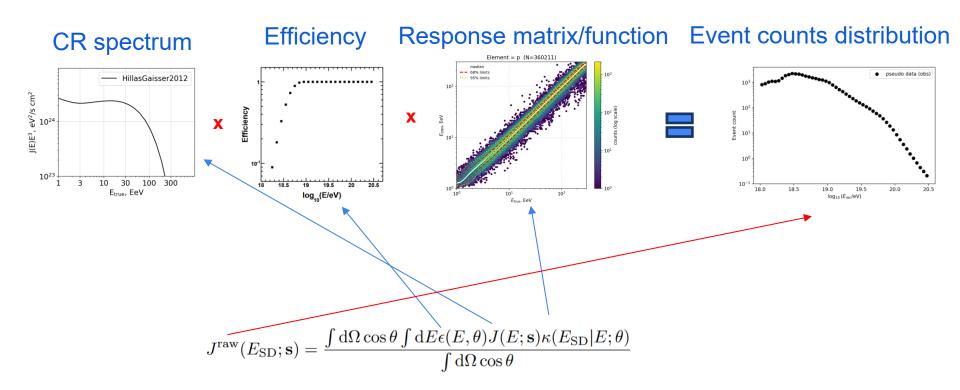


Bayesian Hierarchical Model for cross calibration

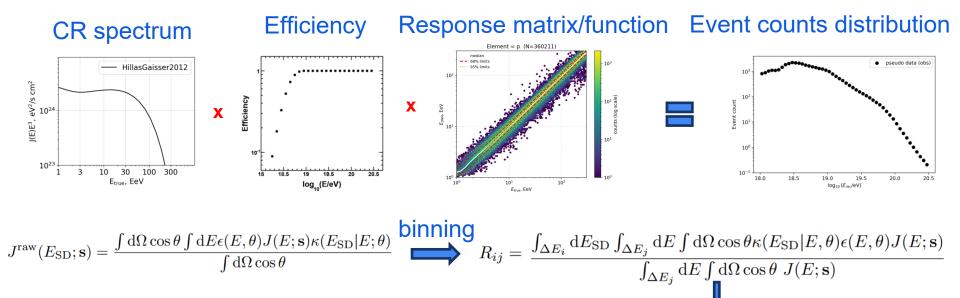
Anton Prosekin

TADML, October 17, 2025

Forward folding



Forward folding: log-likelihood minimization

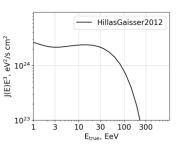


$$-\ln \mathcal{L}(\mathbf{s}) = \sum_{i} \left(\nu_{i}(\mathbf{s}) - N_{i} \ln \nu_{i}(\mathbf{s})\right)$$

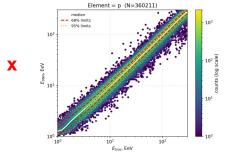
 $\nu_i = \sum_i R_{ij} \mu_j$

Forward folding: MCMC

CR spectrum



Efficiency



$$J^{\text{raw}}(E_{\text{SD}}; \mathbf{s}) = \frac{\int d\Omega \cos \theta \int dE \epsilon(E, \theta) J(E; \mathbf{s}) \kappa(E_{\text{SD}} | E; \theta)}{\int d\Omega \cos \theta}$$

$$J^{\text{raw}}(E_{\text{SD}}; \mathbf{s}) = \frac{\int d\Omega \cos \theta \int dE \epsilon(E, \theta) J(E; \mathbf{s}) \kappa(E_{\text{SD}}|E; \theta)}{\int d\Omega \cos \theta} \xrightarrow{\text{binning}} R_{ij} = \frac{\int_{\Delta E_i} dE_{\text{SD}} \int_{\Delta E_j} dE \int d\Omega \cos \theta \kappa(E_{\text{SD}}|E, \theta) \epsilon(E, \theta) J(E; \mathbf{s})}{\int_{\Delta E_j} dE \int d\Omega \cos \theta J(E; \mathbf{s})}$$

