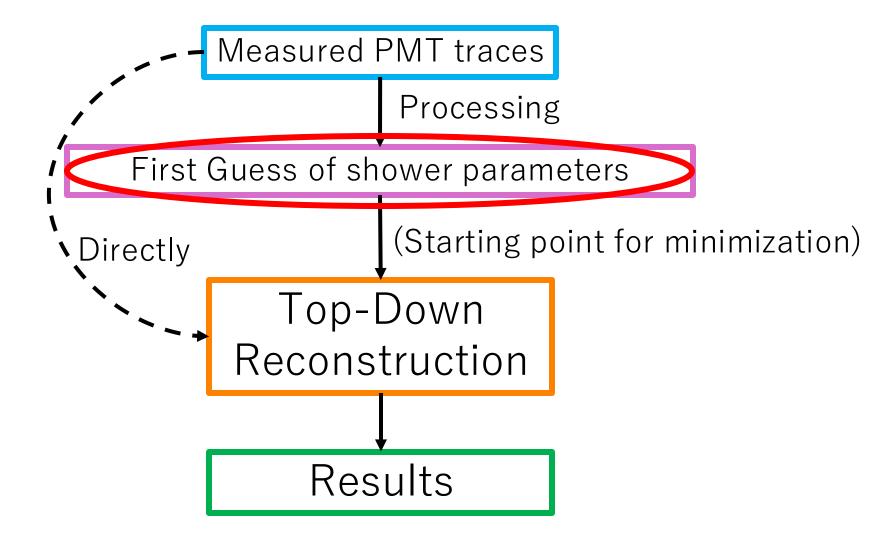
Fujii, 2023

Contents

- 1 The Fluorescence detector Array of Single-pixel Telescopes (FAST)
- 2 Training a ML model to predict shower parameters with FAST
 - Model training & performance in simulations
- 3 Applying the trained model to real events detected by FAST
 - Issues/challenges
 - Degeneracy in reconstructed solutions

FAST Reconstruction Overview

Flow of the FAST reconstruction



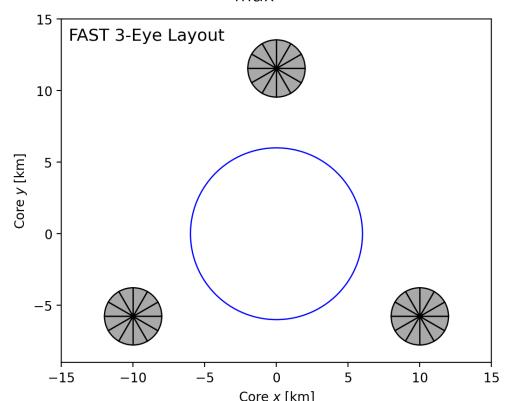
First Guess Estimation: Why machine learning?

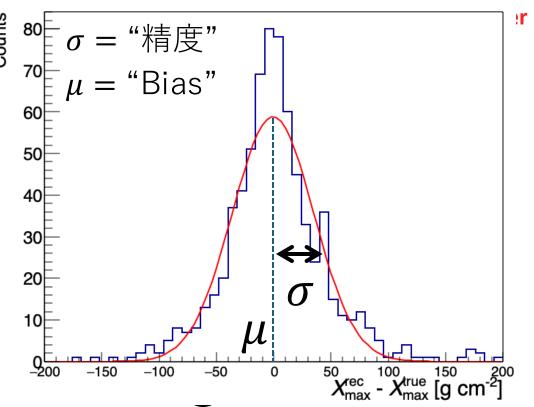
- Can't apply standard fitting procedures to determine geometry due to low resolution camera (2 x 2)
 - How about trying to parameterize the relationship between pixel timing/s, relative signal size/s and geometry?
- Would have to consider different time/signal orderings, how to combine info from separated telescopes, and fitting some likely non-trivial function
 - Difficult, time consuming, almost certainly degenerate for low number of triggered pixels, and may not gain much insight into relationship between shower parameters and timing/signal anyway
- Moreover, just want a first guess → will be optimized with top-down reconstruction anyway using time-dep. info

So, we try machine learning

Previous Machine Learning Studies with FAST

- Albury and later Fujii showed that a feed-forward, deep neural network can predict the shower parameters with a full-sized FAST array well
 - **Resolutions** X_{max} : 30 g cm⁻², Energy: 8%, Arrival direction: 4.2°, Core: 460 m



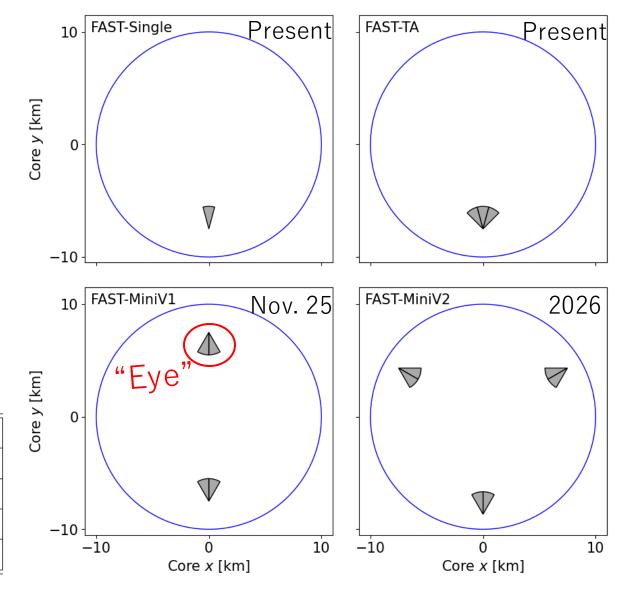


Can a similar model work for current layouts? Different architectures?

Dataset

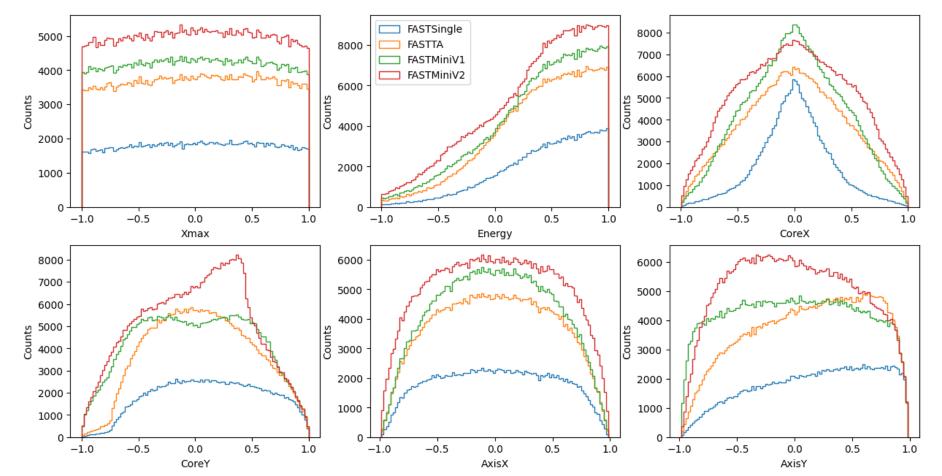
- 1,000,000 showers
- Four layouts
- Showers with significant signal in ≥ 1 PMT
 - FAST-Single $\sim 2x10^5$
 - FAST-TA ~ 4.1x10⁵
 - FAST-MiniV1 ~ 4.7x10⁵
 - FAST-MiniV2 ~ 5.5x10⁵

