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The Fluorescence detector Array of Single-pixel 
Telescopes (FAST)

FAST aims to measure an unprecedented number of UHECRs above 1020 eV

12 telescopes/

station

1.6 m

Four 20 cm PMTs

Segmented 

mirror

UV filter

• Next generation cosmic ray experiment
• Sites in both hemispheres
• Array of fluorescence telescopes ~ 60,000 km2

• Just 4 pixels!
• Ideally want same 

resolutions as Auger/TA
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With just 4 pixels – can’t 
utilize same geometrical 
reconstruction 
procedures as Auger/TA!

？

FAST: Top-Down Reconstruction
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Waveform matching: 
• Compare data directly to 

simulations
• Use minimizer to select the 

simulated parameters to test

Maximize log-likelihood:

Probability of observing signal 𝑥𝑖 in bin
𝑖 of PMT 𝑘 given shower parameters 
Ԧ𝑎 = (𝐸, 𝑋max, 𝜃, 𝜙, 𝑥, 𝑦)

Xmax

The result of the TDR depends heavily on the “first guess”

FAST: Top-Down Reconstruction

Data

Simulations
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FAST: Current / future prototypes

• Two sets of prototypes currently in 
operation

• Next step – “FAST mini-array”!

Fujii, 2023

V1 V2
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• Flow of the FAST reconstruction

Top-Down 
Reconstruction

First Guess of shower parameters 

Measured PMT traces

Results

Processing

Directly (Starting point for minimization)

FAST Reconstruction Overview
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• Can’t apply standard fitting procedures to determine geometry due to low 
resolution camera (2 x 2)
• How about trying to parameterize the relationship between pixel timing/s, relative signal 

size/s and geometry?

• Would have to consider different time/signal orderings, how to combine info 
from separated telescopes, and fitting some likely non-trivial function

• Difficult, time consuming, almost certainly degenerate for low number of triggered pixels, and 
may not gain much insight into relationship between shower parameters and timing/signal 
anyway

• Moreover, just want a first guess → will be optimized with top-down 
reconstruction anyway using time-dep. info

First Guess Estimation: Why machine learning?

So, we try machine learning
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• Albury and later Fujii showed that a feed-forward, deep neural 
network can predict the shower parameters with a full-sized FAST 
array well
• Resolutions - Xmax: 30 g cm-2, Energy: 8%, Arrival direction: 4.2°, Core: 460 m

Xmax

𝐸

𝜃

𝜙

𝑐𝑥

Input Layer Hidden layers Output layer

𝑥1

𝑥𝑛−1

𝑥2

𝑥𝑛 𝑐𝑦

Can a similar model work for current layouts? Different architectures?

Previous Machine Learning Studies with FAST

𝜎

𝜎 = “精度”

𝜇 = “Bias”

𝜇
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• 1,000,000 showers

• Four layouts

• Showers with significant 
signal in ≥ 1 PMT
• FAST-Single ~ 2x105

• FAST-TA ~ 4.1x105

• FAST-MiniV1 ~ 4.7x105

• FAST-MiniV2 ~ 5.5x105

Nov. 25 2026

Present Present

Dataset
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• Distributions of output (shower) parameters we want the 
models to learn – shapes of core/axis histograms due to 
layout geometry 

Output Parameters



14

• Identical architecture to previous studies

• Use height of PMT pulse, total signal and timing from each 
triggered PMT as inputs (use log of these values → more stable 
training)

Model 1: Basic DNN 

centroid time

pulse 

height
total signal

Xmax

𝐸

𝜃

𝜙

𝑐𝑥

Input 
Layer

Hidden layers Output 
layer

𝑥1

𝑥𝑛−1

𝑥2

𝑥𝑛 𝑐𝑦

First
guess
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• Extension of the Basic DNN - same feedforward architecture 

• Use the TSFEL python library to extract additional trace features
• 45 statistical / temporal features per PMT