 $\nu_i = \sum_i R_{ij} \mu_j$

Log posterior sampling using

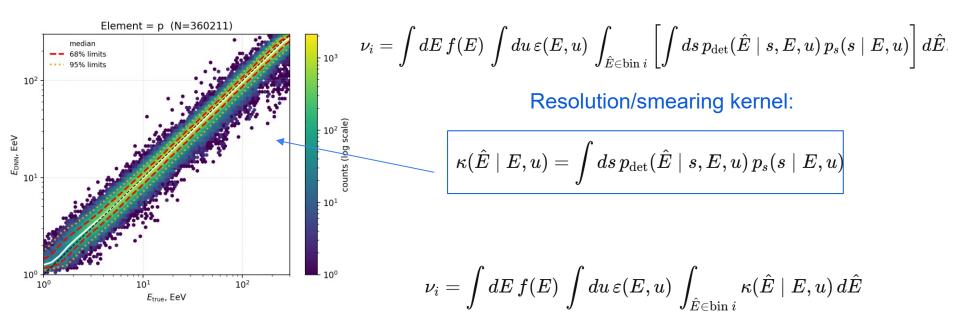
log₁₀(E/eV)

$$p(\mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)}{p(\mathcal{D})}$$

MCMC:

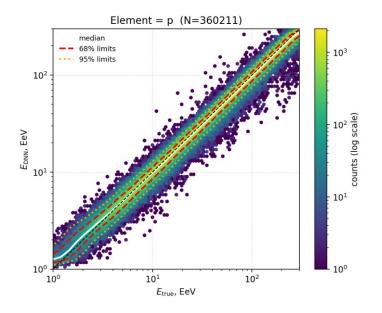
$$oxed{\log p(heta \mid D) \propto \sum_{i=1}^{N_{E, ext{rec}}} ig[N_i \log
u_i(heta) -
u_i(heta) - \log(N_i!)ig] + \log p(heta)}$$

Response (resolution) matrix



Response (resolution) matrix

Simulated resolution kernel

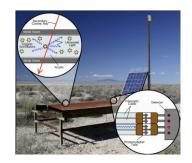


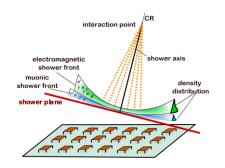
Real resolution/smearing kernel:

$$\kappa(\hat{E}\mid E,u) = \int ds \, p_{ ext{det}}(\hat{E}\mid s,E,u) \, p_s(s\mid E,u)$$

Detector fluctuations/smearing:

- sampling/LDF
- Scintillator/PMT

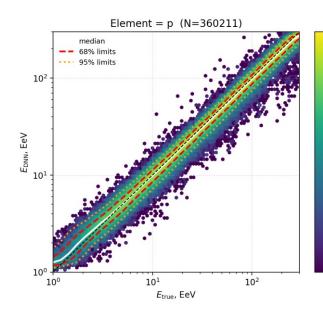




Shower size (s) fluctuations

Response (resolution) matrix

Simulated resolution kernel

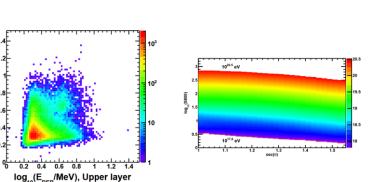


Simulated resolution/smearing kernel:

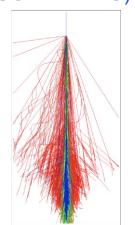
$$\kappa(\hat{E} \mid E, u) = \int ds \, p_{ ext{det}}(\hat{E} \mid s, E, u) \, p_s(s \mid E, u)$$

Detector fluctuations/smearing:

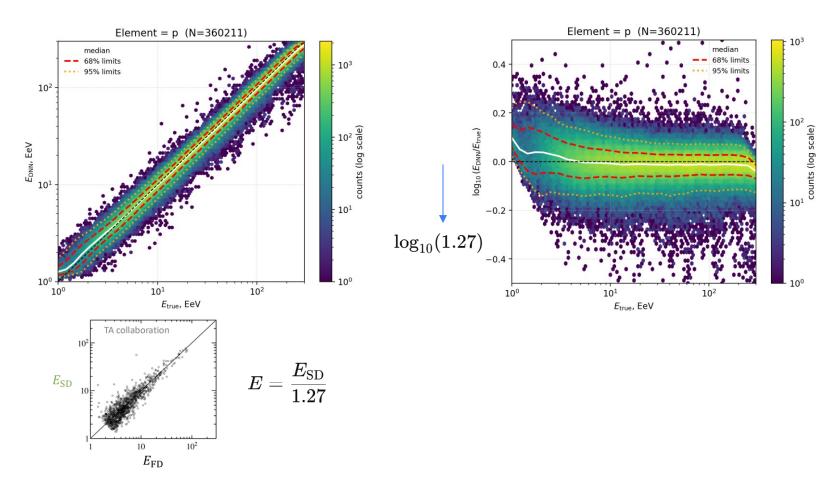
- Geant4
- Reconstruction (Std or DNN)