X_{\max}	Uniform $(500 - 1200 \mathrm{gcm^{-2}})$
Energy	Uniform in $\log(E/\text{eV})$ (17.3 - 20)
θ	$\sin\theta\cos\theta\ (0-80^\circ)$
ϕ	Uniform (0 - 360°)
Core	Uniform (in circle centred at $(0,0)$, $r = 10 \text{ km}$)



Output Parameters

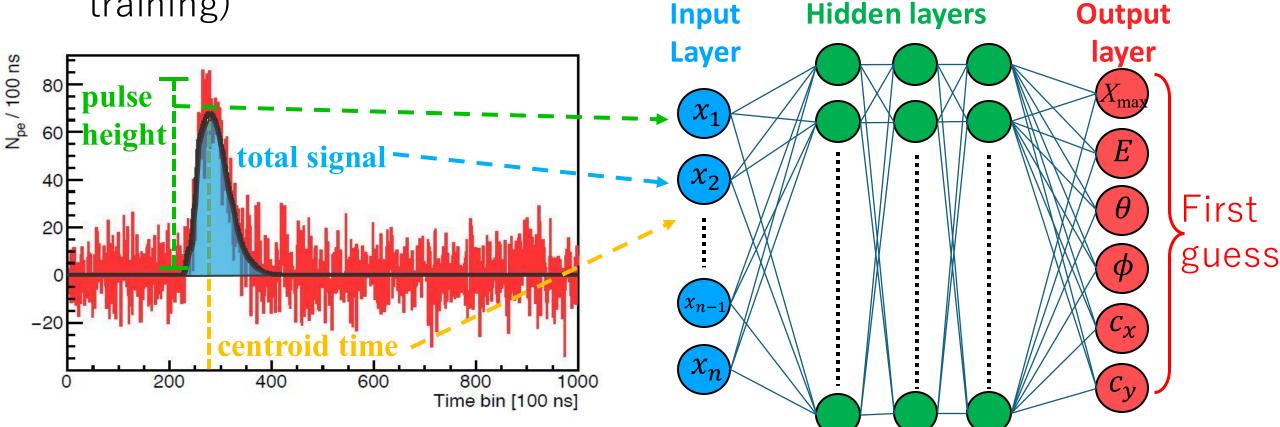
 Distributions of output (shower) parameters we want the models to learn – shapes of core/axis histograms due to layout geometry



Model 1: Basic DNN

- Identical architecture to previous studies
- Use height of PMT pulse, total signal and timing from each triggered PMT as inputs (use log of these values → more stable training)

 Input
 Hidden layers
 Output



Model 2: TSFEL DNN

Extension of the Basic DNN - same feedforward architecture

Use the TSFEL python library to extract additional trace features

45 statistical / temporal features per PMT

 Remove features which don't vary between traces

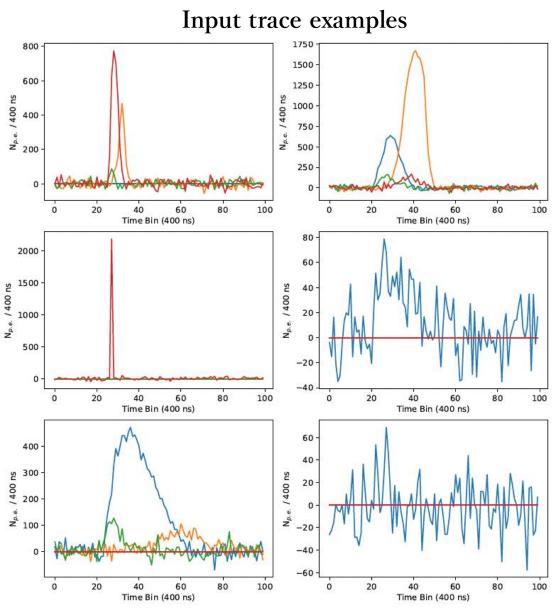
- Apply log transformation to remaining features
- Add features from Basic DNN
- Calculate correlation between features, remove one if correlation with another > 0.95

TSFEL DNN pulse +Autocorrelation +Kurtosis total signal 800 Time bin [100 ns]

Left with 11 features per PMT

Model 3: Long-short term memory (LSTM)

- Type of recurrent neural network used for analyzing time series data
 - Input traces directly to network
- Each PMT trace processed by same LSTM layer
 - Extract same features 64/PMT
 - For PMTs with no signal, set the output of the LSTM layer for that PMT to all 0's
- Structure is
 - nPMTs trace inputs → LSTM layer → (64*nPMTs) nodes → 64 nodes → output layer



Model Comparison

- Use "hyper-parameter optimized" Basic DNN and TSFEL DNN
 - Both with hidden layer node structure 512/256/128/64/32
 - Learning rate 0.0003
- No hyper-parameter search for LSTM (time constraints)
- Train on full dataset and compare validation losses (MSE)

	FAST-Single	FAST-TA	FAST-MiniV1	FAST-MiniV2
Basic	0.1144	0.0827	0.0765	0.0685
TSFEL	0.1006	0.0689	0.0649	0.0570
LSTM	0.0906	0.0672	0.0632	0.0565