• Remove features which don’t vary 
between traces

• Apply log transformation to remaining
features

• Add features from Basic DNN

• Calculate correlation between features,
remove one if correlation with another 
> 0.95

• Left with 11 features per PMT

Model 2: TSFEL DNN

centroid time

pulse 

height

total signal

TSFEL DNN
+Autocorrelation

+Kurtosis
+…
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• Type of recurrent neural network 
used for analyzing time series data
• Input traces directly to network

• Each PMT trace processed by same 
LSTM layer 
• Extract same features – 64/PMT

• For PMTs with no signal, set the output 
of the LSTM layer for that PMT to all 0’s

• Structure is 
• nPMTs trace inputs → LSTM layer →

(64*nPMTs) nodes → 64 nodes →
output layer

Model 3: Long-short term memory (LSTM)
Input trace examples
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• Use “hyper-parameter optimized” Basic DNN and TSFEL DNN
• Both with hidden layer node structure 512/256/128/64/32

• Learning rate 0.0003

• No hyper-parameter search for LSTM  (time constraints)

• Train on full dataset and compare validation losses (MSE)

Model Comparison

TSFEL DNN faster and more interpretability, so proceed with it
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Core and angular resolutions*

*Core distance / opening 
angle within which 68% of 
reconstructed events lie

Core

Angular

More PMTs & eyes is better

TSFEL DNN Performance
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Biases and resolutions: Xmax

Biases

Resolutions

TSFEL DNN Performance
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Biases and resolutions: Energy

Biases

Resolutions

Degeneracy between 
energy and core 

position

TSFEL DNN Performance
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Energy / Core position estimation

17.5 < log(Esim/eV) < 18.5
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TSFEL DNN First guess + TDR

• Use first guess from TSFEL DNN as input to TDR
• Only use first guesses with values inside the range of the training data

• TDR cuts
• Successful minimization

• Xmax in FOV

• Relative uncertainty in Xmax and energy both < 0.5

• Absolute uncertainty in core 𝑥 and core 𝑦 both < 1000 m 

Full Reconstruction: Setup
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Full Reconstruction: Summary

• 1 or 2 PMTs  - poor resolutions

• 3 or more PMTs
• Xmax ~ 40 – 50 g cm-2

Energy ~ 10%
Core res ~ 700 m
Angular res ~ 7 deg

• Stereo performs even better!
• Slightly unrealistic results…

• No shower-to-shower fluctuations

• No atmospheric/calibration 
uncertainties

• No simulation of electronic response 
(e.g. saturated signals)
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Machine learning first guess

• From previous analysis, need > 2 
triggered pixels for reasonable guess

• Number of events with > 2 triggered 
pixels
• FAST@TA: 70  (out of ~440)

• FAST@Auger: 75  (out of ~230)

• After reconstruction cuts (no Xmax in FOV 
cut) number of fits which “reasonably” 
match data
• FAST@TA: ~50 events

• FAST@Auger: ~30 events

TSFEL DNN
TSFEL DNN + TDR

Auger + TDR

TSFEL DNN + TDR: Real data
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Inputs to machine learning model:

• Red – Take Auger reconstructed values 
for coincidence events, perform FAST 
simulation with these values ( + nominal 
background noise) and calculate inputs

• Blue – Calculate inputs for coincidence 
data directly

• See that for a few parameters there are 
some systematic differences → will 
impact ML recon!

• Must ensure that trace features are 
consistent between data and simulations 

TSFEL DNN + TDR: Real data
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Summary

• With only 1 or 2 pixels, can’t predict parameters very well

• Need 3 or more pixels in one eye or stereo observation

• ML + TDR w. FAST-MiniV2 shows ideal resolutions in Xmax~30 g cm-2, E < 
10% - promising! But need to include additional reality…

• Real data analysis: degeneracies with monocular reconstruction, some 
inconsistencies between simulations / data traces.

Future

• Focus on stereo observation, ensure consistency between trace properties 
in data and simulations

• Add in additional uncertainties to simulations and re-evaluate expected 
resolutions (e.g. different atmospheres, PMT efficiency maps etc.)