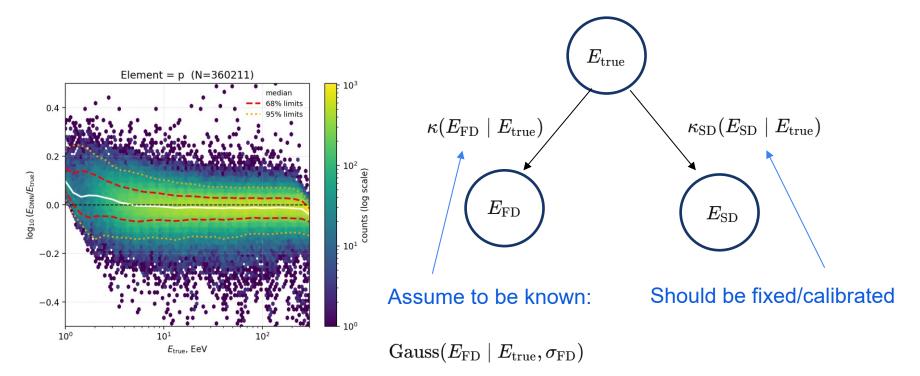
Shower size (s) fluctuations (CORSKA MC)



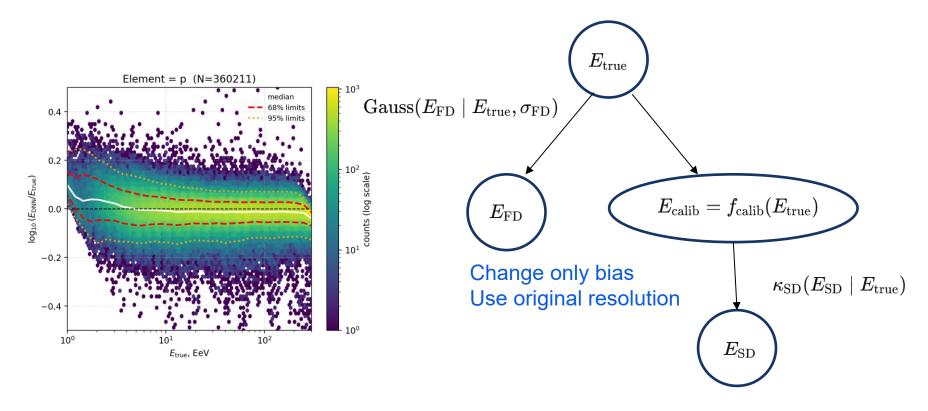
Standard calibration



Calibration with Hierarchical MCMC

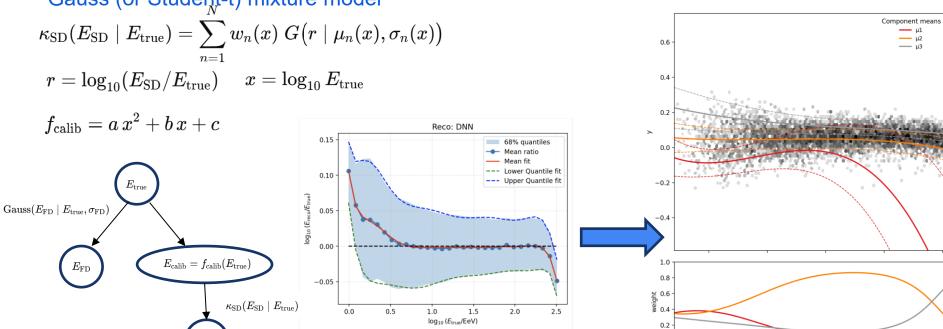


Calibration with Hierarchical MCMC



Parametrization

Gauss (or Student-t) mixture model



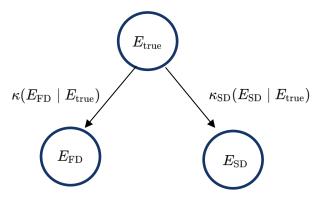
0.0

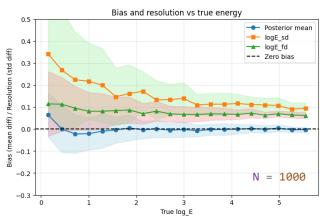
1.0

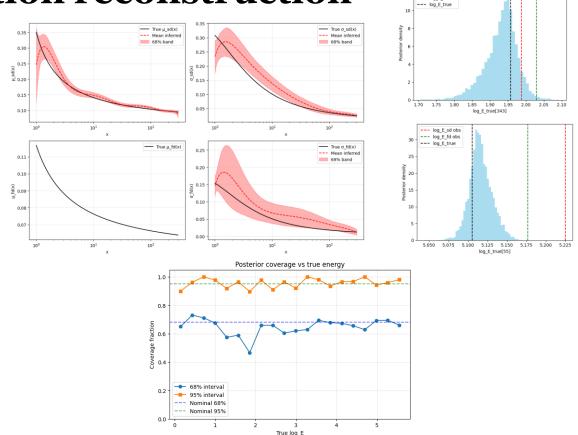
1.5

2.0

Test: full resolution reconstruction

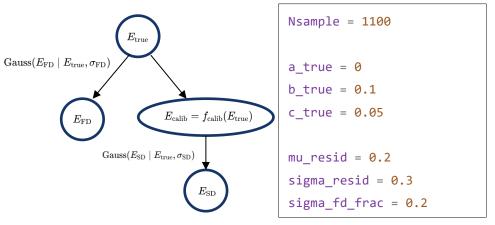




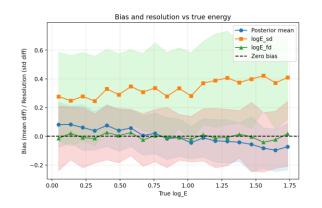


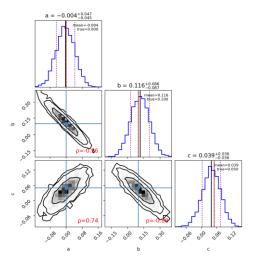
--- log_E_fd obs

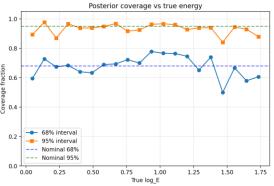
Test: Gaussian, no energy dependence



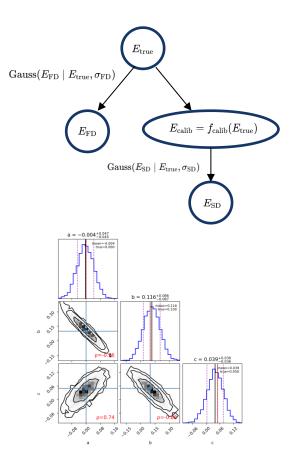
$$f_{\text{calib}} = a x^2 + b x + c$$

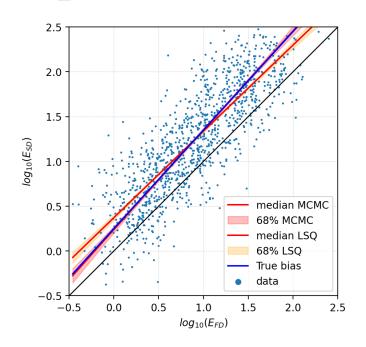