Better than Basic DNN

TSFEL DNN faster and more interpretability, so proceed with it

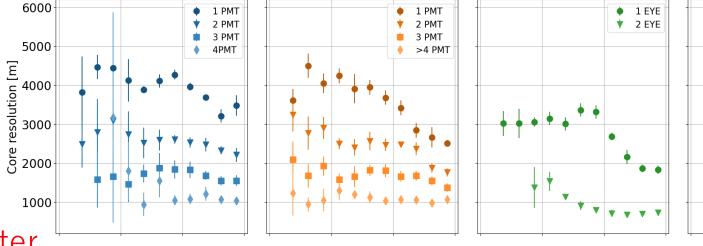
1 EYE

TSFEL DNN Performance

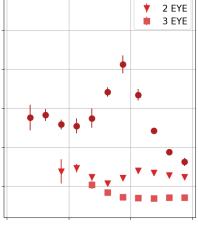
Core and angular resolutions*

FAST-Single

Core



FAST-TA

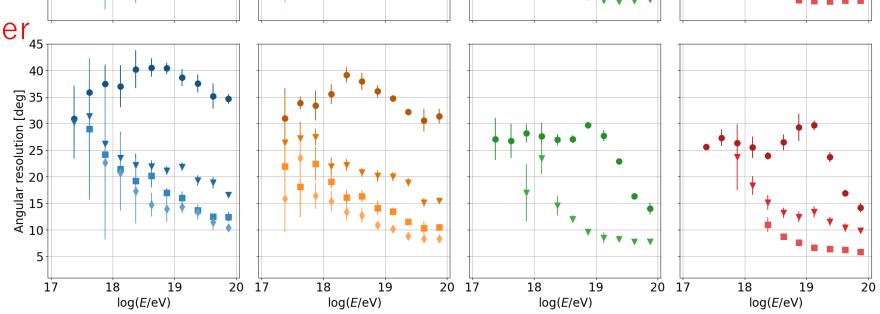


FAST-MiniV2

More PMTs & eyes is better₄₅

Angular

*Core distance / opening angle within which 68% of reconstructed events lie



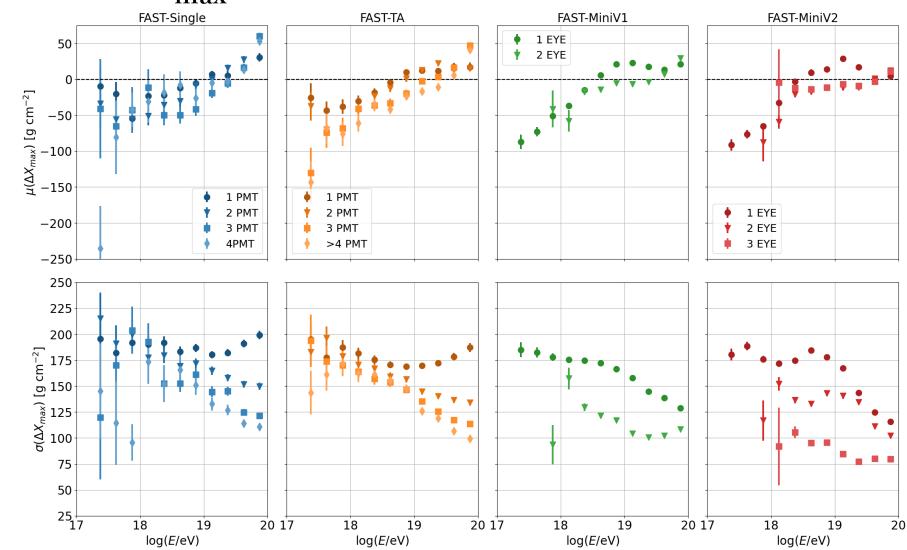
FAST-MiniV1

TSFEL DNN Performance

Biases and resolutions: X_{max}

Biases

Resolutions



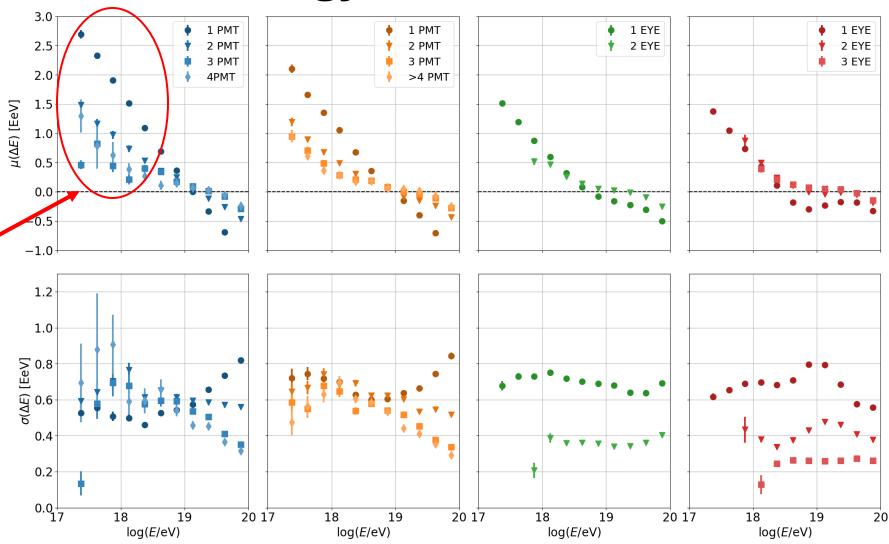
TSFEL DNN Performance

Biases and resolutions: Energy

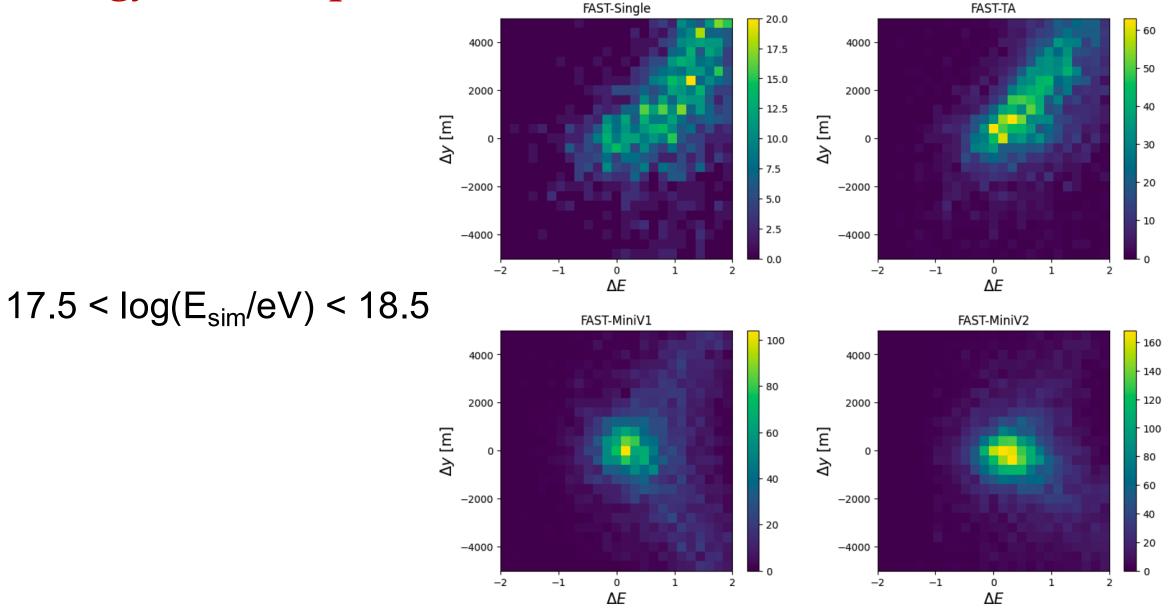
Biases

Degeneracy between energy and core position

Resolutions



Energy / Core position estimation



Full Reconstruction: Setup

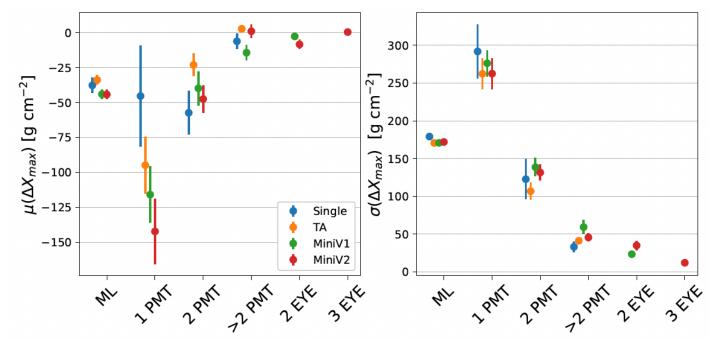
TSFEL DNN First guess + **TDR**

- Use first guess from TSFEL DNN as input to TDR
 - Only use first guesses with values inside the range of the training data
- TDR cuts
 - Successful minimization
 - X_{max} in FOV
 - Relative uncertainty in $X_{\rm max}$ and energy both < 0.5
 - Absolute uncertainty in core x and core y both < 1000 m

Full Reconstruction: Summary

• 1 or 2 PMTs - poor resolutions

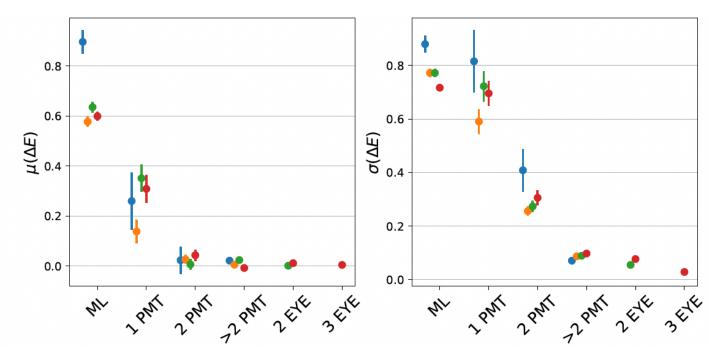
- 3 or more PMTs