Summary and Future
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Backup
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Example of floating baseline



33

• Feed-forward, deep neural network
• ReLU activation function for hidden layers, Adam optimizer, MSE loss

• 3 inputs from each PMT with SNR > 6 (other PMT inputs set to 0): 

• Integrated signal –

• Centroid time –

• Pulse height –

where kstart and kstop are determined 
from maximum SNR region 

si

signal in jth bin

time of jth bin

Basic DNN: Details
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• Integrated signal:
• Take log10 

• Divide by average total (logarithmic) signal over all events

• Centroid time 
• Subtract earliest centroid time in event

• Divide by standard deviation of all centroid times in data set

• Pulse height: 
• Take log10 

• Divide by average (logarithmic) height over all events

Actual inputs

Basic DNN: Input normalisation
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Basic DNN: Input parameter distributions
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• Initial training setup
• Learning rate 0.001

• 90%:10% Train-Test split 

• Epochs 100 (patience of 10)

• Batch size of 64

• Layer structure 
(Number of PMTs x 3)/128/64/6

• Check learning curves, validation 
loss vs. % of data set used
• Train 10 times using different 10% as 

validation set each time and take 
mean & std. of results

Basic DNN: Training tests
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• Basic hyperparameter tuning

• Varying the learning rate and 
the number of layers/nodes 
in each layer

• Best result for each layout 
with 5-layer structure, 0.003 
learning rate

• Should experiment with 
“Optuna” in the future

Basic DNN: Hyperparameter Tuning
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• Apply hyper-parameter tuned model on test data set 

• True (solid line) and reconstructed (dashed line) output distributions

Basic DNN: Results
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• Apply hyper-parameter tuned model on test data set 

• True (solid line) and reconstructed (dashed line) output distributions

Basic DNN: Results
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• Another diagnostic – 2D 
histograms of the average loss 
for slices in core location, arrival 
direction and Xmax/energy

• Difficult regions

• Low energy, high Xmax - not 
present in data so OK

• Showers coming from behind 
telescopes

• Edge of array 

Basic DNN: Results
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• Shape of some plots strange due 
to range of observable showers 
changing as function of energy

• Biases and resolutions in each parameter as a function of energy.

∆E=ln(Erec/Etrue)

Basic DNN: Results
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• Hidden state Ht (short term memory)

• Internal state Ct (long term memory)

• Processing trace x = {x1, x2, …., xn}
• At each time step t, xt & Ct-1& Ht-1 are 

combined to give Ct and Ht

• Updated using three different gates 
which use sigmoid/tanh activation 
functions. For a gate g

• Goal: Learn the matrices Ug & Wg

and bias terms bg for each gate 

Use same 600 bin segments
Cut first 10 and last 40 bins, re-bin by factor of 4, 
gives 100 bin traces (400 ns/bin)

LSTM Network
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Models Tested: 

• Basic DNN: 
• Identical architecture to previous studies
• Use height of PMT pulse, total signal and 

timing from each PMT as inputs

• TSFEL DNN:
• Extension of the Basic DNN - same feedforward architecture 
• Use the TSFEL python library to extract additional trace features
• Total of 11 inputs per PMT

• LSTM (Long-Short Term Memory):
• Type of recurrent neural network
• Often used for analyzing time series data
• Extracts salient features from traces to use for learning
• 64 features extracted per PMT

centroid time

pulse 

height
total signal

TSFEL DNN
+Autocorrelation

+Kurtosis
+…

Models
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• Try events with ≥ 2 triggered pixels. After recon. cuts (no Xmax in FOV cut) 
• FAST@TA: ~ 170 events, FAST@Auger: ~  90 events

• Find “good fits” but tendency to guess larger energy / further away core
→ need stereo observation

Auger  Recon
Temp. Meth. + 

TDR

Comparing which fit is better

Auger Recon.
Temp. Meth. + 

TDR

More degeneracy examples
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