MCMC vs least square minimization (LSQ)





MCMC: $a = -0.004 \pm 0.045$ $b = 0.117 \pm 0.085$

 $c = 0.038 \pm 0.035$

$$f_{
m calib} = ax^2 + bx + c + x$$

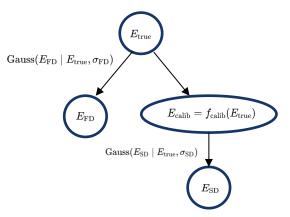
```
LSQ:

a = -0.001 \pm 0.033

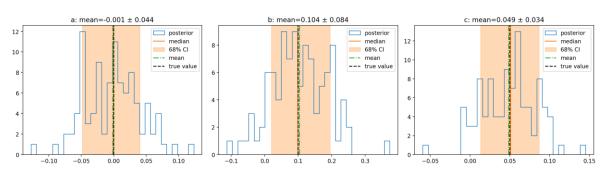
b = -0.034 \pm 0.064

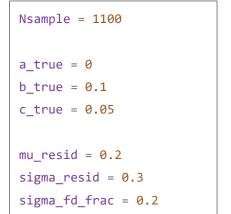
c = 0.372 \pm 0.028
```

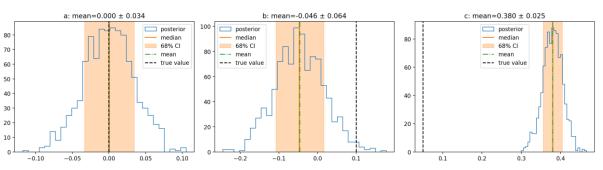
MCMC vs least square minimization (LSQ)



MCMC







Conclusions

- Calibration of the resolution function is required to correctly perform forward folding
- Auger used log-likelihood calibration on hybrid data; early work by Hans Dembinski showed that least-squares fits are biased
- MCMC is a powerful analog of the log-likelihood approach, as it does not require explicit multidimensional integration
- Bayesian MCMC calibration allows a natural extension of the MCMC forward folding method