 - $X_{\rm max} \sim 40-50~{\rm g~cm^{-2}}$ Energy $\sim 10\%$ Core res $\sim 700~{\rm m}$ Angular res $\sim 7~{\rm deg}$
- Stereo performs even better!
 - Slightly unrealistic results…
 - No shower-to-shower fluctuations
 - No atmospheric/calibration uncertainties
 - No simulation of electronic response (e.g. saturated signals)



Full Reconstruction: Summary

• 1 or 2 PMTs - poor resolutions

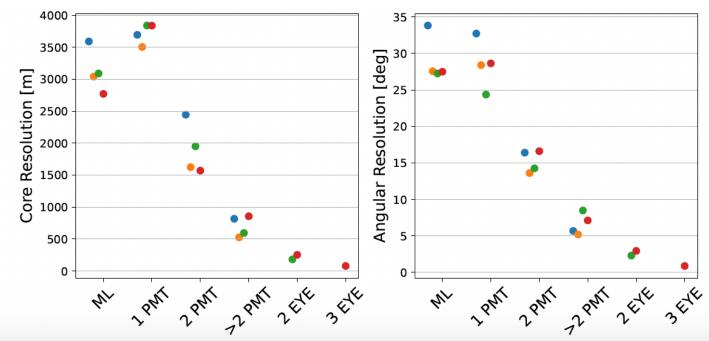
- 3 or more PMTs
 - $X_{\rm max} \sim 40-50~{\rm g~cm^{-2}}$ Energy $\sim 10\%$ Core res $\sim 700~{\rm m}$ Angular res $\sim 7~{\rm deg}$
- Stereo performs even better!
 - Slightly unrealistic results…
 - No shower-to-shower fluctuations
 - No atmospheric/calibration uncertainties
 - No simulation of electronic response (e.g. saturated signals)



Full Reconstruction: Summary

• 1 or 2 PMTs - poor resolutions

- 3 or more PMTs
 - $X_{\rm max} \sim 40-50~{\rm g~cm^{-2}}$ Energy $\sim 10\%$ Core res $\sim 700~{\rm m}$ Angular res $\sim 7~{\rm deg}$
- Stereo performs even better!
 - Slightly unrealistic results…
 - No shower-to-shower fluctuations
 - No atmospheric/calibration uncertainties
 - No simulation of electronic response (e.g. saturated signals)



Contents

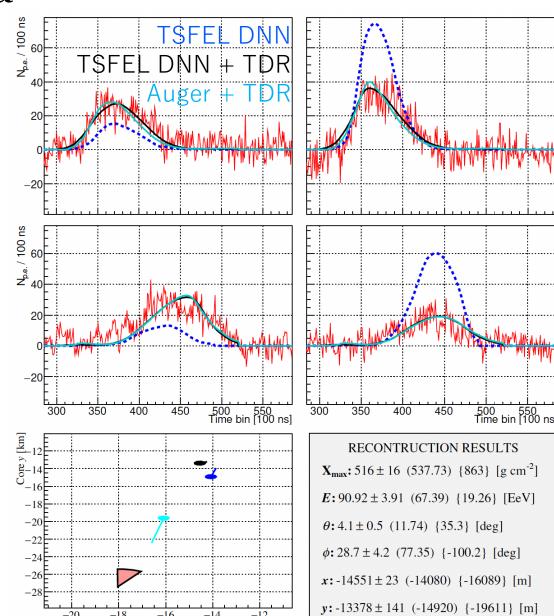
1 The Fluorescence detector Array of Single-pixel Telescopes (FAST)

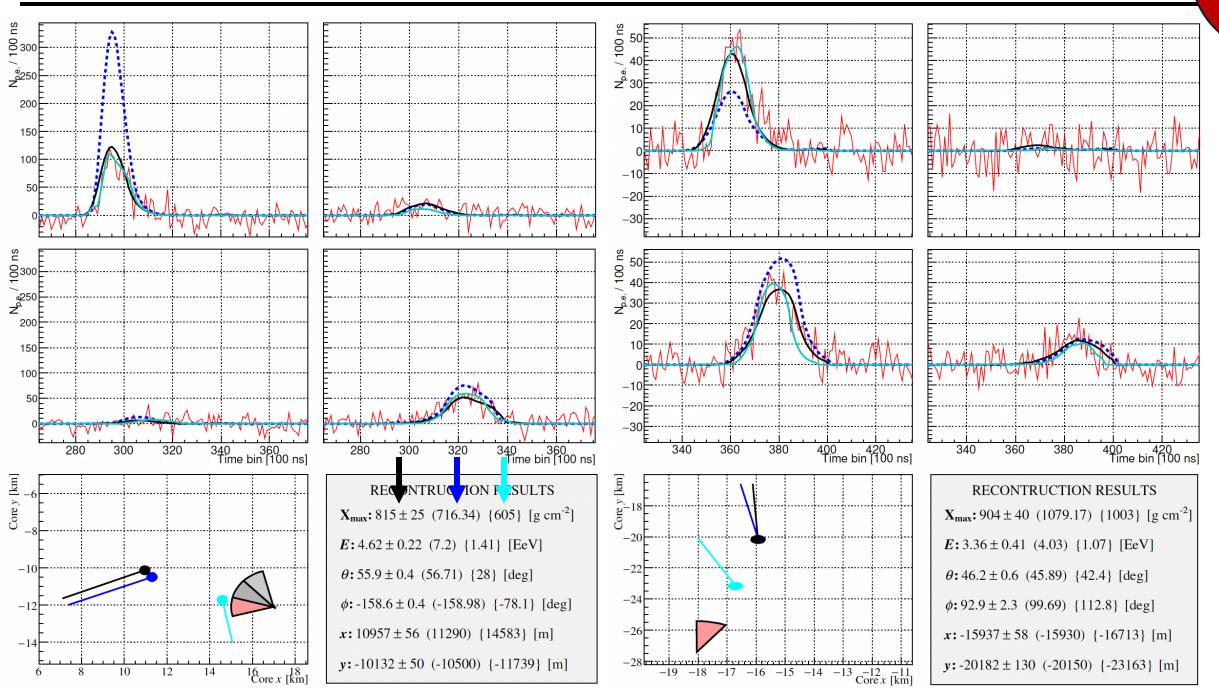
- 2 Training a ML model to predict shower parameters with FAST
 - Model training & performance in simulations
- 3 Applying the trained model to real events detected by FAST
 - Issues/challenges
 - Degeneracy in reconstructed solutions

TSFEL DNN + TDR: Real data

Machine learning first guess

- From previous analysis, need > 2
 triggered pixels for reasonable guess
- Number of events with > 2 triggered pixels
 - **FAST@TA**: 70 (out of ~440)
 - **FAST@Auger:** 75 (out of ~230)
- After reconstruction cuts (no X_{max} in FOV cut) number of fits which "reasonably" match data
 - FAST@TA: ~50 events
 - FAST@Auger: ~30 events



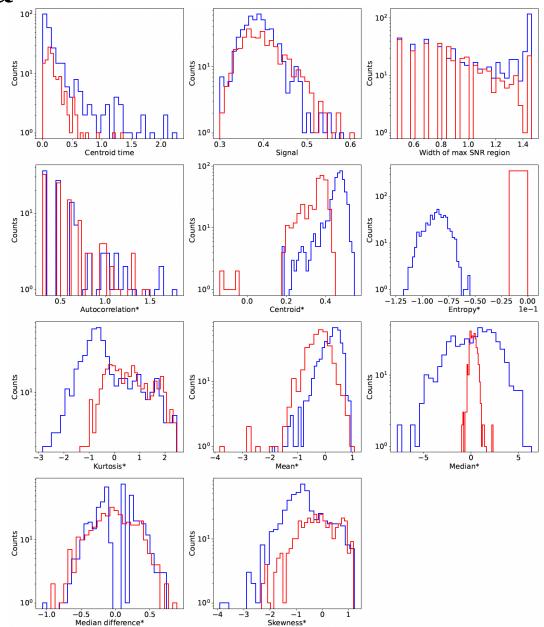


TSFEL DNN + TDR: Real data

Inputs to machine learning model:

- Red Take Auger reconstructed values for coincidence events, perform FAST simulation with these values (+ nominal background noise) and calculate inputs
- Blue Calculate inputs for coincidence data directly

- See that for a few parameters there are some systematic differences → will impact ML recon!
 - Must ensure that trace features are consistent between data and simulations



Summary and Future

Summary

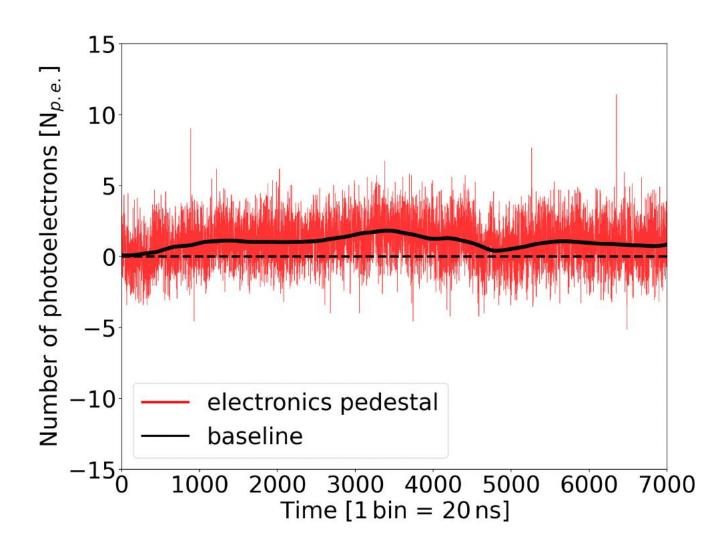
- With only 1 or 2 pixels, can't predict parameters very well
- Need 3 or more pixels in one eye or stereo observation
- ML + TDR w. FAST-MiniV2 shows ideal resolutions in $X_{\rm max} \sim 30$ g cm⁻², E < 10% promising! But need to include additional reality...
- Real data analysis: degeneracies with monocular reconstruction, some inconsistencies between simulations / data traces.

Future

- Focus on stereo observation, ensure consistency between trace properties in data and simulations
- Add in additional uncertainties to simulations and re-evaluate expected resolutions (e.g. different atmospheres, PMT efficiency maps etc.)

Backup

Example of floating baseline



Basic DNN: Details

- Feed-forward, deep neural network
 - ReLU activation function for hidden layers, Adam optimizer, MSE loss
- 3 inputs from each PMT with SNR > 6 (other PMT inputs set to 0):

• Integrated signal –
$$S_i = \sum_{j=k_{\text{start}}}^{k_{\text{stop}}-1} S_j$$
 signal in jth bin

• Centroid time –
$$\bar{t}_i = \frac{\sum_{j=k_{\text{stor}}-1}^{k_{\text{stop}}-1} s_j t_j}{\sum_{j=k_{\text{stort}}}^{k_{\text{stop}}-1} s_j}$$
 time of jth bin

where k_{start} and k_{stop} are determined from maximum SNR region

$$SNR = \frac{S}{N} = \frac{\sum_{i=k_{\text{start}}}^{k_{\text{stop-1}}} S_{i}}{\sigma_{\text{nsb}} \sqrt{k_{\text{stop}} - k_{\text{start}}}} S_{i}$$

• Pulse height –
$$h_i = \max \left(\left\{ s_{k_{\text{start}}}, s_{k_{\text{start}}+1}, ..., s_{k_{\text{stop}}-1} \right\} \right)$$

Basic DNN: Input normalisation

- Integrated signal:
 - Take log10 $\hat{S}_i = \log_{10}(S_i)$
 - Divide by average total (logarithmic) signal over all events

$$\hat{\hat{S}}_i = \frac{\hat{S}_i}{\hat{S}_0}$$

- Centroid time
 - Subtract earliest centroid time in event $\hat{ar{t_i}} = ar{t} ar{t_0}$
 - Divide by standard deviation of all centroid times in data set

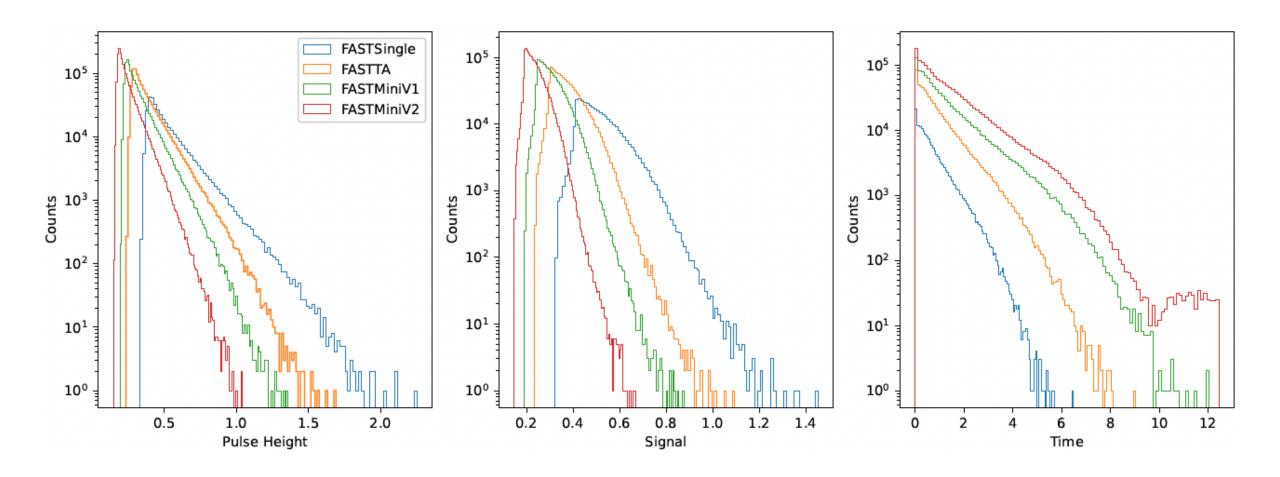
$$\hat{t}_i = \frac{\hat{t}_i}{\sigma_t}$$

- Pulse height:
 - Take log10 $\hat{h}_i = \log_{10}(h_i)$
 - Divide by average (logarithmic) height over all events

$$\hat{\hat{h_i}} = \frac{\hat{h_i}}{\hat{h_0}}$$

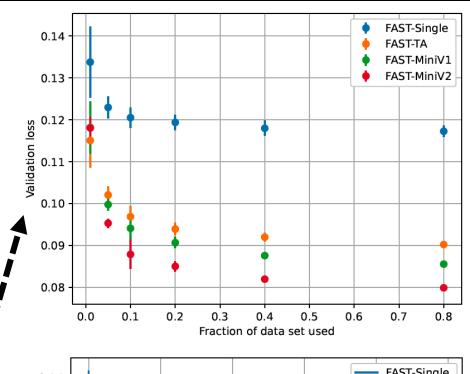
Actual inputs

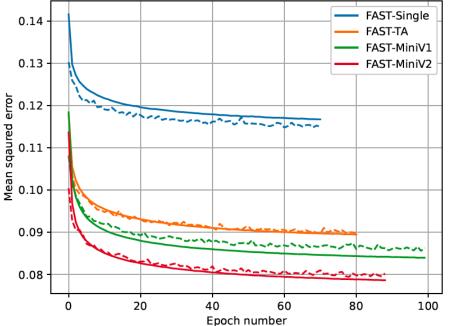
Basic DNN: Input parameter distributions



Basic DNN: Training tests

- Initial training setup
 - Learning rate 0.001
 - 90%:10% Train-Test split
 - Epochs 100 (patience of 10)
 - Batch size of 64
 - Layer structure (Number of PMTs x 3)/128/64/6
- Check learning curves, validation loss vs. % of data set used
 - Train 10 times using different 10% as validation set each time and take mean & std. of results





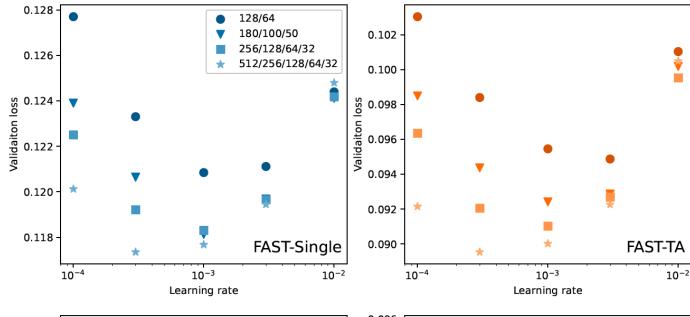
Basic DNN: Hyperparameter Tuning

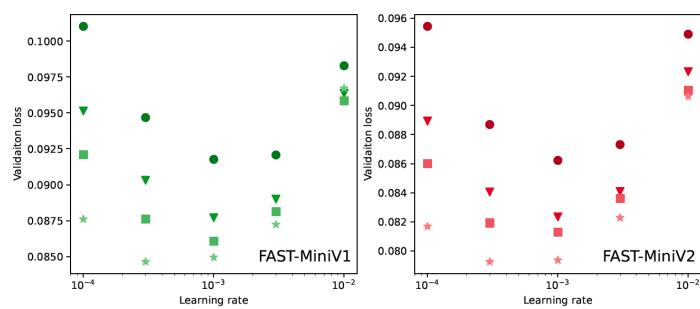
Basic hyperparameter tuning

 Varying the learning rate and the number of layers/nodes in each layer

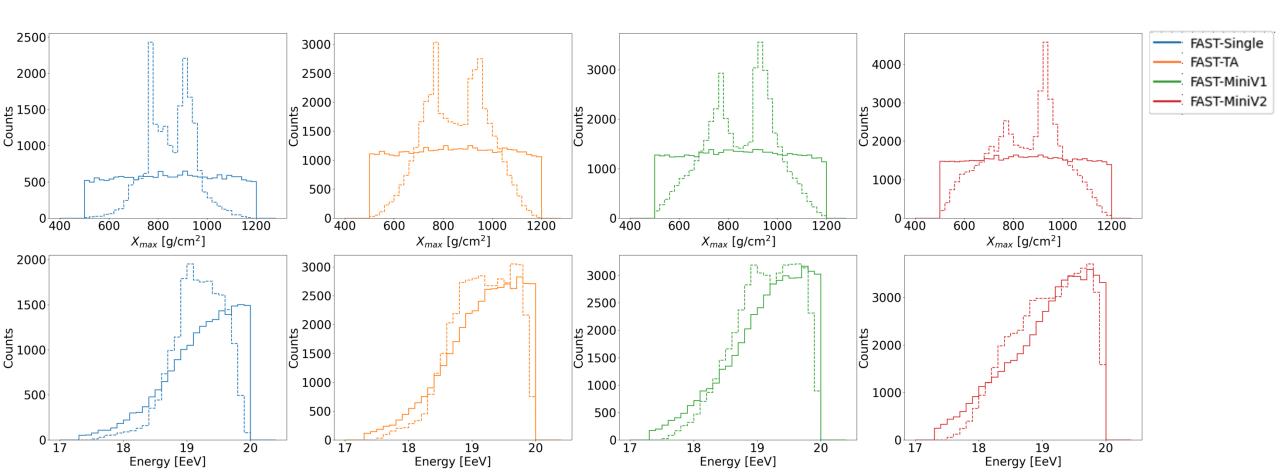
 Best result for each layout with 5-layer structure, 0.003 learning rate

 Should experiment with "Optuna" in the future

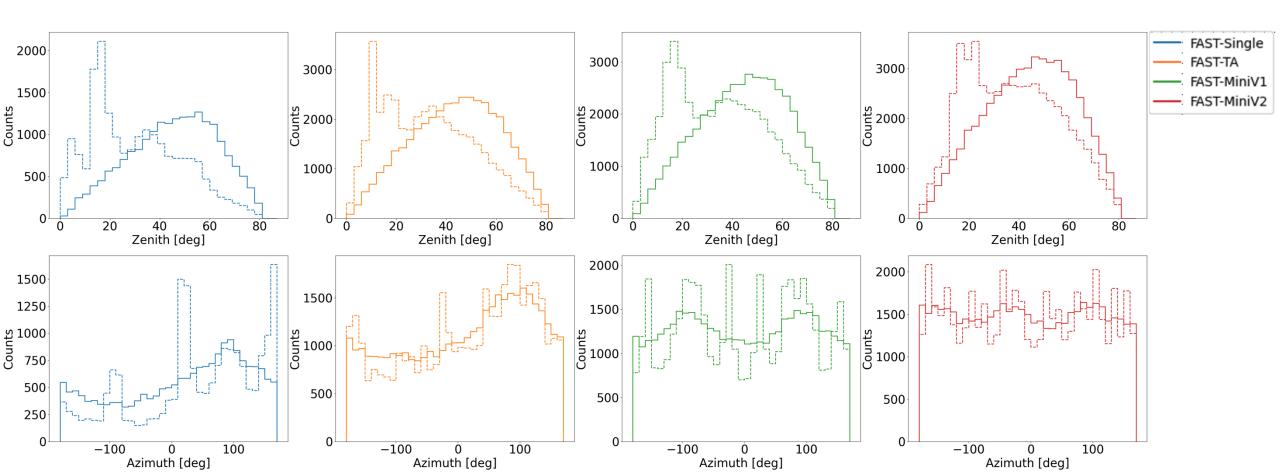




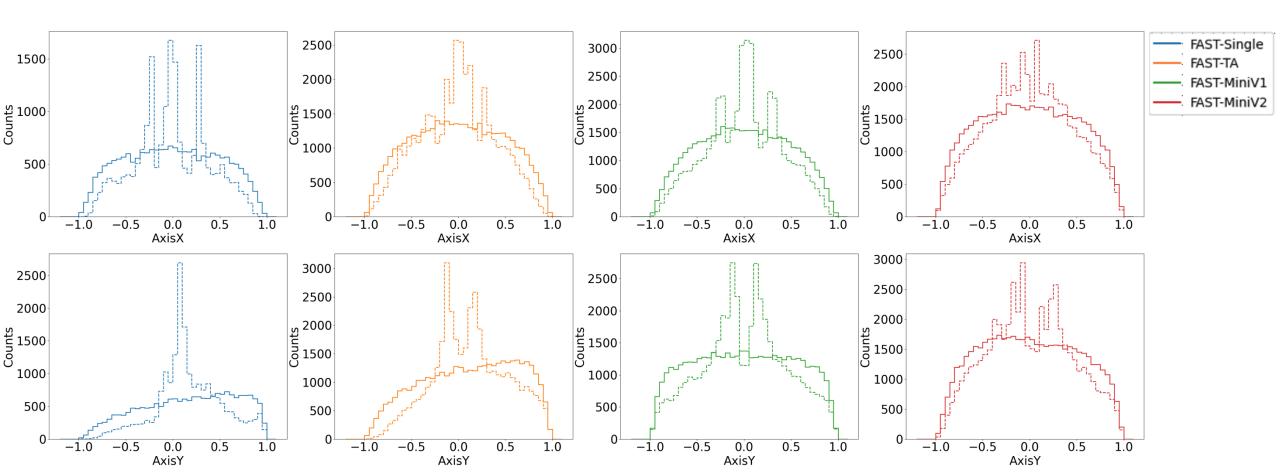
- Apply hyper-parameter tuned model on test data set
- True (solid line) and reconstructed (dashed line) output distributions



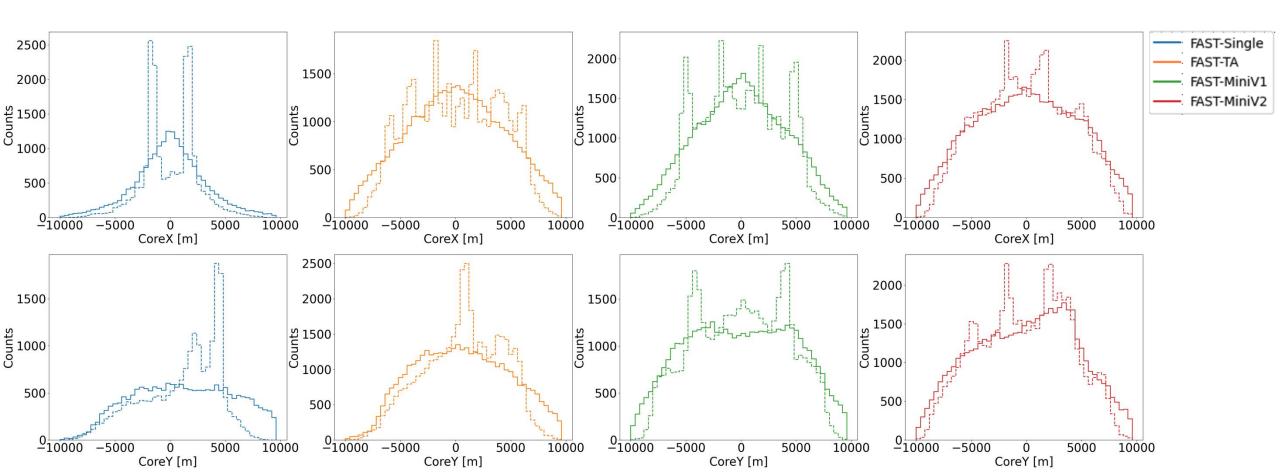
- Apply hyper-parameter tuned model on test data set
- True (solid line) and reconstructed (dashed line) output distributions



- Apply hyper-parameter tuned model on test data set
- True (solid line) and reconstructed (dashed line) output distributions

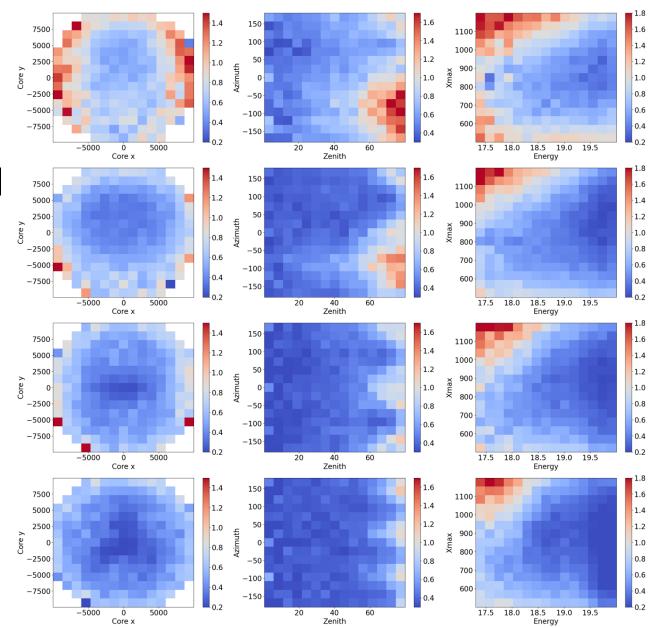


- Apply hyper-parameter tuned model on test data set
- True (solid line) and reconstructed (dashed line) output distributions



• Another diagnostic – 2D histograms of the average loss for slices in core location, arrival direction and X_{max} /energy

- Difficult regions
 - Low energy, high X_{max} not present in data so OK
 - Showers coming from behind telescopes
 - Edge of array



Biases and resolutions in each parameter as a function of energy.

 $\Delta E = In(E_{rec}/E_{true})$ Shape of some plots strange due to range of observable showers μ(ΔΧ_{max}) [g/cm²] changing as function of energy 100 Energy [EeV] 1.5 $\mu(\Delta E)$ [EeV] 19.0 17.5 19.5 17.5 19.0 19.0 Energy [EeV] 17.5

LSTM Network

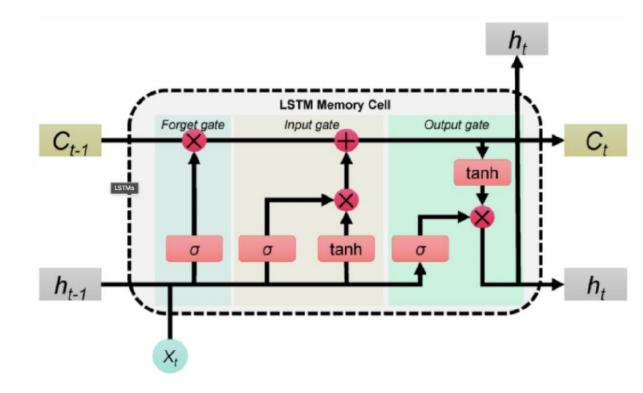
- Hidden state H_t (short term memory)
- Internal state C_t (long term memory)
- Processing trace $x = \{x_1, x_2, \dots, x_n\}$
 - At each time step t, x_t & C_{t-1} & H_{t-1} are combined to give C_t and H_t
 - Updated using three different gates which use sigmoid/tanh activation functions. For a gate g

$$\vec{I_g} = \vec{U_g} \vec{h_{t-1}} + \vec{W_g} \vec{x_t} + \vec{b_g}$$

Goal: Learn the matrices U_g & W_g and bias terms b_g for each gate

Use same 600 bin segments

Cut first 10 and last 40 bins, re-bin by factor of 4, gives 100 bin traces (400 ns/bin)



Models

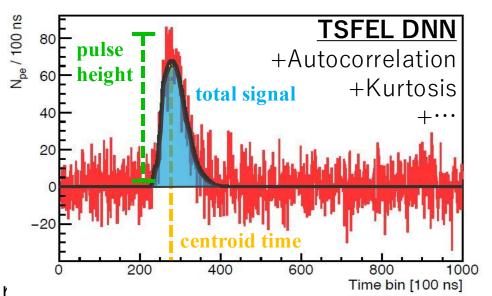
Models Tested:

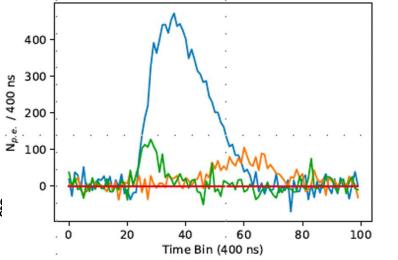
- Basic DNN:
 - Identical architecture to previous studies
 - Use height of PMT pulse, total signal and timing from each PMT as inputs

- Extension of the Basic DNN same feedfor
- Use the TSFEL python library to extract additional trace features

Total of 11 inputs per PMT

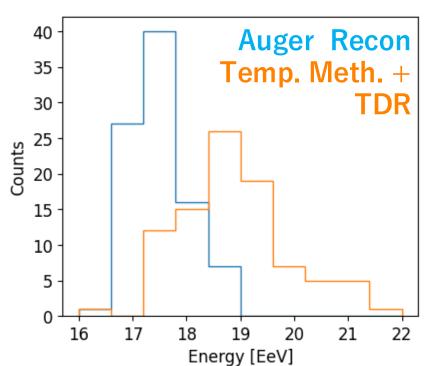
- Type of recurrent neural network
- Often used for analyzing time series data
- Extracts salient features from traces to use for learning
- 64 features extracted per PMT

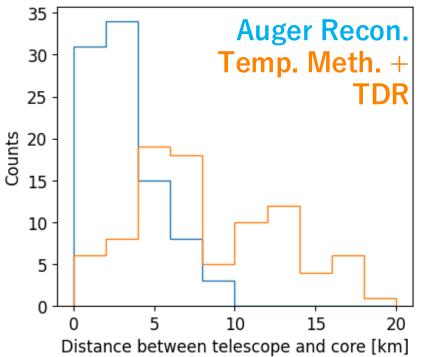




More degeneracy examples

- Try events with ≥ 2 triggered pixels. After recon. cuts (no X_{max} in FOV cut)
 - FAST@TA: ~ 170 events, FAST@Auger: ~ 90 events
- Find "good fits" but tendency to guess larger energy / further away core
 - → need stereo observation





Comparing which fit is better

